Problem 1 (4pt). Solve by Fourier method

$$
\begin{align*}
& u_{t t}-u_{x x}=0 \quad-\frac{\pi}{2}<x<\frac{\pi}{2} \tag{1.1}\\
& \left.u_{x}\right|_{x=-\pi / 2}=\left.u_{x}\right|_{x=\pi / 2}=0 \tag{1.2}\\
& \left.u\right|_{t=0}=x^{2},\left.\quad u_{t}\right|_{t=0}=0 . \tag{1.3}
\end{align*}
$$

Hint: Since problem is symmetric with respect to $x=0$ consider only even with respect to x eigenfunctions.
Solution. Separation of variables leads to

$$
\begin{align*}
& X^{\prime \prime}+\lambda X=0 \tag{1.4}\\
& X^{\prime}\left(-\frac{\pi}{2}\right)=X^{\prime}\left(\frac{\pi}{2}\right)=0, \tag{1.5}\\
& T^{\prime \prime}+\lambda T=0 \tag{1.6}
\end{align*}
$$

We know that for this BVP $\lambda \geq 0$ and $\lambda_{0}=0, X_{0}=\frac{1}{2}$; consider $\lambda=k^{2}>0$; then $X=C \cos (k x)+D \sin (k x)$ and according to Hint we consider only $\cos (k x)$. Then (1.2) implies $\sin (k \pi / 2)=0 k=2 n, \lambda_{n}=4 n^{2}, X_{n}=\sin (2 n x)$, $n=1,2, \ldots$. Then $T_{n}=A_{n} \cos (2 n t)+B_{n} \sin (2 n t)$ and finally

$$
\begin{equation*}
u(x, t)=\frac{1}{2}\left(A_{0}+B_{0} t\right)+\sum_{n=1}^{\infty}\left(A_{n} \cos (2 n t)+B_{n} \sin (2 n t)\right) \cos (2 n t) . \tag{1.7}
\end{equation*}
$$

Plugging to (1.3) we get

$$
\begin{align*}
& \frac{1}{2} A_{0}+\sum_{n=1}^{\infty} A_{n} \cos (2 n t)=x^{2} \tag{1.8}\\
& \frac{1}{2} B_{0}+\sum_{n=1}^{\infty} 2 n B_{n} \cos (2 n t)=0 \tag{1.9}
\end{align*}
$$

Then

$$
\begin{aligned}
A_{n}= & \frac{4}{\pi} \int_{0}^{\pi / 2} x^{2} \cos (2 n x) d x=\frac{2}{\pi n} \int_{0}^{\pi / 2} x^{2} d \sin (2 n x)= \\
- & \frac{4}{\pi n} \int_{0}^{\pi / 2} \sin (2 n x) x d x=\frac{2}{\pi n^{2}} \int_{0}^{\pi / 2} x d \cos (2 n x)= \\
& \frac{2}{\pi n^{2}}\left(\left.x \cos (2 n x)\right|_{x=0} ^{x=\pi / 2}-\int_{0}^{\pi / 2} \cos (2 n x) d x\right)=\frac{1}{n^{2}}(-1)^{n}
\end{aligned}
$$

for $n \geq 1, A_{0}=\frac{4}{\pi} \int_{0}^{\pi / 2} x^{2} d x=\frac{\pi^{2}}{6}$ while $B_{n}=0$. Finally

$$
u(x, t)=\frac{\pi^{2}}{12}+\sum_{n=1}^{\infty} \frac{1}{n^{2}}(-1)^{n} \cos (2 n t)
$$

Problem 2 (4pt). Solve

$$
\begin{align*}
& u_{x x}+u_{y y}=0 \quad-\infty<x<\infty, 0<y<\infty \tag{2.1}\\
& u_{y=0}=\frac{1}{x^{2}+1} \tag{2.2}\\
& \max |u|<\infty \tag{2.3}
\end{align*}
$$

