University of Toronto, Faculty of Arts and Science Final Examinations, December 13, 2016, 19:00-22:00, EX 200

APM346 - Partial Differential Equations, Section L5101

Instructor: Prof. Victor Ivrii

Duration - 3 hours
The 7 problems are independent. Total marks for this paper: 105.
The paper constitutes 40% of the final mark.
A list of useful formulas is attached in the last page. No other aids allowed.

Last name First name ID \qquad	

$\#$	points	Mark
$\mathbf{1}$	$[15]$	
$\mathbf{2}$	$[15]$	
$\mathbf{3}$	$[15]$	
$\mathbf{4}$	$[15]$	
$\mathbf{5}$	$[15]$	
$\mathbf{6}$	$[15]$	
$\mathbf{7}$	$[15]$	
Total	$[105]$	

Problem 1 (15 pts). Solve by the method of characteristics the BVP for a wave equation

$$
\begin{align*}
& u_{t t}-9 u_{x x}=0, \quad 0<x<\infty, t>0 \tag{1.1}\\
& u(x, 0)=f(x) \tag{1.2}\\
& u_{t}(x, 0)=g(x) \tag{1.3}\\
& u_{x}(0, t)=h(t) \tag{1.4}
\end{align*}
$$

with $f(x)=4 \cos (x), \quad g(x)=6 \sin (x)$ and $h(t)=\sin (3 t)$. You need to find a continuous solution.

Solution. From (1.1):

$$
\begin{equation*}
u(x, t)=\phi(x+3 t)+\psi(x-3 t) . \tag{1.5}
\end{equation*}
$$

Plugging to (1.2)-(1.3) we conclude that for $x>0 \phi(x)+\psi(x)=4 \cos (x)$, $3 \phi^{\prime}(x)-3 \psi^{\prime}(x)=6 \sin (x)$; integrating the second equation we get $\phi(x)-$ $\psi(x)=-2 \cos (x)$ (since we can select constant equal to 0 here) and finally

$$
\begin{equation*}
\phi(x)=\cos (x), \quad \psi(x)=3 \cos (x) \quad \text { as } x>0 \tag{1.6}
\end{equation*}
$$

We need to find $\psi(x)$ as $x<0$. Plugging (1.5) into (1.4) we conclude that $\phi^{\prime}(3 t)+\psi^{\prime}(-3 t)=\sin (3 t)$ as $t>0$ and plugging $x=-3 t$ we see that $\psi^{\prime}(x)=-\sin (x)-\psi^{\prime}(-x)=-2 \sin (x)$ and therefore $\psi(x)=2 \cos (x)+C$ as $x<0$.
Since $\psi(+0)=3, \psi(-0)=2+C$ we need for continuity $C=1$. So

$$
\begin{equation*}
\psi(x)=2 \cos (x)+1 \quad \text { as } \quad x>0 \tag{1.7}
\end{equation*}
$$

Finally,

$$
u(x, t)= \begin{cases}\cos (x+3 t)+3 \cos (x-3 t) & x>3 t>0 \tag{1.8}\\ \cos (x+3 t)+2 \cos (x-3 t)+1 & 0<x<3 t\end{cases}
$$

APM346, L5101, Fall 2016, Final Exam, Tuesday, December 13 3/20

Problem 2 (15 pts). Solve IVP for the heat equation

$$
\begin{align*}
& 4 u_{t}-u_{x x}=0, \quad 0<x<\infty, t>0 \tag{2.1}\\
& \left.u\right|_{x=0}=0 \tag{2.2}\\
& \left.u\right|_{t=0}=f(x) \tag{2.3}
\end{align*}
$$

with $f(x)=x e^{-x^{2}}$.
Solution should be expressed through $\operatorname{erf}(z)=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-z^{2}} d z$.
Solution. We can safely ignore boundary condition and consider Cauchy problem. Indeed, $x e^{-x^{2}}$ is an odd function. Thus

$$
\begin{aligned}
u(x, t)= & \frac{1}{\sqrt{\pi t}} \int_{-\infty}^{\infty} y e^{-y^{2}} e^{-\frac{1}{t}(x-y)^{2}} d y= \\
& \frac{1}{\sqrt{\pi t}} \int_{-\infty}^{\infty} y \exp \left(-\frac{1}{t} x^{2}+\frac{2}{t} x y-\frac{t+1}{t} y^{2}\right) d y= \\
& \frac{1}{\sqrt{\pi t}} \int_{-\infty}^{\infty} y \exp \left(-\frac{x^{2}}{t+1}-\frac{t+1}{t}\left(y-\frac{x}{t+1}\right)^{2}\right) d y= \\
& \frac{1}{\sqrt{\pi t}} \exp \left(-\frac{x^{2}}{t+1}\right) \int_{-\infty}^{\infty} y \exp \left(-\frac{t+1}{t}\left(y-\frac{x}{t+1}\right)^{2}\right) d y=
\end{aligned}
$$

