Problem 1. Solve by the method of characteristics the BVP for a wave equation

$$
\begin{align*}
& u_{t t}-4 u_{x x}=0, \quad 0<x<\infty, t>0 \tag{1.1}\\
& u(x, 0)=f(x) \tag{1.2}\\
& u_{t}(x, 0)=g(x) \tag{1.3}\\
& u_{x}(0, t)=h(t) \tag{1.4}
\end{align*}
$$

with $f(x)=0, \quad g(x)=\left\{\begin{array}{ll}1 & 0<x<1, \\ 0 & 1<x<\infty,\end{array} \quad h(t)= \begin{cases}1 & 0<t<1, \\ 0 & 1<t<\infty .\end{cases}\right.$
Solution. From

$$
\begin{equation*}
u(x, t)=\varphi(x+2 t)+\psi(x-2 t) \tag{1.5}
\end{equation*}
$$

and (1.2), (1.3) we see that for $x>0$

$$
\varphi(x)+\psi(x)=0, \quad 2 \varphi^{\prime}(x)-2 \psi^{\prime}(x)= \begin{cases}1 & 0<x<1 \\ 0 & 1<x<\infty\end{cases}
$$

and then

$$
\varphi(x)= \begin{cases}\frac{1}{4} x & x<1 \tag{1.6}\\ \frac{1}{4} & x>1\end{cases}
$$

(we set $\varphi(0)=0$ as it can be set additionally without affecting solution), $\psi(x)=-\varphi(x)$ and then

$$
u(x, t)= \begin{cases}0 & x>2 t+1 \tag{1.7}\\ \frac{1}{4}(1+2 t-x) & 2 t<x<2 t+1\end{cases}
$$

which could be obtained by D'Alembert formula as well.
From (1.4) we see $\varphi^{\prime}(2 t)+\psi^{\prime}(-2 t)= \begin{cases}1 & 0<t<1, \\ 0 & 1<t<\infty\end{cases}$
$\Longleftrightarrow \varphi^{\prime}(-x)+\psi^{\prime}(x)= \begin{cases}1 & -2<x<0, \\ 0 & x<-2\end{cases}$
$\Longleftrightarrow \psi(x)=\varphi(-x)+ \begin{cases}x & -2<x<0, \\ -2 & x<-2\end{cases}$

$$
\Longleftrightarrow \psi(x)= \begin{cases}\frac{3}{4} x & -1<x<0 \\ \frac{1}{4}+x & -2<x<-1 \\ -\frac{7}{4} & x<-2\end{cases}
$$

and finally as $0<x<2 t$

$$
u(x, t)=\left\{\begin{array}{ll}
\frac{3}{4}(x-2 t) & 2 t-1<x<2 t \\
\frac{1}{4}+x-2 t & 2 t-2<x<2 t-1, \\
-\frac{7}{4} & x<2 t-2
\end{array} \quad+ \begin{cases}\frac{1}{4} x+\frac{1}{2} t & x<1-2 t \\
\frac{1}{4} & x>1-2 t\end{cases}\right.
$$

Solution 2. One can solve first problem with $h(t)=0$:

$$
v(x, t)=\frac{1}{2}[F(x+2 t)+F(x-2 t)]+\frac{1}{4} \int_{x-2 t}^{x+2 t} G\left(x^{\prime}\right) d x^{\prime} \quad x>0
$$

where $F\left(x^{\prime}\right)=0, G\left(x^{\prime}\right)=\left\{\begin{array}{ll}1 & \left|x^{\prime}\right|<1, \\ 0 & \left|x^{\prime}\right|>1\end{array}\right.$ and we applied method of continuation; then integral is taken over $\max (x-2 t,-1)<x^{\prime}<\min (x+2 t, 1)$ which is empty as $x>2 t+1$ and otherwise it is $\min (x+2 t, 1)-\max (x-2 t,-1)=$ $\min (x+2 t, 1)+\min (-x+2 t, 1)=\min (4 t,-x+2 t+1,2)$. So

$$
\begin{aligned}
& v(x, t)=\left\{\begin{array}{ll}
0 & x>2 t+1 \\
\frac{1}{4} \min (4 t,-x+2 t+1,2) & 0<x<2 t+1
\end{array}=\right. \\
& \begin{cases}0 & x>2 t+1 \\
\frac{1}{4}(2 t+1-x) & \max (1-2 t, 0)<x<1+2 t \\
t & 0<x<1-2 t\end{cases}
\end{aligned}
$$

