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Problem 1. Solve by the method of characteristics the BVP for a wave
equation

utt − 4uxx = 0, 0 < x <∞, t > 0 (1.1)
u(x, 0) = f(x) (1.2)
ut(x, 0) = g(x), (1.3)
ux(0, t) = h(t) (1.4)

with f(x) = 0, g(x) =
{

1 0 < x < 1,
0 1 < x <∞,

h(t) =
{

1 0 < t < 1,
0 1 < t <∞.

Solution. From
u(x, t) = ϕ(x+ 2t) + ψ(x− 2t) (1.5)

and (1.2), (1.3) we see that for x > 0

ϕ(x) + ψ(x) = 0, 2ϕ′(x)− 2ψ′(x) =
{

1 0 < x < 1,
0 1 < x <∞,

and then

ϕ(x) =


1
4x x < 1,
1
4 x > 1

(1.6)

(we set ϕ(0) = 0 as it can be set additionally without affecting solution),
ψ(x) = −ϕ(x) and then

u(x, t) =


0 x > 2t+ 1,
1
4(1 + 2t− x) 2t < x < 2t+ 1.

(1.7)

which could be obtained by D’Alembert formula as well.

From (1.4) we see ϕ′(2t) + ψ′(−2t) =
{

1 0 < t < 1,
0 1 < t <∞

⇐⇒ ϕ′(−x) + ψ′(x) =
{

1 − 2 < x < 0,
0 x < −2

⇐⇒ ψ(x) = ϕ(−x) +
{
x − 2 < x < 0,
− 2 x < −2

⇐⇒ ψ(x) =



3
4x − 1 < x < 0,
1
4 + x − 2 < x < −1,

− 7
4 x < −2

and finally as 0 < x < 2t

u(x, t) =



3
4(x− 2t) 2t− 1 < x < 2t,
1
4 + x− 2t 2t− 2 < x < 2t− 1,

− 7
4 x < 2t− 2

+


1
4x+ 1

2t x < 1− 2t,
1
4 x > 1− 2t
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Solution 2. One can solve first problem with h(t) = 0:

v(x, t) = 1
2

[
F (x+ 2t) + F (x− 2t)

]
+ 1

4

∫ x+2t

x−2t
G(x′) dx′ x > 0

where F (x′) = 0, G(x′) =
{

1 |x′| < 1,
0 |x′| > 1

and we applied method of continua-

tion; then integral is taken over max(x−2t,−1) < x′ < min(x+2t, 1) which
is empty as x > 2t+1 and otherwise it is min(x+2t, 1)−max(x−2t,−1) =
min(x+ 2t, 1) + min(−x+ 2t, 1) = min(4t,−x+ 2t+ 1, 2). So

v(x, t) =


0 x > 2t+ 1
1
4 min(4t,−x+ 2t+ 1, 2) 0 < x < 2t+ 1

=


0 x > 2t+ 1
1
4(2t+ 1− x) max(1− 2t, 0) < x < 1 + 2t,

t 0 < x < 1− 2t.

Next solve problem with g(t) = 0. It is w(x, t) = ψ(x − 2t) with ψ(0) = 0

and ψ′(−2t) = h(t); then ψ′(x) =
{

1 0 > x > −2,
0 x < −2

and

ψ(x) =
{
x 0 > x > −2,
− 2 x < −2

and

w(x, t) =


0 x > 2t,
x− 2t 2t− 2 < x < 2t,
− 2 x < 2t− 2.

Finally,

u(x, t) = v(x, t) + w(x, t)

=


0 x > 2t+ 1
1
4(2t+ 1− x) max(1− 2t, 0) < x < 1 + 2t,

t 0 < x < 1− 2t

+


0 x > 2t,
x− 2t 2t− 2 < x < 2t,
− 2 x < 2t− 2.

Problem 2. Solve IBVP for the heat equation
ut − 3uxx = 0, 0 < x <∞, t > 0,
u|t=0 = f(x),
ux|x=0 = 0,

(2.1)
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with f(x) =
{

1 0 < x < 1,
0 1 < x <∞,

Solution should be expressed through erf(z) =
√

2
π

∫ z

0
e−z

2/2 dz.

Solution. Method of continuation u(x, t) should be solved as Cauchy prob-

lem with initial condition u(x, 0) = F (x) with F (x) =
{

1 |x| < 1,
0 |x| > 1,

and

therefore

u(x, t) = 1√
12πt

∫ 1

−1
e−

(x−y)2
12t dy = 1√

2π

∫ x+1√
2t

x−1√
2t

e−
z2
2 dy

where we set y = x+ z
√

6t and finally

u(x, t) = 1
2

[
erf
((x+ 1)√

6t

)
− erf

((x− 1)√
6t

)]

where we used that
√

2
π

∫ b
a e
−z2/2 dz = erf(b)− erf(a).