plugging $y=\sqrt{t /(t+1)} z+x /(t+1)$

$$
\begin{aligned}
& \frac{1}{\sqrt{\pi(t+1)}} \exp \left(-\frac{x^{2}}{t+1}\right) \int_{-\infty}^{\infty}\left(\sqrt{\frac{t}{t+1}} z+\frac{x}{t+1}\right) \exp \left(-z^{2}\right) d z= \\
& \frac{x}{\sqrt{\pi}(t+1)^{3 / 2}} \exp \left(-\frac{x^{2}}{t+1}\right) \int_{-\infty}^{\infty} \exp \left(-z^{2}\right) d z= \\
& \frac{x}{(t+1)^{3 / 2}} e^{-\frac{x^{2}}{t+1}}
\end{aligned}
$$

Solution 2. Again, we can consider Cauchy problem. Observe that $f(x)=$ $-\frac{1}{2} g^{\prime}(x)$ with $g(x)=e^{-x^{2}}$. Also observe that for initial function $g(x)$ solution is $v(x, t)=(t+1)^{-1 / 2} e^{-x^{2} /(t+1)}$. Indeed it is obtained is known solution of equation (2.1) by replacing t by $t+1$.
Then $u(x, t)=-\frac{1}{2} \partial_{x} e^{-x^{2} /(t+1)}=x(t+1)^{-3 / 2} e^{-x^{2} /(t+1)}$.

Problem 3 (15 pts). Solve by the method of separation of variables

$$
\begin{align*}
& 4 u_{t t}-u_{x x}=0, \quad 0<x<2, t>0, \tag{3.1}\\
& u(0, t)=u(2, t)=0 \tag{3.2}\\
& u(x, 0)=f(x) \tag{3.3}\\
& u_{t}(x, 0)=g(x) \tag{3.4}
\end{align*}
$$

with $f(x)=\left\{\begin{array}{ll}x & 0<x<1, \\ 2-x & 1<x<2,\end{array}\right.$ and $g(x)=0$. Write the answer in terms of Fourier series.

Solution. Separating variables $u(x, t)=X(x) T(t)$ we get

$$
\begin{align*}
& X^{\prime \prime}+\lambda X=0 \tag{3.5}\\
& X(0)=X(2)=0 \tag{3.6}\\
& 4 T^{\prime \prime}+\lambda T=0 \tag{3.7}
\end{align*}
$$

Problem (3.5)-(3.6) has solution

$$
\begin{equation*}
\lambda_{n}=\frac{\pi^{2} n^{2}}{4}, \quad X_{n}=\sin \left(\frac{\pi n x}{2}\right), \quad n=1,2, \ldots \tag{3.8}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
T_{n}=A_{n} \cos \left(\frac{\pi n t}{4}\right)+B_{n} \sin \left(\frac{\pi n t}{4}\right) \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
u=\sum_{n=1}^{\infty}\left[A_{n} \cos \left(\frac{\pi n t}{4}\right)+B_{n} \sin \left(\frac{\pi n t}{4}\right)\right] \sin \left(\frac{\pi n x}{2}\right) \tag{3.10}
\end{equation*}
$$

Plugging to (3.3)-(3.4) we get

$$
\begin{aligned}
& \sum_{n=1}^{\infty} A_{n} \sin \left(\frac{\pi n x}{4}\right)=f(x), \\
& \sum_{n=1}^{\infty} \frac{\pi n}{4} B_{n} \sin \left(\frac{\pi n x}{2}\right)=0 .
\end{aligned}
$$

and $B_{n}=0$,

$$
\begin{gathered}
A_{n}=\int_{0}^{2} f(x) \sin \left(\frac{\pi n x}{2}\right) d x=\int_{0}^{1} x \sin \left(\frac{\pi n x}{2}\right) d x+\int_{1}^{2}(2-x) \sin \left(\frac{\pi n x}{2}\right) d x= \\
\frac{8}{\pi^{2} n^{2}} \sin \left(\frac{\pi n}{2}\right)= \begin{cases}\frac{8}{\pi^{2}(2 m+1)^{2}}(-1)^{m} & n=2 m+1 \\
0 & n=2 m\end{cases}
\end{gathered}
$$