Hint: Use partial Fourier transform with respect to x, and formula

$$
\begin{equation*}
F\left(x^{2}+a^{2}\right)^{-1}=\frac{1}{2 a} e^{-|k| a} \quad \text { as } a>0 . \tag{2.4}
\end{equation*}
$$

Solution. After partial Fourier transform (using (2.4))

$$
\begin{align*}
& -k^{2} \hat{u}+\hat{u}_{y y}=0 \quad 0<y<\infty \tag{2.5}\\
& \hat{u}_{y=0}=\frac{1}{2} e^{-|k|} \tag{2.6}
\end{align*}
$$

Solving (2.5) we get $\hat{u}=A(k) e^{-|k| y}+B(k) e^{|k| y}$ and the last term must be dropped as it grows for $y>0: \hat{u}=A(k) e^{-|k| y}$. Plugging to (2.6) we find $A(k)=\frac{1}{2} e^{-|k|}$ and

$$
\begin{equation*}
\hat{u}=\frac{1}{2} e^{-|k|(y+1)} . \tag{2.7}
\end{equation*}
$$

and using (2.4) again

$$
\begin{equation*}
u=\frac{y+1}{x^{2}+y^{2}+1} . \tag{2.8}
\end{equation*}
$$

Problem 3 (4pt). Using Fourier method find eigenvalues and eigenfunctions of Laplacian in the rectangle $\{0<x<a,<y<b\}$ with Dirichlet boundary conditions:

$$
\begin{align*}
& u_{x x}+u_{y y}=-\lambda u \quad 0<x<a, 0<y<b, \tag{3.1}\\
& u_{x=0}=u_{x=a}=u_{y=0}=u_{y=b}=0 . \tag{3.2}
\end{align*}
$$

Solution. Separating variables $u=X(x) Y(y)$ we arrive to

$$
\begin{equation*}
\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}+\lambda=0 \tag{3.3}
\end{equation*}
$$

Then

$$
\begin{align*}
& X^{\prime \prime}+\mu X=0 \tag{3.4}\\
& X(0)=X(a)=0 \tag{3.5}
\end{align*}
$$

and

$$
\begin{align*}
& Y^{\prime \prime}+\nu X=0 \tag{3.6}\\
& Y(0)=Y(b)=0 \tag{3.7}
\end{align*}
$$

and

$$
\begin{equation*}
\lambda=\mu+\nu \tag{3.8}
\end{equation*}
$$

Next

$$
\begin{array}{lll}
\mu_{m}=\frac{\pi^{2} m^{2}}{a^{2}}, & X_{m}=\sin \left(\frac{\pi m}{a}\right), & m=1,2, \ldots, \\
\nu_{n}=\frac{\pi^{2} n^{2}}{b^{2}}, & Y_{n}=\sin \left(\frac{\pi n}{b}\right), & n=1,2, \ldots, \tag{3.10}
\end{array}
$$

and finally

$$
\begin{equation*}
\lambda_{m n}=\pi^{2}\left(\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}\right), \quad u_{m n}=\sin \left(\frac{\pi m}{a}\right) \sin \left(\frac{\pi n}{b}\right), \quad m, n=1,2 \ldots \tag{3.11}
\end{equation*}
$$

Problem 4 (4pt). Consider Laplace equation in the half-disk

$$
\begin{equation*}
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0 \quad r<1,0<\theta<\pi \tag{4.1}
\end{equation*}
$$

with the Dirichlet boundary conditions as $\theta=0$ and $\theta=\pi$

$$
\begin{equation*}
\left.u\right|_{\theta=0}=\left.u\right|_{\theta=\pi}=0 \tag{4.2}
\end{equation*}
$$

and the Robin boundary condition as $r=1$

$$
\begin{equation*}
\left.\left(u_{r}+u\right)\right|_{r=1}=1 \tag{4.3}
\end{equation*}
$$

