
Problem 1 (5 pts). Use the method of characteristics to solve the transport equa-
tion IVP

2ut + 5ux = u, −∞ < x, t <∞,
u(x, 0) = log(1 + |x|).

Solution. Begin by solving for characteristics: if γ(s) = (x(s), t(s)) is a character-
istic curve then

dt

ds
= 2,

dx

ds
= 5,

and these can be solved by

t(s) = 2s, x(s) = 5s+ C.

So the characteristic curves are given by

x− 5

2
t = C.

Set ũ(s) := u(γ(s)), then the PDE for u becomes an ODE for ũ,

dũ

ds
= ũ,

which we can integrate to get
ũ(s) = Aes

where A is constant along γ, and so is a function of x − 5
2t. Since s = t

2 along γ
the general solution is

u(x, t) = φ

(
x− 5

2
t

)
e

t
2 .

To determine φ apply the initial condition

u(x, 0) = φ(x) = log(1 + |x|)

So the solution is

u(x, t) = log

(
1 +

∣∣∣∣x− 5

2
t

∣∣∣∣) e t
2 .



Problem 2 (5 pts). (a) Suppose that u is a solution to the 1d inhomogeneous
wave IVP

utt − 9uxx = f(x, t), 7−∞ < x <∞, t ≥ 0,

u(x, 0) = 0,

ut(0, t) = 0,

where

f(x, t) :=

{
t(1− t) cos(x), 0 ≤ t < 1, |x| ≤ π

2
,

0, else.

What is the value of u at (x, t) = (15, 4)? Draw a picture to support your answer.

(b) Suppose that u is a solution to the problem

ut = uxx − π2 cos(πx), 0 < x < 1, t ≥ 0,

ux(0, t) = 0,

ux(1, t) = 1,

u(x, 0) = 0,

Qualitatively describe how u behaves as t→∞.

Solution. (a) Since the maximum propagation speed is c = 3, the domain of
influence for the point (x, t) = (15, 4) is an isoceles triangle whose base extends
only to the point (15 − 4c, 0) = (15 − 12, 0) = (3, 0). Therefore, since the source
function f is supported on the rectangle

[
−π

2 ,
π
2

]
x
× [0, 1]t, it is zero everywhere

in the domain of influence for (15, 4), and we conclude that u(15, 4) = 0. Insert
picture showing the disjoint domain of influence and support of f .

(b) The corresponding stationary problem does not have a solution, since the con-

straint
∫ l
0(−k−1f(x))dx = b− a is not satisfied:

b− a = 1− 0 = 1,∫ 1

0

π2 cos(πx)dx = π2
∫ 1

0

cos(πx)dx

= −π [sin(πx)]10 = 0.



The average discrepancy in the constraint is

p = 1− 0− 0 = 1,

so the solution will be of the form

u(x, t) = t+ w(x, t),

where w is the solution to almost the same problem as u, the only change being in
the source term. w has a stationary solution (defined up to a constant) W (x), and
decays exponentially to this solution as t >> 0.

So for large t,
u(x, t) ∼ t+W (x),

i.e. u tends towards a time-independent shape W (x) which is being pushed off to
+∞ at a linear rate (ut ∼ +1 for t >> 0).

Continue



Problem 3 (5 pts). Use the method of separation of variables to solve the problem

utt − uxx + u = 0, 0 < x < π, t > 0,

u(0, t) = u(π, t) = 0,

u(x, 0) = x(π − x),

ut(x, 0) = 0.

Write the answer in terms of a Fourier series.

Solution. Looking for a separated solution u(x, t) = X(x)T (t) results in the equa-
tion T ′′

T + 1− X ′′

X = 0, and so the system of ODEs

X ′′ + λX = 0

X(0) = X(π) = 0

T ′′ + (λ+ 1)T = 0

The solution to the Dirichlet-Dirichlet eigenvalue problem for X on [0, π] is

λn = n2, Xn(x) = sin(nx), n ∈ Z>0

So the equation for T becomes T ′′n + (n2 + 1)Tn = 0, which is solved by

Tn(t) = An cos(
√
n2 + 1t) +Bn sin(

√
n2 + 1t).