Next solve problem with $g(t)=0$. It is $w(x, t)=\psi(x-2 t)$ with $\psi(0)=0$ and $\psi^{\prime}(-2 t)=h(t)$; then $\psi^{\prime}(x)=\left\{\begin{array}{ll}1 & 0>x>-2, \\ 0 & x<-2\end{array}\right.$ and $\psi(x)=\left\{\begin{array}{ll}x & 0>x>-2, \\ -2 & x<-2\end{array}\right.$ and

$$
w(x, t)= \begin{cases}0 & x>2 t \\ x-2 t & 2 t-2<x<2 t \\ -2 & x<2 t-2\end{cases}
$$

Finally,

$$
\begin{aligned}
& u(x, t)=v(x, t)+w(x, t) \\
&= \begin{cases}0 & x>2 t+1 \\
\frac{1}{4}(2 t+1-x) & \max (1-2 t, 0)<x<1+2 t, \\
t & 0<x<1-2 t\end{cases} \\
&+ \begin{cases}0 & x>2 t, \\
x-2 t & 2 t-2<x<2 t \\
-2 & x<2 t-2 .\end{cases}
\end{aligned}
$$

Problem 2. Solve IBVP for the heat equation

$$
\left\{\begin{array}{l}
u_{t}-3 u_{x x}=0, \quad 0<x<\infty, t>0 \tag{2.1}\\
\left.u\right|_{t=0}=f(x) \\
\left.u_{x}\right|_{x=0}=0
\end{array}\right.
$$

with $f(x)= \begin{cases}1 & 0<x<1, \\ 0 & 1<x<\infty,\end{cases}$
Solution should be expressed through $\operatorname{erf}(z)=\sqrt{\frac{2}{\pi}} \int_{0}^{z} e^{-z^{2} / 2} d z$.
Solution. Method of continuation $u(x, t)$ should be solved as Cauchy problem with initial condition $u(x, 0)=F(x)$ with $F(x)=\left\{\begin{array}{ll}1 & |x|<1, \\ 0 & |x|>1,\end{array}\right.$ and therefore

$$
u(x, t)=\frac{1}{\sqrt{12 \pi t}} \int_{-1}^{1} e^{-\frac{(x-y)^{2}}{12 t}} d y=\frac{1}{\sqrt{2 \pi}} \int_{\frac{x-1}{\sqrt{2 t}}}^{\frac{x+1}{\sqrt{2 t}}} e^{-\frac{z^{2}}{2}} d y
$$

where we set $y=x+z \sqrt{6 t}$ and finally

$$
u(x, t)=\frac{1}{2}\left[\operatorname{erf}\left(\frac{(x+1)}{\sqrt{6 t}}\right)-\operatorname{erf}\left(\frac{(x-1)}{\sqrt{6 t}}\right)\right]
$$

where we used that $\sqrt{\frac{2}{\pi}} \int_{a}^{b} e^{-z^{2} / 2} d z=\operatorname{erf}(b)-\operatorname{erf}(a)$.
Problem 3. Solve by the method of separation of variables

$$
\begin{align*}
& u_{t t}-4 u_{x x}=0, \quad 0<x<1, t>0, \tag{3.1}\\
& u_{x}(0, t)=u_{x}(1, t)=0 \tag{3.2}\\
& u(x, 0)=f(x) \tag{3.3}\\
& u_{t}(x, 0)=g(x) \tag{3.4}
\end{align*}
$$

with $f(x)=x(1-x), g(x)=0$. Write the answer in terms of Fourier series.
Solution. Separation of variables results in $X^{\prime \prime}+\lambda X=0, X^{\prime}(0)=X^{\prime}(1)=0$ and thus $\lambda_{0}=0, X_{0}=\frac{1}{2}$ and $\lambda_{n}=\pi^{2} n^{2}, X_{n}=\cos (\pi n x)$ with $n=$ $1,2, \ldots$; also $T^{\prime \prime}+4 \pi^{2} T=0$ and thus $T_{0}=A_{0}+B_{0} t, T_{n}=A_{n} \cos (2 \pi n t)+$ $B_{n} \sin (2 \pi n t)$, and

$$
\begin{equation*}
u=\frac{1}{2}\left(A_{0}+B_{0} t\right)+\sum_{n=1}^{\infty}\left(A_{n} \cos (2 \pi n t)+B_{n} \sin (2 \pi n t)\right) \cos (\pi n x) . \tag{3.5}
\end{equation*}
$$