Using separation of variables find solution as a series.
Solution. Separating variables $u(r, \theta)=R(r) \Theta(\theta)$ we get

$$
\frac{r^{2} R^{\prime \prime}+r R^{\prime}}{R}+\frac{\Theta^{\prime \prime}}{\Theta}=0
$$

and therefore both terms are constant:

$$
\begin{align*}
& \Theta^{\prime \prime}+\lambda \Theta=0 \tag{4.4}\\
& \Theta(0)=\Theta(\pi)=0 \tag{4.5}
\end{align*}
$$

and therefore $\lambda_{n}=n^{2}, \Theta_{n}=\sin (n \theta), n=1,2, \ldots$ Then

$$
\begin{equation*}
r^{2} R^{\prime \prime}+r R^{\prime}-n^{2} R=0 \tag{4.6}
\end{equation*}
$$

and $R=A r^{n}+B r^{-n}$ where we drop the last term as it is singular at $r=0$. So $u_{n}=A_{n} r^{n} \sin (n \theta)$ and

$$
\begin{equation*}
u=\sum_{n=1}^{\infty} A_{n} r^{n} \sin (n \theta) \tag{4.7}
\end{equation*}
$$

Plugging into (4.3) we get

$$
\begin{equation*}
\sum_{n=1}^{\infty} A_{n}(n+1) r^{n} \sin (n \theta)=1 \tag{4.8}
\end{equation*}
$$

then

$$
A_{n}(n+1) r^{n}=\frac{2}{\pi} \int_{0}^{\pi} \sin (n \theta) d \theta= \begin{cases}0 & n=2 m \tag{4.9}\\ \frac{2}{2 m+1} & n=2 m+1\end{cases}
$$

and

$$
\begin{equation*}
u=\sum_{m=0}^{\infty} \frac{2}{(2 m+1)(2 m+2)} r^{2 m+1} \sin ((2 m+1) \theta) . \tag{4.10}
\end{equation*}
$$

Problem 5 (4pt). Find Fourier transforms of the function

$$
f(x)= \begin{cases}\cos (x) & |x|<\frac{\pi}{2} \\ 0 & |x|>\frac{\pi}{2}\end{cases}
$$

and write this function as a Fourier integral.
Solution. The simplest:

$$
\begin{aligned}
\hat{f}(k)= & \frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{-i k x} d x= \\
& \frac{1}{2 \pi} \int_{-\pi / 2}^{\pi / 2} \cos (x) e^{-i k x} d x= \\
& \frac{1}{4 \pi} \int_{-\pi / 2}^{\pi / 2}\left(e^{i x}+e^{-i x}\right) e^{-i k x} d x= \\
& \frac{1}{4 \pi} \int_{-\pi / 2}^{\pi / 2}\left(e^{i(1-k) x}+e^{-i(1+k) x}\right) d x= \\
& \left.\frac{1}{4 \pi i}\left((1-k)^{-1} e^{i(1-k) x}-(1+k)^{-1} e^{-i(1+k) x}\right)\right|_{-\pi / 2} ^{\pi / 2}=
\end{aligned}
$$

since $e^{ \pm i \pi / 2}= \pm i$ we get

$$
\begin{aligned}
& \frac{1}{4 \pi}\left((1-k)^{-1}\left(e^{-i k \pi / 2}+e^{i k \pi / 2}\right)+(1+k)^{-1}\left(e^{i k \pi / 2}+i e^{-i k \pi / 2}\right)\right)= \\
& \frac{1}{2 \pi} \cos (k \pi / 2)\left((1-k)^{-1}+(1+k)^{-1}\right)= \\
& \frac{\cos (k \pi / 2)}{\pi\left(1+k^{2}\right)}
\end{aligned}
$$

Conversely

$$
f(x)=\int_{-\infty}^{\infty} \frac{\cos (k \pi / 2)}{\pi\left(1+k^{2}\right)} e^{i k x} d k=\int_{0}^{\infty} \frac{2 \cos (k \pi / 2)}{\pi\left(1+k^{2}\right)} \cos (k x) d k
$$

which is cos-Fourier integral (as $f(x)$ is even function. Note: no punishment for not writing the last equality.