The initial condition ut(x, 0) = 0 implies that in our final solution all of the Bn will
vanish. So our solution is of the form

u(x, t) =
∞∑
n=1

An cos(
√
n2 + 1t) sin(nx).

Applying the other initial condition gives

∞∑
n=1

An sin(nx) = x(π − x).

We calculate the Fourier coefficients by repeatedly integrating by parts:



An =
2

π

∫ π

0

x(π − x) sin(nx)dx

=
2

π

−1

n
x(π − x)︸ ︷︷ ︸

=0

cos(nx)

π
0

+
1

n

∫ π

0

(π − 2x) cos(nx)dx


=

2

nπ

∫ π

0

(π − 2x) cos(nx)dx

=
2

nπ

π − 2x

n
sin(nx)︸ ︷︷ ︸

=0

π
0

+
2

n

∫ π

0

sin(nx)dx

 =
4

n2π

∫ π

0

sin(nx)dx

= − 4

n3π
[cos(nx)]π0 = − 4

n3π
((−1)n − 1)

=

{
0, n = 2m,

8
π(2m+1)3 , n = 2m+ 1,

where m ∈ Z≥0. So:

u(x, t) =
8

π

∞∑
m=0

1

(2m+ 1)3
cos
(√

(2m+ 1)2 + 1t
)

sin((2m+ 1)x)

Continue



Problem 4 (10 pts). Solve the Laplace equation in the sector

uxx + uyy = 0 in 0 < a2 ≤ x2 + y2 ≤ b2, y > 0,

with boundary conditions
u = 0 on y = 0,

u = αy
a on x2 + y2 = a2,

u = 2βxy
b2 on x2 + y2 = b2.

Here a, b, α, β are constants, and a, b > 0.
Hint: Your answer should be expressed in terms of polar coordinates, not cartesian
coordinates.)

Solution. Using the hint, the first step is to convert the problem to polar coordi-
nates: x = r cos(θ), y = r sin(θ), 0 < a ≤ r ≤ b, 0 ≤ θ ≤ π,

urr +
1

r
ur +

1

r2
uθθ = 0

u(r, 0 or π) = 0

u(a, θ) = α sin(θ)

u(b, θ) = β sin(2θ)

Looking for a separated solution u(r, θ) = R(r)Θ(θ) gives the equation

0 =

(
r2R′′ + rR′

R

)
︸ ︷︷ ︸

=+λ

+
Θ′′

Θ︸︷︷︸
=−λ

.

The problem for Θ has Dirichlet-Dirichlet BCs

Θ′′ + λΘ = 0

Θ(0) = Θ(π) = 0

and this eigenvalue problem has solutions

λn = n2, Θn(θ) = sin(nθ), n ∈ Z>0.

Plugging these values of λ into the equation for R, we find the Euler equation



r2R′′ + rR′ + n2R = 0,

which has solutions
Rn(r) = Anr

n +Bnr
−n.

The general solution looks like

u(r, θ) =
∑
n>0

(Anr
n +Bnr

−n) sin(nθ),

and applying the r-BCs at r = a and r = b gives

α sin(θ) =
∑
n>0

(anAn + a−nBn) sin(nθ),

β sin(2θ) =
∑
n>0

(bnAn + b−nBn) sin(nθ).

Since the terms on the LHS of these equations are already eigenfunctions, we can
match coefficients to find:

anAn + a−nBn =

{
α, n = 1,

0, n 6= 1,

bnAn + b−nBn =

{
β, n = 2,

0, n 6= 2.

Since a 6= b, these equations imply that An = Bn = 0 for n > 2. For n = 2 we have

B2 = −a4A2 ⇒ (b2 − a4b−2)A2 = β

so that

A2 =
b2

b4 − a4
β, and B2 = −a4 b2

b4 − a4
β.

Similarly for n = 1 we have

B1 = −b2A1 ⇒ (a− b2a−1)A1 = α,

so that

A1 =
a

a2 − b2
α, and B1 = − ab2

a2 − b2
α.

Therefore:

u(r, θ) = α
a

r

r2 − b2

a2 − b2
sin(θ) + β

b2

r2
r4 − a4

b4 − a4
sin(2θ)

Continue



Problem 5 (10 pts). Consider the telegraph equation:

utt + (α + β)ut + αβu = c2uxx (5.1)

Assume that α, β > 0.