The initial conditions result in

$$
\frac{1}{2} A_{0}+\sum_{n=1}^{\infty} A_{n} \cos (\pi n x)=x(1-x), \quad \frac{1}{2} B_{0}+\sum_{n=1}^{\infty} 2 \pi n B_{n} \cos (\pi n x)=0
$$

and $B_{n}=0(n=0,1,2, \ldots)$ and

$$
\begin{aligned}
& A_{n}=2 \int_{0}^{1} x(1-x) \cos (\pi n x) d x=-\frac{2}{\pi n} \int_{0}^{1}(1-2 x) \sin (\pi n x)= \\
& -\left.\frac{2}{\pi^{2} n^{2}}(1-2 x) \cos (\pi n x)\right|_{x=0} ^{x=1}+\frac{4}{\pi^{2} n^{2}} \int_{0}^{1} \cos (\pi n x) d x=\left\{\begin{array}{rl}
-\frac{1}{\pi^{2} m^{2}} & n=2 m \\
0 & n=2 m+1
\end{array}\right.
\end{aligned}
$$

$m=1,2, \ldots$. Meanwhile $A_{0}=\frac{1}{3}$. Then

$$
u=\frac{1}{12}-\sum_{m=1}^{\infty} \frac{1}{\pi^{2} m^{2}} A_{n} \cos (4 \pi m t) \cos (2 \pi m x)
$$

Problem 4. Consider the Laplace equation in the third of the disk

$$
\begin{equation*}
u_{x x}+u_{y y}=0 \quad \text { in } r=\sqrt{x^{2}+y^{2}}<a^{2}, x>|y| / \sqrt{3} \tag{4.1}
\end{equation*}
$$

with the boundary conditions

$$
\begin{array}{ll}
u=y & \text { for } r=a, x>0 \\
u=0 & \text { for } y>0, x=y / \sqrt{3} \\
u=0 & \text { for } y<0, x=-y / \sqrt{3} . \tag{4.4}
\end{array}
$$

(a) Look for solutions u in the form of $u(r, \theta)=R(r) P(\theta)$ (in polar coordinates) and derive a set of ordinary differential equations for R and P. Write the correct boundary conditions for P.
(b) Solve the eigenvalue problem for P and find all eigenvalues.
(c) Solve the differential equation for R.
(d) Find the solution u of (4.1)-(4.4). Write the answer in terms of Fourier series.

Solution. Domain is a sector $-\frac{\pi}{3}<\theta<\frac{\pi}{3}$:

Then

$$
P^{\prime \prime}+\lambda P=0, \quad P\left(-\frac{\pi}{3}\right)=P\left(\frac{\pi}{3}\right)=0
$$

Since our problem is symmetric with respect to $y=0$ and $u(a, \theta)=a \sin (\theta)$ is an odd function we can replace this problem by

$$
P^{\prime \prime}+\lambda P=0, \quad P(0)=P\left(\frac{\pi}{3}\right)=0
$$

and $\lambda_{n}=9 n^{2}, P_{n}=\sin (3 n \theta)$ with $n=1,2, \ldots$

Then $r^{2} R_{n}^{\prime \prime}+r R_{n}^{\prime}+9 n^{2} R_{n}=0$ and $R_{n}=A_{n} r^{3 n}+B r_{n}^{-3 n}$ and we need to take $B_{n}=0$.
So,

$$
u(r, \theta)=\sum_{n=1}^{\infty} A_{n} r^{3 n} \sin (3 n \theta)
$$

We need to satisfy

$$
u(a, \theta)=\sum_{n=1}^{\infty} A_{n} a^{3 n} \sin (3 n \theta)=a \sin (\theta)
$$

and therefore

$$
\begin{gathered}
A_{n} a^{3 n}=\frac{6 a}{\pi} \int_{0}^{\frac{\pi}{3}} \sin (3 n \theta) \sin (\theta) d \theta=\frac{3 a}{\pi} \int_{0}^{\frac{\pi}{3}}[\cos ((3 n-1) \theta)-\cos ((3 n+1) \theta)] d \theta= \\
\frac{3 a}{\pi}\left[\frac{\sin ((3 n-1) \theta)}{3 n-1}-\frac{\sin ((3 n+1) \theta)}{3 n+1}\right]_{\theta=0}^{\theta=\pi / 3}=\frac{3 a}{\pi}\left[\frac{\sin \left(\pi n-\frac{\pi}{3}\right)}{3 n-1}-\frac{\sin \left(\pi n+\frac{\pi}{3}\right.}{3 n+1}\right]= \\
\frac{3 a}{2 \pi}(-1)^{n+1}\left[\frac{1}{3 n-1}+\frac{1}{3 n+1}\right]=(-1)^{n+1} \frac{9 n a}{\left(9 n^{2}-1\right) \pi}
\end{gathered}
$$

