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N(aN1 aN2  aN3 aN4) = N -   -j N(ai) % j N(aiaj) j N(aiajak)

Here N = 
21
3

                   (Just put 8 balls in box i and 
N(ai) = fill arbitrarily for the           

4%10&1
10

remaining 10)

     (Put 8 balls in both
N(ai aj) = = i and j, fill arbitrarily from here on)

4%2&1
2

5
2

N(ai aj ak) = 0 (3 × 8 = 24 > 18)

ˆ N(aN1 aN2 aN3 aN4 ) = - 4  +   = 246
21
3

13
10

4
2

5
2

Exercise 2  Let A,B be finite sets,*A* = n, *B* = k.  Find the number of onto functions f: A 6 B

Solution:   If n < k, the answer is 0.  Assume n $ k.  The number of functions without restriction is
kn.

For 1 # i# k, let ai denote the property that a function does not have the ith elt of B in its range.
Then N(ai) = (k - 1)n.

N(aNi) counts the functions which do have the ith element of B in their range, and 

N(aN1 aN2 þ aNk) counts those functions which do have the 1st, 2nd, þ , kth elt of B in their
range, i.e. the onto functions.

Notice that N(ai aj) = (k - 2)n while  = (k - r)nNai1
ai2

,þ , air

Also, the number of r-tuples is .
k
r

Thus,
N(aN1 aN2 þ aNk) = kn - (k - 1)n + (k - 2)n - þk

1
k
2

 

 = j
k

r'0

(&1)r k
r

k& r n

  = k!(S( n,k)) / k!(Stirling # of 2nd Kind).
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Exercise: The number of derangements Dn

Let ai be the property that i is in its natural position in the permutation B,  i.e. B(i) = i.
Then Dn is the no. of perms with none of the properties ai. 

Then N = n!, N(ai) = (n - 1)!, N(ai aj) = n - 2)! 

 = (n- r)! The number of r-tuples is .  Thus,Nai1
ai2

,þ , air

k
r

Dn = N(aN1 aN2 þ aNn) =  j
n

r'0

(&1)r n
r

(n& r)!

Exercise: (Euler Phi Function) Let n =  p
e1

1 p
e2

2 ÿp
ek

k

Denote by N(n) the number of integers 

from 1 to n (incl.) rel. prime to n.  Find N(n).

Let ai be the property that an integer in [n] is divisible by pi.  Then N(n) =N(aN1 aN2 þ aNk).  Here 

N = n, N(ai) =  , etc.
n
pi

, N(aiaj) '
n

pipj

Thus, N(n) = n - j
i

n
pi

%j
i1… j2

n
pi1

pi2

&j n
pi1

pi2
pi3

þ

= n 1 &
1
p1

1 &
1
p2

þ 1 &
1
pk

Generalization
Suppose we want the number of objects which have exactly  m of the properties (any m of the r
properties will do, m 0 [0,r].  Let em be this number. Let sm be the number of objects

sm = j Nai1
ai2

,þ , aim

where the sum is taken over all choices of m distinct properties  .ai1
,þ , aim

N.B. sm counts elements more than once.  Every element counted by sm has at least m properties but
those with more than m properties get counted many times.  For example, if an object has the
properties a1,a2, þ , am + 1, it gets counted in N(a1 a2 þ am), 

N(â1 a2 a3 þ am + 1), N(a1 â2 a3 þ am + 1) etc.
    8        8
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“a1 missing” “a2 missing”

Theorem:

em = sm - 
m%1

1
sm%1 %

m%2
2

sm%2&ÿ

ÿ + (-1)p  + (-1)r - m 
m%p

p
sm%p %þ%þ m%r&m

r&m
sr

If s0 = N, this yields the inclusion - exclusion formula for m = 0.
Proof: Let’s consider any object x.

1) If it has fewer than m of the properties it contributes 0 to LHS and 0 to each of 
sm, sm+1,þ.  So 0 to RHS.

2) If x has exactly m properties it’s counted once in em , once in sm, 0 times in sm+1, þ sr so
we’re OK.

3) If x has t properties, m < t # r, then x contributes 

0 to LHS, but is counted times 
t
m

in sm ,  times in sm + 1 , ÿ ,  times 
t

m%1
t
t

in st and 0 times in sm + 1,ÿ, sr. 

Thus, on RHS x is counted.