(a) Take the Fourier transform x → k of (5.1) to obtain a constant coefficient
homogeneous second order ODE for the Fourier transform of u, û(k, t).

(b) Assuming that û(k, t) satisfies

û(k, t) = 0 unless 4c2k2 > (α− β)2, (5.2)

derive that the general solution to the ODE from (a) is

û(k, t) = e−γt
(
F̂ (k)e−iω(k)t + Ĝ(k)eiω(k)t

)
(5.3)

where F̂ (k) and Ĝ(k) are arbitrary functions of k (subject to the vanishing
condition (5.2)). In particular, derive expressions for γ and ω(k).

(c) Let F (x) and G(x) be the inverse Fourier transforms of F̂ (k) and Ĝ(k), and
suppose that α = β.

Under this assumption find the general solution u(x, t) to (5.1), and give an
interpretation of the individual factors in your solution.

Hint: Compare to a solution of the homogeneous wave equation.

Solution. (a) The Fourier transform takes u, ut, utt → û, ût, ûtt, and uxx →
−k2û. So the ODE for û is

ûtt + (α + β)ût + (αβ + c2k2)û = 0.

(b) Testing the functions û(k, t) = ert, the characteristic equation for the ODE is

r2 + (α + β)r + (αβ + c2k2) = 0.

By the quadratic formula this has solutions

r =
−(α + β)±

√
(α + β)2 − 4(αβ + c2k2)

2
=
−(α + β)±

√
(α− β)2 − 4c2k2

2
.



By assumption 4c2k2 > (α− β)2, so

r = −α + β

2
± i

√√√√√c2k2 −
(
α− β

2

)2

︸ ︷︷ ︸
>0

= −γ ± iω(k)

where

γ =
α + β

2
> 0, ω(k) =

√
c2k2 −

(
α− β

2

)2

.

With these values of γ and ω(k) the general solution is therefore

û(k, t) = e−γt
(
F̂ (k)e−iω(k)t + Ĝ(k)eiω(k)t

)
.

(c) If α = β then γ = α > 0 and ω(k) = ck, so that

û(k, t) = e−γt
(
F̂ (k)e−ickt + Ĝ(k)eickt

)
.

The inverse Fourier transform of F̂ (k)e−ickt is F (x− ct), and similarly for Ĝ,
so taking the inverse Fourier transform of û gives

u(x, t) = e−γt(F (x− ct) +G(x+ ct)).

The terms inside the parentheses are a solution to the homogeneous wave
equation with parameter c: F (x − ct) is a right moving wave-packet with
propagation speed c and G(x+ct) is a left moving wave-packet with propaga-
tion speed c. This constant propagation speed solution to the wave equation
is exponentially damped by the third factor in our solution e−γt, since γ > 0.

Upshot: The solution looks like an exponentially damped solution to the
homogeneous wave equation utt − c2uxx = 0.

Continue



Problem 6 (5 pts). (a) Without calculating any derivatives, determine whether
1

1 + x21 + · · ·+ x2n
is a harmonic function on Rn.

(b) Suppose that u is a harmonic function on the disc {r < 1}, and that

u|r=1 =

{
sin θ, 0 < θ < π,

0, π < θ < 2π.

Without finding the solution for u, calculate the value of u at the origin.

Solution. (a) The function
1

1 + x21 + · · ·+ x2n
has a global maximum at x1 =

· · · = xn = 0, and therefore does not obey the maximum principle. Hence it
cannot be harmonic.

(b) By the mean value theorem for harmonic functions,

u(0) =
1

2π

∫ 2π

0

u(1, θ)dθ

=
1

2π

∫ π

0

sin θ dθ

=
1

2π
[− cos θ]π0

= − 1

2π
((−1)− 1) =

1

π
.



Problem 7 (5pts). Let S denote the action functional on the rectangle R = [0, T ]×
[a, b],

S[u] =

∫ T

0

∫ b

a

(u2xx − u2t )dxdt. (7.1)

Find the Euler-Lagrange equation for S with respect to variations v which satisfy
v|∂R = vx|∂R = 0.
Hint: Explicitly calculate the ε derivative of S[u+ εv].