Problem 3. Solve by the method of separation of variables

utt − 4uxx = 0, 0 < x < 1, t > 0, (3.1)
ux(0, t) = ux(1, t) = 0, (3.2)
u(x, 0) = f(x), (3.3)
ut(x, 0) = g(x) (3.4)

with f(x) = x(1−x), g(x) = 0. Write the answer in terms of Fourier series.

Solution. Separation of variables results inX ′′+λX = 0, X ′(0) = X ′(1) = 0
and thus λ0 = 0, X0 = 1

2 and λn = π2n2, Xn = cos(πnx) with n =
1, 2, . . .; also T ′′ + 4π2T = 0 and thus T0 = A0 + B0t, Tn = An cos(2πnt) +
Bn sin(2πnt), and

u = 1
2(A0 +B0t) +

∞∑
n=1

(
An cos(2πnt) +Bn sin(2πnt)

)
cos(πnx). (3.5)

The initial conditions result in

1
2A0 +

∞∑
n=1

An cos(πnx) = x(1− x), 1
2B0 +

∞∑
n=1

2πnBn cos(πnx) = 0

and Bn = 0 (n = 0, 1, 2, . . .) and

An = 2
∫ 1

0
x(1− x) cos(πnx) dx = − 2

πn

∫ 1

0
(1− 2x) sin(πnx) =

− 2
π2n2 (1−2x) cos(πnx)

∣∣∣∣x=1

x=0
+ 4
π2n2

∫ 1

0
cos(πnx) dx =

−
1

π2m2 n = 2m,

0 n = 2m+ 1
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m = 1, 2, . . .. Meanwhile A0 = 1
3 . Then

u = 1
12 −

∞∑
m=1

1
π2m2An cos(4πmt) cos(2πmx).

Problem 4. Consider the Laplace equation in the third of the disk

uxx + uyy = 0 in r =
√
x2 + y2 < a2, x > |y|/

√
3 (4.1)

with the boundary conditions

u = y for r = a, x > 0, (4.2)
u = 0 for y > 0, x = y/

√
3 (4.3)

u = 0 for y < 0, x = −y/
√

3. (4.4)

(a) Look for solutions u in the form of u(r, θ) = R(r)P (θ) (in polar co-
ordinates) and derive a set of ordinary differential equations for R and P .
Write the correct boundary conditions for P .

(b) Solve the eigenvalue problem for P and find all eigenvalues.

(c) Solve the differential equation for R.

(d) Find the solution u of (4.1)–(4.4). Write the answer in terms of Fourier
series.

Solution. Domain is a sector −π
3 < θ < π

3 :

y

x

Then
P ′′ + λP = 0, P (−π3 ) = P (π3 ) = 0.

Since our problem is symmetric with respect to y = 0 and u(a, θ) = a sin(θ)
is an odd function we can replace this problem by

P ′′ + λP = 0, P (0) = P (π3 ) = 0

and λn = 9n2, Pn = sin(3nθ) with n = 1, 2, . . .
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Then r2R′′n + rR′n + 9n2Rn = 0 and Rn = Anr
3n + Br−3n

n and we need to
take Bn = 0.
So,

u(r, θ) =
∞∑
n=1

Anr
3n sin(3nθ).

We need to satisfy

u(a, θ) =
∞∑
n=1

Ana
3n sin(3nθ) = a sin(θ)

and therefore

Ana
3n = 6a

π

∫ π
3

0
sin(3nθ) sin(θ) dθ = 3a

π

∫ π
3

0

[
cos((3n−1)θ)−cos((3n+1)θ)

]
dθ =

3a
π

[sin((3n− 1)θ)
3n− 1 −sin((3n+ 1)θ)

3n+ 1

]θ=π/3

θ=0
= 3a

π

[sin(πn− π
3 )

3n− 1 −
sin(πn+ π

3
3n+ 1

]
=

3a
2π (−1)n+1

[ 1
3n− 1 + 1

3n+ 1

]
= (−1)n+1 9na

(9n2 − 1)π

and
u(r, θ) =

∞∑
n=1

(−1)n+1 9n
(9n2 − 1)πa

1−3nr3n sin(3nθ).

Problem 5. Consider Laplace equation in the half-strip

uxx + uyy = 0 x > 0, 0 < y < π

with the boundary conditions

u(x, 0) = 0, u(x, π) = 0, ux(0, y) = g(y)

with g(y) = 1 and condition max |u| <∞.

(a) Write the associated eigenvalue problem.

(b) Find all eigenvalues and corresponding eigenfunctions.

(c) Write the solution in the form of a series expansion.