Then

$$
\begin{equation*}
u=\sum_{m=0}^{\infty} \frac{4}{\pi^{2}(2 m+1)^{2}} \sin \left(\frac{\pi(2 m+1) t}{4}\right) \sin \left(\frac{\pi(2 m+1) x}{2}\right) \tag{3.11}
\end{equation*}
$$

Problem 4 (15 pts). Consider the Laplace equation in the sector

$$
\begin{equation*}
u_{x x}+u_{y y}=0 \quad \text { in } x^{2}+y^{2}<16, x>-\sqrt{3}|y| \tag{4.1}
\end{equation*}
$$

with the boundary conditions

$$
\begin{array}{ll}
u=1 & \text { for } x^{2}+y^{2}=16 \\
u=0 & \text { for } x=-\sqrt{3}|y| \tag{4.3}
\end{array}
$$

(a) Look for solutions u in the form of $u(r, \theta)=R(r) P(\theta)$ (in polar coordinates) and derive a set of ordinary differential equations for R and P. Write the correct boundary conditions for P.
(b) Solve the eigenvalue problem for P and find all eigenvalues.
(c) Solve the differential equation for R.
(d) Find the solution u of (4.1)-(4.3).

Solution. In polar coordinates $\{x=-r / 2\}$ is $\theta= \pm \frac{5 \pi}{6}$.
Separating variables we get domain

$$
\begin{align*}
\frac{r^{2} R^{\prime \prime}+r R^{\prime}}{R}+\frac{P^{\prime \prime}}{P}=0 \Longrightarrow & P^{\prime \prime}+\lambda P=0 \tag{4.4}\\
& P\left(-\frac{5 \pi}{6}\right)=P\left(\frac{5 \pi}{6}\right)=0 \tag{4.5}\\
& r^{2} R^{\prime \prime}+r R^{\prime}+\lambda R=0 \tag{4.6}
\end{align*}
$$

Since problem is symmetric with respect to $y=0$ we conclude that u is even with respect to y (or θ) and then we consider $P_{n}(\theta)=\cos \left(\frac{3}{5}(2 n+1) \theta\right)$, $\lambda_{n}=\frac{9}{25}(2 n+1)^{2}$.
Then $r^{2} R^{\prime \prime}+r R^{\prime}+\frac{9}{25}(2 n+1)^{2} R=0 \Longrightarrow R_{n}=A_{n} r^{3(2 n+1) / 5}+B_{n} r^{-3(2 n+1) / 5}$ and $B_{n}=0$ since the last term is singular as $r=0$. Then

$$
\begin{equation*}
u=\sum_{n=1}^{\infty} A_{n} r^{3(2 n+1) / 5} \cos \left(\frac{3(2 n+1)}{5}\right) \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.u\right|_{r=16}=\sum_{n=1}^{\infty} A_{n} 2^{3(2 n+1) / 5} \cos \left(\frac{3(2 n+1)}{5} \theta\right)=1 \tag{4.8}
\end{equation*}
$$

which implies
$A_{n}=2^{-12(2 n+1) / 5} \times \frac{12}{5 \pi} \int_{0}^{5 \pi / 6} \cos \left(\frac{3(2 n+1)}{5} \theta\right) d \theta= \begin{cases}\frac{1}{2(2 m+1) \pi} 2^{-6 m} & n=2 m+1, \\ 0 & n=2 m .\end{cases}$

APM346, L5101, Fall 2016, Final Exam, Tuesday, December 13 9/20

Finally

$$
\begin{aligned}
u= & \sum_{m=1}^{\infty} \frac{1}{2(2 m+1) \pi} 2^{-6 m} r^{3(2 m+1) / 4} \sin \left(\frac{3(2 m+1)}{4}\left(\theta+\frac{2 \pi}{3}\right)\right)= \\
& \sum_{m=1}^{\infty} \frac{1}{2(2 m+1) \pi} 2^{-6 m}(-1)^{m} r^{3(2 m+1) / 4} \cos \left(\frac{3(2 m+1)}{4} \theta\right)
\end{aligned}
$$

Problem 5 (15 pts). Consider Laplace equation in the half-strip

$$
\begin{equation*}
u_{x x}+u_{y y}=0 \quad y>0,0<x<\pi \tag{5.1}
\end{equation*}
$$

with the boundary conditions

$$
\begin{align*}
& u(0, y)=u(\pi, y)=0 \tag{5.2}\\
& u_{y}(x, 0)=g(x) \tag{5.3}
\end{align*}
$$

with $g(x)=\cos (x)$ and condition $\max |u|<\infty$.
(a) Write the associated eigenvalue problem.
(b) Find all eigenvalues and corresponding eigenfunctions.
(c) Write the solution in the form of a series expansion.