Solution. Let v be a function satisfying v|∂R = vx|∂R = 0. We have

S[u+ εv] =

∫∫
R

(
(uxx + εvxx)

2 − (ut + εvt)
2
)
dx dt

=

∫∫
R

(
u2xx + 2εuxxvxx + ε2v2xx − u2t − 2εutvt − ε2v2t

)
dx dt,

so we may take the derivative and repeatedly integrate by parts to get

d

dε
S[u+ εv]|ε=0 =

∫∫
R

(2uxxvxx − 2utvt) dx dt

= 2

∫∫
R

(−uxxxvx + uttv) dx dt

= 2

∫∫
R

(uxxxx + utt)v dx dt,

where all boundary contributions contain factors of v or vx, and so must vanish.
Hence the Euler-Lagrange equation is:

uxxxx + utt = 0



Bonus Problem 1 (2pts). You want to bake a cake in your oven, which happens
to be a perfect cube. The heating element is located on the bottom side of your
oven, and the other sides are all perfectly insulated (even the oven door, when it
is closed).
Write down an initial-boundary value problem that describes what happens when
you turn your oven on to preheat. Do not attempt to solve your IBVP.

Solution. There is some variation possible with this problem, but the solution
should look something like this:

• The oven is a perfect cube, let’s suppose with side length L, so we’ll take as
our domain the cube [0, L]x × [0, L]y × [0, L]z.

• We are interested in the temperature T (~x, t) of the over, which we can model
using the heat equation ∂T

∂t = k∆T . k will take some particular value here,
determined by the composition of the air in the oven.

• All the sides except for the bottom are perfectly insulated, so no heat can
escape or enter through them, so we must have homogeneous Neumann BCs
on those sides.

• The heating element is on the bottom of the oven (z = 0), and when we
turn the oven on to preheat we are specifying a particular heat distribution
H(x, y, t) for this heating element, so on the bottom of the oven we have an
inhomogeneous Dirichlet BC.

• Before we turn the oven on, let’s assume that the air in the oven was roughly
the same temperature T0 everywhere.

So the problem is:

∂T

∂t
(x, y, z, t) = k∆T (x, y, z, t), t > 0, 0 ≤ x, y, z ≤ L,

∂T

∂x

∣∣∣∣
x=0,L

= 0,
∂T

∂y

∣∣∣∣
y=0,L

= 0,

∂T

∂z

∣∣∣∣
z=L

= 0, T |z=0 = H(x, y, t),

T |t=0 = T0.



Bonus Problem 2 (2pts). Find the 1d Green’s function G(x, y) on the interval
[0, 1] with homogeneous Dirichlet boundary conditions by solving the following
problem:

d2G

dx2
= −δ(x− y), (9.1)

G(0, y) = G(1, y) = 0, (9.2)

G is continuous. (9.3)

Recall that δ(x − y) is defined by the property that
∫ b
a δ(x − y)f(x)dx = f(y) if

a < y < b, and is zero otherwise.
Hint: Solve the ODE separately on the regions x < y and x > y, then integrate
(9.1) to find a condition on the derivative of G.

Solution. Using the hint, on the regions x < y and x > y (9.1) becomes

d2G

dx2
= 0,

so on these regions we have

G(x, y) =

{
Ax+B, x > y,

Cx+D, x < y.

Plugging the BCs into this expression gives

G(0, y) = D = 0,

G(1, y) = A+B = 0,

so the solution becomes

G(x, y) =

{
A(x− 1), x > y,

Cx, x < y.

Continuity at x = y imposes A(y − 1) = Cy, so that A = C y
y−1 and



G(x, y) =

{
Cyx−1y−1 , x > y,

Cx, x < y.

Finally, using the hint again, integrate over a small interval [y−, y+] 3 y and take
the one-sided limits to y to find

−1 =

∫ y+

y−

d2G

dx2
dx

=
dG

dx

∣∣∣∣
y+
− dG

dx

∣∣∣∣
y−

= C
y

y − 1
− C = C

(
y

y − 1
− 1

)
=

C

y − 1

So C = 1− y and we conclude:

G(x, y) =

{
(1− y)x, 0 < x < y,

y(1− x), 1 > x > y.

Continue to extra pages