 -   +    - ÿt
m

m%1
1

t
m%1

m%2
2

t
m%2

ÿ + (-1)t - m   times. 
m%(t&m)

t&m
t
t

 
For 0 # k # t - m , use

=  
m%k

k
t

m%k
(m%k)!
k!m!

t!
(m%k)!(t&m&k)!

= 
t!
m!

1
k!(t&m&k)!

=   
t
m

t&m
k
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to show that above sum is 0.

Corollary Let Lm be the number of elements. that satisfy at least m of the r properties. Then

Lm = Sm - Sm+1+ Sm+2 -
m

m&1
m%1
n&1

ÿ + (-1)r - m Sr
r&1
m&1

Exercise: In how many ways can one arrange the letters in CORRESPONDENTS so 
a) no pair of identical letters is consecutive
b) exactly 2 pairs of identical letters are consecutive
c) at least 3 pairs of identical letters are consecutive

Solution Let ai be the property that 2 identical letters  i are consecutive. Then we can treat these
as a single unit in any arrangement of letters.
Five pairs (O,R,E,S,N), four singles (C,P,D,T).

N(ai) = 13!/24 N =  
14!

25

N(ai aj) = 12!/23

N(ai aj ak = 11!/22 s2 = 
5
2

12!

23

N (ÆÈÇ) = 10!/2
         4

N (ÆÈÇ) = 9!
         5

a) N(aN0 aNR aNE aNS aNN) = -    
14!

25
&

5
1

13!

24
%

5
2

12!

23

5
3

11!

22
%

5
4

10!
2

&
5
5

9
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MORE ‘DERANGEMENTS”
Suppose the perm on [n] has exactly k fixed points.  Define properties ai as before, N(ai) = (n - 1)! and
so on. Then

ek ' Sk &
k%1

1
Sk%1%

k%2
2

Sk%2 & ÿ(&1)n&k n
n&k

Sk

ÿ + (-1)n - k '
n
k

(n&k)!&
k%1

1
n

k%1
(n&k&1)! %

k%2
2

n
k%2

(n&k&2)!
n

n&k
0!

n
n

'
n
k j

j$0
(&1)j n&k

j
(n&k& j)!

= n
k

Dn&k

(Of course! Just choose the k fixed points in ways, “derange” all the other points in Dn - k ways!)
n
k

Let E(x) = j emx m.

E(x) = (S0 - S1 + S2 - ÿ + (-1)r Sr) + S1&
2
1

S2%
3
2

S3&ÿ% (&1)r&1 r
r&1

Sr x

+  + ÿS2&
3
1

S3%
4
2

S4&ÿ% (&1)r&2 r
r&2

Sr x 2

 + ÿ + Srx
rSm&

m%1
1

Sm%1%
m%2

2
Sm%2&ÿ% (&1)r&m r

r&m
Sr x r

= S0 + S1(x - 1) + S2 + S3 + ÿx 2 &
2
1

x % 1 x 3 &
3
1

x 2 %
3
2

x&1

+ ÿ%S x m&
m
1

x m&1%
m
2

x m&2ÿ% (&1)m&1 m
m&1

x% (&1)m

Sr x r &
r
1

x r&1%
r
2

x r&2ÿ% (&1)r&1 r
r&1

x% (&1)r

ˆ E(x) = !Wow - looks simple!j
r

m'0

Sm(x & 1)m

ˆj
j

e2j'
1
2

E(1) & E(&1) ,j
j

e2j%1&
1
2

E(1) ' E(&1)
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Exercise: Is it true that

Sm ' j
r

j'm

j
m

ej ?

How might this relate, if true, to the earlier formula for em ?

Exercise: Show that if (2k + 1) objects are place in k drawers, at least one drawer will contain 3 or
more objects.

Generalize the above to (mk + 1) objects in k drawers.

Exercise: Suppose a circle is divided into 200 congruent sectors and 100 are coloured red, other 100
blue.  A smaller circle is also so divided and coloured (i.e. 100 sectors red, 100 blue) and placed
concentrically on the larger circle.  Prove that no matter how the 100 red sectors are chosen for each
circle, the smaller circle can be rotated so that at least 100 sectors of the two circles match in colour.

(Hint: How many matches do you get in total as the smaller circle is rotated through 360E while the
larger circle remains fixed?)