and

$$
u(r, \theta)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{9 n}{\left(9 n^{2}-1\right) \pi} a^{1-3 n} r^{3 n} \sin (3 n \theta)
$$

Problem 5. Consider Laplace equation in the half-strip

$$
u_{x x}+u_{y y}=0 \quad x>0,0<y<\pi
$$

with the boundary conditions

$$
u(x, 0)=0, \quad u(x, \pi)=0, \quad u_{x}(0, y)=g(y)
$$

with $g(y)=1$ and condition max $|u|<\infty$.
(a) Write the associated eigenvalue problem.
(b) Find all eigenvalues and corresponding eigenfunctions.
(c) Write the solution in the form of a series expansion.

Solution. Looking at $u(x, y)=X(x) Y(y)$ we get $Y^{\prime \prime}+\lambda Y=0, Y(0)=$ $Y(\pi)=0$ and therefore $\lambda_{n}=n^{2}, Y_{n}=\sin (n y), n=1,2, \ldots, X_{n}^{\prime \prime}-n^{2} X_{n}=0$, $X_{n}=A_{n} e^{-n x}+B_{n} e^{n x}$ with $B_{n}=0$ (or solution would be unbounded), and

$$
u(x, y)=\sum_{n=1}^{\infty} A_{n} e^{-n x} \sin (n y)
$$

then

$$
u_{x}(0, y)=\sum_{n=1}^{\infty}-n A_{n} \sin (n y)=1
$$

and

$$
n A_{n}=-\frac{2}{\pi} \int_{0}^{\pi} \sin (n y) d y=\left.\frac{2}{n \pi} \cos (n y)\right|_{0} ^{\pi}=\left\{\begin{array}{cl}
0 & n=2 m \\
-\frac{4}{n \pi} & \\
n=2 m+1
\end{array}\right.
$$

and

$$
\begin{equation*}
u(x, y)=-\sum_{m=0}^{\infty} \frac{4}{(2 m+1)^{2} \pi} e^{-(2 m+1) x} \sin ((2 m+1) y) \tag{5.1}
\end{equation*}
$$

Problem 6. Consider BVP for Laplace equation on half-plane

$$
\begin{equation*}
u_{x x}+u_{y y}=0 \quad-\infty<x<\infty, y>0 \tag{6.1}
\end{equation*}
$$

with the Dirichlet boundary condition

$$
\begin{equation*}
u(x, 0)=h(x) \tag{6.2}
\end{equation*}
$$

with $h(x)=\left\{\begin{array}{ll}\sin (x) & |x|<\pi, \\ 0 & |x|>\pi\end{array}\right.$ and condition max $|u|<\infty$.
(a) Using Fourier transform with respect to x reduce to BVP for ODE;
(b) Solve this BVP for ODE;
(c) Write a solution of (6.1)-(6.2) in the form of Fourier integral.

Solution. Making Fourier transform by $x \rightarrow k$ we have

$$
\hat{u}_{y y}-k^{2} \hat{u}=0, \quad \hat{u}(0, k)=\hat{h}(k)
$$

with

$$
\begin{aligned}
& \hat{h}(k)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sin (x) e^{-i k x} d x=\frac{1}{i \pi} \int_{0}^{\pi} \sin (x) \sin (k x) d x \\
& =\frac{1}{2 i \pi} \int_{0}^{\pi}(\cos ((k-1) x)-\cos ((k+1) x)) d x \\
& \quad=\frac{1}{2 i \pi}\left(\frac{\sin ((k-1) \pi)}{k-1}-\frac{\sin ((k+1) \pi)}{k+1}\right)=\frac{1}{i \pi} \frac{\sin (k \pi)}{k^{2}-1}
\end{aligned}
$$