Solution. Looking at u(x, y) = X(x)Y (y) we get Y ′′ + λY = 0, Y (0) =
Y (π) = 0 and therefore λn = n2, Yn = sin(ny), n = 1, 2, . . ., X ′′n−n2Xn = 0,
Xn = Ane

−nx +Bne
nx with Bn = 0 (or solution would be unbounded), and

u(x, y) =
∞∑
n=1

Ane
−nx sin(ny);

then
ux(0, y) =

∞∑
n=1
−nAn sin(ny) = 1
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and

nAn = − 2
π

∫ π

0
sin(ny) dy = 2

nπ
cos(ny)

∣∣∣∣π
0

=


0 n = 2m,

− 4
nπ

n = 2m+ 1

and
u(x, y) = −

∞∑
m=0

4
(2m+ 1)2π

e−(2m+1)x sin((2m+ 1)y); (5.1)

Problem 6. Consider BVP for Laplace equation on half-plane

uxx + uyy = 0 −∞ < x <∞, y > 0 (6.1)

with the Dirichlet boundary condition

u(x, 0) = h(x) (6.2)

with h(x) =
{

sin(x) |x| < π,

0 |x| > π
and condition max |u| <∞.

(a) Using Fourier transform with respect to x reduce to BVP for ODE;

(b) Solve this BVP for ODE;

(c) Write a solution of (6.1)–(6.2) in the form of Fourier integral.

Solution. Making Fourier transform by x→ k we have

ûyy − k2û = 0, û(0, k) = ĥ(k)

with

ĥ(k) = 1
2π

∫ π

−π
sin(x)e−ikx dx = 1

iπ

∫ π

0
sin(x) sin(kx) dx

= 1
2iπ

∫ π

0

(
cos((k − 1)x)− cos((k + 1)x)

)
dx

= 1
2iπ

(sin((k − 1)π)
k − 1 − sin((k + 1)π)

k + 1
)

= 1
iπ

sin(kπ)
k2 − 1 .

Then û(k, y) = A(k)e−|k|y+B(k)e|k|y and we need to take B(k) = 0, A(k) =
ĥ(k). So

û(k, y) = 1
iπ

sin(kπ)
k2 − 1 e

−|k|y

and

u(x, y) = 1
iπ

∫ ∞
−∞

sin(kπ)
k2 − 1 e

−|k|y+ikx dk = 4
π

∫ ∞
0

sin(kπ)
k2 − 1 e

−ky sin(kx) dk.
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Problem 7. Solve IVP

ut −
1
4uxx = 0, −∞ < x <∞, t > 0, (7.1)

u|t=0 = g(x) (7.2)

with g(x) = xe−x
2/2.

Hint. Use Fourier transform by x.

Solution. Making Fourier transform by x we hade

ût + k2

4 û = 0, t > 0,

û|t=0 = ĝ(k).

Since Fourier transform of e−x2/2 is (2π)−1e−k
2/2 we conclude that

ĝ(k) = i(e−k2/2)′ = −(2π)−1ike−k
2/2

and
û(k, t) = −ike−k2/2−tk2/4 = −ik(2π)−1e−k

2a2/2

with a =
√

(t+ 2)/2); then Fourier integral of (2π)−1e−k
2a2/2 is a−1e−x

2/2a2 =√
2/(2 + t)e−x2/(2+t) and finally

u(x, t) = − ∂
∂x

[√
2/(2 + t)e−x2/(2+t)

]
= x

(2 + t

2

)− 3
2
e−x

2/(2+t),

Solution 2. Using formula

u(x, y) = 1√
πt

∫ ∞
−∞

y exp
(
−1
t
(x− y)2 − 1

2y
2
)
dy =

1√
πt

∫ ∞
−∞

y exp
(
−1
t
x2 + 2

t
xy − (1

2 + 1
t
)y2
)
dy =

1√
πt

∫ ∞
−∞

y exp
(
−1
t
x2 + 2

t
xy − t+ 2

2t y2
)
dy =

1√
πt

∫ ∞
−∞

y exp
(
− 1
t+ 2x

2 − t+ 2
2t

[
y − 2

(t+ 2)
]2)

dy;

plugging y = z + 2
(t+2) we get

u(x, y) = 1√
πt

∫ ∞
−∞

[
z + 2

(t+ 2)
]

exp
(
− 1
t+ 2x

2 − t+ 2
2t z2

)
dz;

the second factor is even by term z and we can skip z in the first factor
(integral of odd function would be 0);

u(x, y) = 2√
πt(t+ 2)

e−x
2/(t+2) ×

∫ ∞
−∞

exp
(
−t+ 2

2t z2
)
dz;

now integral is
√

2πt/(t+ 2) (plug z = y
√
t/(t+ 2)) and

u(x, t) = x
(2 + t

2

)− 3
2
e−x

2/(2+t).