Solution. Separating variables $u=X(x) Y(y)$ we get

$$
\begin{align*}
& \frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=0 \Longrightarrow X^{\prime \prime}+\lambda X=0 \tag{5.4}\\
& Y^{\prime \prime}-\lambda Y=0 \tag{5.5}\\
& X(0)=X(\pi)=0 \tag{5.6}
\end{align*}
$$

Solving (5.4), (5.6) we have

$$
\begin{equation*}
\lambda_{n}=n^{2}, \quad X_{n}=\sin (n x) \quad n=1,2,3, \ldots \tag{5.7}
\end{equation*}
$$

and then solving (5.5) we get $Y_{n}=A_{n} e^{n y}+B_{n} e^{-n y}$ and the last term as growing for $y>0$ we need to drop. So

$$
\begin{equation*}
Y_{n}=B_{n} e^{-n y} \tag{5.8}
\end{equation*}
$$

and

$$
\begin{equation*}
u(x, y)=\sum_{n=1}^{\infty} B_{n} e^{-n y} \sin (n x) \tag{5.9}
\end{equation*}
$$

Plugging to (5.3) we get

$$
\begin{equation*}
\sum_{n=1}^{\infty}-n B_{n} \sin (n x)=\cos (x) \tag{5.10}
\end{equation*}
$$

and

$$
\begin{aligned}
B_{n}=-\frac{2}{n \pi} \int_{0}^{\pi} \cos (x) \sin (n x) d x= & \left.-\frac{1}{n \pi} \int_{0}^{\pi}(\sin ((n+1) x)-\sin (n-1) x)\right) \\
& \left.\frac{1}{n \pi}\left(\frac{\cos (n+1) x}{n+1}-\frac{\cos (n-1) x}{n-1}\right)\right)\left.\right|_{x=0} ^{x=\pi}
\end{aligned}
$$

APM346, L5101, Fall 2016, Final Exam, Tuesday, December 13 12/20
with underlined term 0 as $n=1$. Then

$$
B_{n}= \begin{cases}0 & n=2 m+1 \\ -\frac{4}{m \pi\left(4 m^{2}-1\right)} & n=2 m\end{cases}
$$

and

$$
u(x, y)=\sum_{m=1}^{\infty}-\frac{4}{m \pi\left(4 m^{2}-1\right)} \sin (2 m x) e^{-2 m y}
$$

Problem 6 (15 pts). Solve as $t>0$

$$
\begin{equation*}
u_{t t}-\Delta u=0 \tag{6.1}
\end{equation*}
$$

with initial conditions

$$
u(x, y, z, 0)= \begin{cases}1 & r:=\sqrt{x^{2}+y^{2}+z^{2}}<1, \tag{6.2}\\ 0 & r \geq 1\end{cases}
$$

and solve by a separation of variables.
Hint. Use spherical coordinates, observe that solution must be spherically symmetric: $u=u(r, t)$ (explain why).
Also, use equality

$$
\begin{equation*}
r u_{r r}+2 u_{r}=(r u)_{r r} . \tag{6.3}
\end{equation*}
$$

Solution. Solution is spherically symmetric because the problem is. Then

$$
\begin{equation*}
u_{t t}-\left(u_{r r}+\frac{2}{r} u_{r}\right)=0 \quad r>0, t>0 \tag{6.4}
\end{equation*}
$$

Multiplying by r and using (6.3) we arrive to the first equation below:

$$
\begin{align*}
& v_{t t}-v_{r r}=0 \quad r>0 \tag{6.5}\\
& v(0, t)=0 \tag{6.6}\\
& v(r, 0)=g(r)=\left\{\begin{array}{ll}
r & r<1, \\
0 & r \geq 1,
\end{array} \quad v_{t}(r, 0)=0 .\right. \tag{6.7}
\end{align*}
$$