Then $\hat{u}(k, y)=A(k) e^{-|k| y}+B(k) e^{|k| y}$ and we need to take $B(k)=0, A(k)=$ $\hat{h}(k)$. So

$$
\hat{u}(k, y)=\frac{1}{i \pi} \frac{\sin (k \pi)}{k^{2}-1} e^{-|k| y}
$$

and

$$
u(x, y)=\frac{1}{i \pi} \int_{-\infty}^{\infty} \frac{\sin (k \pi)}{k^{2}-1} e^{-|k| y+i k x} d k=\frac{4}{\pi} \int_{0}^{\infty} \frac{\sin (k \pi)}{k^{2}-1} e^{-k y} \sin (k x) d k
$$

Problem 7. Solve IVP

$$
\begin{align*}
& u_{t}-\frac{1}{4} u_{x x}=0, \quad-\infty<x<\infty, t>0 \tag{7.1}\\
& \left.u\right|_{t=0}=g(x) \tag{7.2}
\end{align*}
$$

with $g(x)=x e^{-x^{2} / 2}$.
Hint. Use Fourier transform by x.
Solution. Making Fourier transform by x we hade

$$
\begin{aligned}
& \hat{u}_{t}+\frac{k^{2}}{4} \hat{u}=0, t>0, \\
& \left.\hat{u}\right|_{t=0}=\hat{g}(k) .
\end{aligned}
$$

Since Fourier transform of $e^{-x^{2} / 2}$ is $(2 \pi)^{-1} e^{-k^{2} / 2}$ we conclude that

$$
\hat{g}(k)=i\left(e^{-k^{2} / 2}\right)^{\prime}=-(2 \pi)^{-1} i k e^{-k^{2} / 2}
$$

and

$$
\hat{u}(k, t)=-i k e^{-k^{2} / 2-t k^{2} / 4}=-i k(2 \pi)^{-1} e^{-k^{2} a^{2} / 2}
$$

with $a=\sqrt{(t+2) / 2)}$; then Fourier integral of $(2 \pi)^{-1} e^{-k^{2} a^{2} / 2}$ is $a^{-1} e^{-x^{2} / 2 a^{2}}=$ $\sqrt{2 /(2+t)} e^{-x^{2} /(2+t)}$ and finally

$$
u(x, t)=-\frac{\partial}{\partial x}\left[\sqrt{2 /(2+t)} e^{-x^{2} /(2+t)}\right]=x\left(\frac{2+t}{2}\right)^{-\frac{3}{2}} e^{-x^{2} /(2+t)}
$$

Solution 2. Using formula

$$
\begin{aligned}
u(x, y)= & \frac{1}{\sqrt{\pi t}} \int_{-\infty}^{\infty} y \exp \left(-\frac{1}{t}(x-y)^{2}-\frac{1}{2} y^{2}\right) d y= \\
& \frac{1}{\sqrt{\pi t}} \int_{-\infty}^{\infty} y \exp \left(-\frac{1}{t} x^{2}+\frac{2}{t} x y-\left(\frac{1}{2}+\frac{1}{t}\right) y^{2}\right) d y= \\
& \frac{1}{\sqrt{\pi t}} \int_{-\infty}^{\infty} y \exp \left(-\frac{1}{t} x^{2}+\frac{2}{t} x y-\frac{t+2}{2 t} y^{2}\right) d y= \\
& \frac{1}{\sqrt{\pi t}} \int_{-\infty}^{\infty} y \exp \left(-\frac{1}{t+2} x^{2}-\frac{t+2}{2 t}\left[y-\frac{2}{(t+2)}\right]^{2}\right) d y
\end{aligned}
$$

plugging $y=z+\frac{2}{(t+2)}$ we get

$$
u(x, y)=\frac{1}{\sqrt{\pi t}} \int_{-\infty}^{\infty}\left[z+\frac{2}{(t+2)}\right] \exp \left(-\frac{1}{t+2} x^{2}-\frac{t+2}{2 t} z^{2}\right) d z
$$

the second factor is even by term z and we can skip z in the first factor (integral of odd function would be 0);

$$
u(x, y)=\frac{2}{\sqrt{\pi t}(t+2)} e^{-x^{2} /(t+2)} \times \int_{-\infty}^{\infty} \exp \left(-\frac{t+2}{2 t} z^{2}\right) d z
$$

now integral is $\sqrt{2 \pi t /(t+2)}(\operatorname{plug} z=y \sqrt{t /(t+2)})$ and

$$
u(x, t)=x\left(\frac{2+t}{2}\right)^{-\frac{3}{2}} e^{-x^{2} /(2+t)}
$$