DIRICHLET DRAWER (PIGEONHOLE) PRINCIPLE

“k + 1 pigeons in k pigeonholes

Y at least one pigeonhole has 2 or more pigeons”
Peter Gustuv Lejeune Dirichlet (1805 - 1859)

Exercise 1: Select n + 1 numbers from {1, 2, ÿ , 2n}
Then 2 are relatively prime.

Solution: 2 must be consecutive, hence this pair are relatively prime.
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Exercise 2: Let G be a graph. A clique in G is a complete generated subgraph in G, i.e. a collection of
vertices in G where each pair of vertices is joined by an edge.

Let T(G) be the size (# of vertices) of the largest clique in G.
Then P(G) $ T(G), where P(G) is the chromatic number of G.
(Vertices of clique / pigeons, colours / holes)

Generalization 1   If n pigeons are placed into k pigeonholes, then at least one hole contains more than 

 pigeons. lxm / greatest integer # x.
m&1

k

Proof: If not, then there are at most k  
m&1

k# m - 1 < m pigeons, contradiction

Corollary: Given any set of numbers, there is always a number whose value is $ (also #) the average
value of the numbers in the set.
Application: G a graph, W a set of vertices.  W is an independent set of G if no two vertices in W are
joined by an edge.  Let "(G) be the size of the largest independent set in G (independence no.)
If G is coloured with P(G) colours, then each subset containing all vertices of a fixed colour is an
independent set, and V(G) is partitioned into P(G) independent (disjoint) subsets.

Average size of each subset is  and since 
*V(G)*
P(G)

"(G) is the size of largest independent set, "(G) $  or P(G)"(G) $ *V(G)**V(G)*
P(G)

Theorem  (Erdos, Szekeres) Given a sequence of n2 + 1 distinct integers, there is an increasing
subsequence of length n + 1 or a decreasing subsequence of length n + 1.
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Example:
(n2 = 16 : 4 3 2 1 8 7 6 5 12 11 10 9 16 15 14 13)

Proof: Denote the sequence by x1 , x2 , ÿ , .  Let ti be the length of the largest increasingxn 2
%1

subsequence beginning with xi.  If any ti $ n + 1, we’re done.  Thus, assume 1 # ti # n.  Then we
have

 (n2 + 1) values ti all between 1 and n  so that at least

 

 + 1 = n + 1
(n 2%1)&1

n

of the increasing subsequences have the same length. It follows that the xi ‘s associated with these
subsequences (that is, the initial term of each one) form a decreasing subsequence (of length
 n + 1).  

To see this, note that if ti = tj and i < j then xi > xj. (For if not then xi # xj and i < j so the subsequence
starting with xi and then xj and all the tj = ti elements associated with xj as initial point is an increasing
subsequence of length tj + 1, contradiction since ti was supposed to be largest increasing subsequence
starting at i.)  Now, all the xi form a decreasing subsequence as required.

Theorem Suppose p1, p2, ÿ , pk are positive integers.  If p1 + ÿ + pk - (k - 1) pigeons are put into k
holes then either the the 1st hole contains $ p1 , the 2nd $ p2 ÿ , the kth $ pk.

Proof If not, the # of pigeons is at most

  which is 1 too small!j
k

i'1

(pi&1) ' j
k

i'1

pi & k

Recall the game of SIM - remember that there was always a winner (form a red or blue Î)

Theorem In a group of 6 people there are either 3 mutual friends or 3 mutual strangers. [ Equiv.,
colour the edges of the complete graph on 6 points with 2 colours R and B.  Then there is a R or B
Î.]
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N.B.  6 is the fewest for which this is true

Suppose S is any set of 6 elements.  Let T be the two 

elements of R, *T* =   Let T = X c Y , X 1 Y = i.  Then 
*S*
2

a) there is a 3 element subset of S all of whose 2 element subsets are in X

or: b) there is a 3 element subset of S all whose 2 elt. subsets are in Y.

MORE GENERAL

Suppose p, q $ 2, integers.

Divide S as above, assume *S* = N.
Then N has the (p,q) Ramsey property (Frank Plumpton Ramsey 1903 - 1930) if:

a) there is a p element subset of S all whose 2 element subsets are in X.

or:
b) there is a of element subset of S all of whose 2 element subsets are in Y.

Exercise: N = 6 has the (3,3) Ramsey property
N = 5 does not have the (3,3) Ramsey property.

N.B.  If N is (p,q) - R and M > N then M is 
(p,q) - R.