Continuing $g(r)$ as and odd function $\tilde{g}(r)=\left\{\begin{array}{ll}r & |r|<1, \\ 0 & |r| \geq 1,\end{array}\right.$ and solving Cauchy problem we get

$$
v(r, t)=\frac{1}{2}(\tilde{g}(r+t)+\tilde{g}(r-t))= \begin{cases}0 & r>t+1 \tag{6.8}\\ \frac{1}{2}(r-t) & 1-t<r<t+1 \\ r & 0<r<1-t \\ 0 & 0<r<t-1\end{cases}
$$

and finally

$$
u(r, t)=r^{-1} v(r, t)= \begin{cases}0 & r>t+1 \tag{6.9}\\ \frac{1}{2 r}(r-t) & 1-t<r<t+1 \\ 1 & 0<r<1-t \\ 0 & 0<r<t-1\end{cases}
$$

APM346, L5101, Fall 2016, Final Exam, Tuesday, December 13 15/20

Problem 7 (15 pts). Solve using (partial) Fourier transform with respect to y

$$
\begin{align*}
& \Delta u:=u_{x x}+u_{y y}=0, \quad x>0, \tag{7.1}\\
& \left.u\right|_{x=0}=g(y), \tag{7.2}\\
& \max |u|<\infty \tag{7.3}
\end{align*}
$$

with $g(y)=\frac{2}{y^{2}+1}$.
Hint. Fourier transform of $g(y)$ is $\hat{g}=e^{-|\eta|}$.
Solution. Making Fourier transform we get

$$
\begin{array}{ll}
\hat{u}_{x x}-\eta^{2} \hat{u}=0, & x>0, \\
\left.\hat{u}\right|_{x=0}=\hat{g}(\eta)=e^{-|\eta|}, \\
\max |\hat{u}|<\infty & \tag{7.6}
\end{array}
$$

and solving (7.4) we see that $\hat{u}=A(\eta) e^{-|\eta| x}+B(\eta) e^{|\eta| x}$; (7.6) implies that $B(\eta)=0$ and (7.5) implies then $A(\eta)=e^{-|\eta|}$. Then $\hat{u}(x, \eta)=e^{-|\eta|(1+x)}$ and

$$
\begin{align*}
& u(x, y)=\int_{-\infty}^{\infty} \hat{u}(x, \eta) e^{i \eta y} d \eta=\int_{-\infty}^{0} e^{\eta(1+x+y i)} d \eta+\int_{0}^{-\infty} e^{-\eta(1+x-y i)} d \eta= \\
& \frac{1}{1+x+y i}+\frac{1}{1+x-y i}=\frac{2(1+x)}{(1+x)^{2}+y^{2}} \tag{7.7}
\end{align*}
$$

Appendix: Some useful formulas. Not exam problems.
 You may detach this page

1. The two dimensional Laplacian in polar coordinates:

$$
\Delta f=\frac{\partial^{2} f}{\partial r^{2}}+\frac{1}{r} \frac{\partial f}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}} .
$$

2. The Stokes theorem

$$
\int_{D} \frac{\partial f}{\partial x_{i}} d x=\int_{\partial D} f n_{i} d \sigma
$$

where n (with components n_{i}) is the unit normal vector pointing outside.
3. The complex Fourier series of a periodic function $f(x)$ of period $2 l$, defined on the interval $(-l, l)$ is

$$
f(x)=\sum_{n=-\infty}^{+\infty} c_{n} e^{\pi i n x / l}
$$

with the coefficients c_{n} given by the formula

$$
c_{n}=\frac{1}{2 l} \int_{-l}^{l} f(x) e^{-\pi i n x / l} d x
$$

4. The Fourier transform of a function $f(x)$ is defined by

$$
\hat{f}(k)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i k x} f(x) d x
$$

The inverse Fourier transform is

$$
f(x)=\int_{-\infty}^{\infty} e^{i k x} \hat{f}(k) d k
$$

Here some of its properties:
(a) if $g(x)=f(a x)$, then $\hat{g}(k)=\frac{1}{|a|} \hat{f}\left(\frac{k}{a}\right)$;
(b) $\widehat{f^{\prime}}(k)=i k \hat{f}(k)$;
(c) if $g(x)=x f(x)$ then $\hat{g}(k)=-i \hat{f}^{\prime}(k)$;
(d) if $g(x)=f(x-a)$, then $\hat{g}(k)=e^{-i a k} \hat{f}(k)$;
(e) if $h=f * g$, then $\hat{h}(k)=2 \pi \hat{f}(k) \hat{g}(k)$;
(f) if $f(x)=e^{-x^{2} / 2}$, then $\hat{f}(k)=\frac{1}{\sqrt{2 \pi}} e^{-k^{2} / 2}$.

