Problem 1 (4 pts). Consider the first order equation:

$$
\begin{equation*}
u_{t}+x t u_{x}=-u . \tag{1.1}
\end{equation*}
$$

(a) Find the characteristic curves and sketch them in the (x, t) plane.
(b) Write the general solution.
(c) Solve equation (1.1) with the initial condition $u(x, 0)=\left(x^{2}+1\right)^{-1}$. Explain why the solution is fully determined by the initial condition.

Solution. (a)-(b) Equation of characteristics

$$
\frac{d t}{1}=\frac{d x}{x t}=-\frac{d u}{u} \Longrightarrow x e^{-t^{2} / 2}=C_{1}, C_{2}=u e^{t} \Longrightarrow \quad \begin{align*}
& \\
& \tag{1.2}\\
& u=f\left(x e^{-t^{2} / 2}\right) e^{-t}
\end{align*}
$$

with arbitrary function f.

(c) From initial condition we conclude that $f(x)=\left(x^{2}+1\right)^{-1}$ and

$$
\begin{equation*}
u(x, t)=\frac{e^{-t}}{x^{2} e^{-t^{2}}+1} \tag{1.3}
\end{equation*}
$$

Problem $2(4 \mathrm{pts})$. (a) (4 pts) Find solution $u(x, t)$ to

$$
\begin{align*}
& u_{t t}-u_{x x}=\left(x^{2}-1\right) e^{-\frac{x^{2}}{2}} \tag{2.1}\\
& \left.u\right|_{t=0}=-e^{-\frac{x^{2}}{2}},\left.\quad u_{t}\right|_{t=0}=0 . \tag{2.2}
\end{align*}
$$

(b) (1 pts-bonus) Find $\lim _{t \rightarrow+\infty} u(x, t)$.

Solution. (a) By D'Alembert formula

$$
\begin{equation*}
u(x, t)=-\frac{1}{2} e^{-(x+t)^{2} / 2}-\frac{1}{2} e^{-(x-t)^{2} / 2}+\frac{1}{2} \int_{0}^{t} \int_{x-(t-\tau)}^{x+(t-\tau)}\left(\xi^{2}-1\right) e^{-\frac{\xi^{2}}{2}} d \xi d \tau ; \tag{2.3}
\end{equation*}
$$

the inner integral is

$$
-\int \xi d e^{-\frac{\xi^{2}}{2}}-\int e^{-\frac{\xi^{2}}{2}} d \xi=-\xi e^{-\frac{\xi^{2}}{2}}
$$

(we integrated by parts and cancelled integrals) and therefore the second term in the right-hand expression of (2.3) is

$$
\begin{aligned}
& -\frac{1}{2} \int_{0}^{t}\left[(x+t-\tau) e^{-\frac{1}{2}(x+t-\tau)^{2}}-(x-t+\tau) e^{-\frac{1}{2}(x-t+\tau)^{2}} d \tau\right] d \tau \\
& \quad=\left.\frac{1}{2}\left[e^{-\frac{1}{2}(x+t-\tau)^{2}}+e^{-\frac{1}{2}(x-t+\tau)^{2}}\right]\right|_{\tau=0} ^{\tau=t}=\frac{1}{2}\left[e^{-\frac{1}{2}(x+t)^{2}}+e^{-\frac{1}{2}(x-t)^{2}}\right]-e^{-\frac{1}{2} x^{2}}
\end{aligned}
$$

and finally

$$
\begin{equation*}
u(x, t)=-e^{-\frac{1}{2} x^{2}} \tag{2.4}
\end{equation*}
$$

(b) As $t \rightarrow+\infty$ we have to first terms in the right-hand expression of (2.4) tending to 0 and

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} u(x, t)=-e^{-\frac{1}{2} x^{2}} \tag{2.5}
\end{equation*}
$$

Problem 3 (4 pts$)$. Find solution to

$$
\begin{array}{ll}
u_{t t}-9 u_{x x}=0, & 0<t<x, \\
\left.u\right|_{t=0}=\sin (x), & x>0, \\
\left.u_{t}\right|_{t=0}=3 \cos (x), & x>0, \\
\left.u\right|_{x=t}=0, & t>0 . \tag{3.4}
\end{array}
$$

Solution. (a) (2 pts) Solution to (3.1) is

$$
\begin{equation*}
u(x, t)=\phi(x+3 t)+\psi(x-3 t) \tag{3.5}
\end{equation*}
$$

with unknown functions ϕ and ψ. Plugging into (3.2)-(3.3) we get
$\phi(x)+\psi(x)=\sin (x), \quad 3 \phi^{\prime}(x)-3 \psi^{\prime}(x)=3 \cos (x) \Longrightarrow \phi(x)-\psi(x)=\sin (x)$
as ϕ, ψ defined up to constants C and $-C$, and then

$$
\phi(x)=\sin (x), \quad \psi(x)=0 \quad \text { as } \quad x>0
$$

and $u(x, t)=\sin (x+3 t)$ as $x>3 t$.
(b) $(2 \mathrm{pts})$ Plugging into (3.4) we get $\phi(4 t)+\psi(-2 t)=0$ as $t>0$ or

$$
\phi(-2 x)+\psi(x)=0 \Longrightarrow \psi(x)=-\phi(-2 x)=\sin (2 x) \quad x<0
$$

and $u(x, t)=\sin (x+3 t)+\sin 2(x-3 t)$ as $t<x<3 t$.

Problem 4 (4 pts). Consider the PDE with boundary conditions:

$$
\begin{array}{ll}
u_{t t}-c^{2} u_{x x}=0, & 0<x<L \\
\left.\left(u_{x}-\alpha u_{t t}\right)\right|_{x=0}=0, \\
\left.\left(u_{x}+\beta u_{t t}\right)\right|_{x=L}=0
\end{array}
$$

where $c>0$ and $\alpha>0$ are constant. Prove that the energy $E(t)$ defined as

$$
\begin{equation*}
E(t)=\frac{1}{2} \int_{0}^{L}\left(u_{t}^{2}+c^{2} u_{x}^{2}\right) d x+c^{2} \frac{\alpha}{2} u_{t}(0, t)^{2}+c^{2} \frac{\beta}{2} u_{t}(L, t)^{2} \tag{4.4}
\end{equation*}
$$

does not depend on t.
Solution.

$$
\begin{aligned}
& c^{-2} \partial_{t} E(t)=\int_{0}^{L}\left(c^{-2} u_{t} u_{t t}+u_{x} u_{x t}\right) d x+\left.\alpha u_{t} u_{t t}\right|_{x=0}+\left.\beta u_{t} u_{t t}\right|_{x=L} \\
& =\int_{0}^{L}\left(u_{t} u_{x x}+u_{x} u_{x t}\right) d x+\left.\alpha u_{t} u_{t t}\right|_{x=0}+\left.\beta u_{t} u_{t t}\right|_{x=L}=\left.u_{t} u_{x}\right|_{x=0} ^{x=L}+\left.\alpha u_{t} u_{t t}\right|_{x=0} \\
& =\left.u_{t}\left(-u_{x}+\alpha u_{t t}\right)\right|_{x=0}+\left.u_{t}\left(u_{x}+\beta u_{t t}\right)\right|_{x=L}=0
\end{aligned}
$$

due to boundary conditions.