Proof   Let *S* = M, S1 f S, *S1* = N
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Divide the 2 elements subsets of S1 into X,Y.
 Then there is a p element subset of S1 whose 2 element subsets are in X or a q element subset of S1

whose 2 element subsets are in Y.
Put all the remaining 2 element subsets of S arbitrarily in X and Y.
Since any p element or q element subset of S1 is also such a subset S of the desired property
described above for S1 follows for S.  Thus, M is (p,q) - R.

Theorem (Ramsey): If p ,q $ 2 then › N h N is (p,q) - R.

The smallest such number N is denoted by R(p,q), called a Ramsey number .

Finding Ramsey Numbers

1. R(3,3) = 6, since 6 is (3,3) - R while 5 (thus all smaller) is not.
 

If G = (V,E), then Gc = (V,Ec) (complement) has same vertex set as G and all the edges in Gc are
edges not in G (complement of E w.r.t. complete graph on vertex set V).

Theorem: N is (p,q) - R ] for every graph G with N vertices, either G has a complete subgraph of p
vertices (p-gon) or Gc has a complete q-gon. (CLIQUE)
S / vertex set of graph G.
2 element subsets of S / edges in G.
(Clique Gc /Independent set in G.)

Theorem: i) R (p,2) = p
ii) R (2,q) = q.

Proof: i) R(p,2) $ p ( if not, clearly no p element subset at all, and could put all the two element
subsets into one set X, haveY = i)
Every graph of p vertices, either it’s complete or its complement contains at least one edge.  Thus,
R(p,2) # p. ˆ R(p,2) = p.
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(ii) In general R(p,q) = R(q,p) by symmetry of the definition of R(p,q).

Theorem: N is (p,q) - R ] for every graph G of N vertices, either G has a clique of p vertices or G
has an independent set with q vertices.

Theorem: N is (p,q) - R ] whenever we colour the edges of KN either R or B then either KN has a
complete R p-gon or a complete B q-gon.

Proof: Given any edge colouring of KN, let G be the graph whose vertices are those of KN, and
whose edges are R.  Then by earlier result, G has a clique of p vertices (R p-gon) or an independent
set of q vertices (B q-gon).

N.B.  R(p,q) is HARD to determine.

This graph has 8 vertices

It has no Î, no independent set of 4 vertices

ˆ R(3,4) > 8 so R (3,4) $ 9
In fact, R (3,4) = 9
Take regular 13-gon to show R(3,5) $ 14
Take regular 27-gon to show R(4,4) $ 18
In both cases equality holds.

Theorem: R(p,q) # R(p,q - 1) + R (p - 1, q)

If p $ 2, q $ 2 then



S. Tanny MAT 344 Spring, 1999

104

R(p,q) # 
p%q&2

p&1

From these it follows that 

R(3,4) # R(3,3) + R(2,4) = 6 + 4 = 10

In fact, can show that when R(p,q - 1) and 
R(p - 1, q) are both even, and p,q $ 3 then 
R(p,q) # R(p,q - 1) + R(p - 1, q) - 1
ˆ R(3,4) # 9
But we showed R(3,4) $ 9, hence R(3,4) = 9.
Similarly,  R(3,5) # R(3,4) + R(2,5) = 9 + 5 =14  

Generalizations

1) Consider r element subsets of N element set (rather than just r = 2):

p $ r,   q $ r ,   r $ 1

N is (p,q;r) - R ] :

a) given any set S of N elements, if we divide the r element subsets of S into two
collections X, Y then either :

C p element subset of S, all of whose r-element subsets are in X
C q element subset of S, all whose r-element subsets are in Y

N exists, least N is R (p,q;r)
e.g. R(3,3;2) = R(3,3) = 6

 R(p,q;r) = R(p,q)

Theorem R(p,q;1) = p + q - 1

Proof: Let N = p + q - 1.  Then N is (p,q;1) - R.  To see this, suppose *S* = N.  Divide the 1-element
subsets of S into two classes X and Y.  Then *X* $ p or *Y* $ q by the pigeonhole principle (actually
a corollary), so one of the 2 conditions of (p,q;1) - R hold.  Thus, R(p,q;1) # p + q - 1.   To see that
R(p,q,1) - R.  To see that R(p,q;1) $ p + q - 1, it is enough to show that
 p + q - 2 is not (p,q;1) - R. To see this, just split the 1 element subsets of S into two classes X,Y with
*X* = p - 1, *Y* = q - 1.

N.B.   This is why Ramsey is thought of as generalized P.P.


