Non-Linear DFE

Exercise $1 \quad \mathrm{Y}_{\mathrm{n}} \mathrm{Y}_{\mathrm{n}+2}=\mathrm{Y}_{\mathrm{n}+1}^{2} \mathrm{Y}_{0}=1, \mathrm{Y}_{1}=2$
Follows that $\mathrm{Y}_{\mathrm{n}} \neq 0 \forall \mathrm{n}$.

$$
\therefore \quad \frac{Y_{n+2}}{Y_{n+1}}=\frac{Y_{n+1}}{Y_{n}}
$$

Let $\mathrm{W}_{\mathrm{n}}=\frac{\mathrm{Y}_{\mathrm{n}+1}}{\mathrm{Y}_{\mathrm{n}}}$. Then $\mathrm{W}_{\mathrm{n}+1}=\mathrm{W}_{\mathrm{n}}, \mathrm{W}_{0}=2$
$\therefore \mathrm{W}_{\mathrm{n}}=2 \Rightarrow \mathrm{Y}_{\mathrm{n}+1}=2 \mathrm{Y}_{\mathrm{n}} \Rightarrow \mathrm{Y}_{\mathrm{n}}=2^{\mathrm{n}} \quad\left(\mathrm{Y}_{0}=1\right)$
N.B. Could also linearize with $\underline{\underline{\operatorname{logs} s}}$.
$\underline{\text { Exercise } 2} \quad Y_{n+2}^{2}+3 Y_{n+1}^{2}-4 Y_{n}^{2}=0$
Set $\mathrm{W}_{\mathrm{n}}=\mathrm{Y}_{\mathrm{n}}{ }^{2}$

$$
W_{n+2}+3 W_{n+1}-4 W_{n}=0
$$

$\mathrm{W}_{\mathrm{n}}=\mathrm{c}_{1}(-4)^{\mathrm{n}}+\mathrm{c}_{2} \Rightarrow \mathrm{Y}_{\mathrm{n}}=\sqrt{\mathrm{c}_{1}(-4)^{\mathrm{n}}+\mathrm{c}_{2}}$

Solving Recurrences Using Generating Fn

*Basic Idea: G.F. is formal power series with the coeff of interest to us related by the recursion.
Using formal manipulations this leads to a formal expression (hopefully a recognizable closed form) from which the coefficients of the FPS can be determined.

Exercise: $\quad a_{n+1}=2 a_{n}+1 \quad a_{0}=0, a_{1}=1$
Define: $A(x)=\sum_{n \geq 0} a_{n} x^{n}$

$$
\begin{aligned}
\therefore A(x) & =a_{0}+\sum_{n \geq 1} a_{n} x^{n} \\
& =a_{0}+\sum_{n \geq 0} a_{n+1} x^{n+1} \\
& =\sum_{n \geq 0}\left(2 a_{n}+1\right) x^{n+1} \\
& =2 \sum_{n \geq 0} a_{n} x^{n+1}+\sum_{n \geq 0} x^{n+1}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore A(x)=2 x \quad \sum_{n \geq 0} a_{n} x^{n}+\frac{x}{1-x}=2 x A(x)+\frac{x}{1-x} . \\
& \therefore A(x)=\frac{x}{(1-x)(1-2 x)} \quad \text { "Closed Form" } \\
& =\quad x \sum_{n \geq 0} x^{n} \cdot \sum_{n \geq 0} 2^{n} x^{n} . \\
& =\quad x \sum_{n \geq 0}\left(\sum_{j=0}^{n} 2^{j}\right) x^{n} \\
& \therefore \sum_{n \geq 0} a_{n} x^{n}=\sum_{n \geq 0}\left(2^{n+1}-1\right) x^{n+1}
\end{aligned}
$$

Comparing coefficients we see that $a_{n}=2^{n}-1$
N.B. If 2 FPS are equal, they are the same coefficient by coefficient.

Exercise: $\quad \mathrm{F}_{\mathrm{n}+2}=\mathrm{F}_{\mathrm{n}+1}+\mathrm{F}_{\mathrm{n}} \mathrm{n} \geq 0, \mathrm{~F}_{0}=\mathrm{F}_{1}=1$
Let $F(x)=\sum_{n \geq 0} F_{n} x^{n}$
"FPS"

$$
\begin{aligned}
& =F_{0}+F_{1} x+\sum_{n \geq 2} F_{n} x^{n} \\
& =1+x+\sum_{n \geq 0} F_{n+2} x^{n+2} \\
& =1+x+x \sum_{n \geq 0} F_{n+1} x^{n+1}+x^{2} \sum_{n \geq 0} F_{n} x^{n} \\
& =1+x+\sum_{n \geq 0}\left(F_{n+1}+F_{n}\right) x^{n+2} \\
& =1+x+x\left[F(x)-F_{0}\right]+x^{2} F(x)
\end{aligned}
$$

$\therefore \mathrm{F}(\mathrm{x})=1+\mathrm{xF}(\mathrm{x})+\mathrm{x}^{2} \mathrm{~F}(\mathrm{x})$
$\therefore \mathrm{F}(\mathrm{x})=\frac{1}{1-\mathrm{x}-\mathrm{x}^{2}}$
How can we determine the coeff of the FPS for $\mathrm{F}(\mathrm{x})$ from this?
Use Partial Fraction Expansion of RHS!

$$
\begin{aligned}
& 1-\mathrm{x}-\mathrm{x}^{2}=\left(1-\mathrm{x}_{+}\right)\left(1-\mathrm{xR}_{-}\right) \quad \mathrm{R}_{ \pm}=\frac{1 \pm \sqrt{5}}{2} \\
& \therefore \mathrm{~F}(\mathrm{x})=\left(\frac{1}{\mathrm{R}_{+}-\mathrm{R}_{-}}\right)\left\{\frac{\mathrm{R}_{+}}{1-\mathrm{xR}_{+}}-\frac{\mathrm{R}_{-}}{1-\mathrm{xR}_{-}}\right\} \\
& \quad=\frac{1}{\sqrt{5}}\left\{\sum_{\mathrm{n} \geq 0}\left(\mathrm{R}_{+}^{\mathrm{n}+1}-\mathrm{R}_{-}^{\mathrm{n}+1}\right) \mathrm{x}^{\mathrm{n}}\right\} \\
& \therefore \mathrm{F}_{\mathrm{n}}=\frac{\sqrt{1}}{5}\left(\mathrm{R}_{+}^{\mathrm{n}+1}-\mathrm{R}_{-}^{\mathrm{n}+1}\right)
\end{aligned}
$$

Sometimes we use e.g.f. just as successfully.

$$
\begin{aligned}
& \mathrm{F}(\mathrm{x})=\sum_{\mathrm{n}} \frac{\mathrm{~F}_{\mathrm{n}}}{\mathrm{n}!} \mathrm{x}^{\mathrm{n}} \\
& =1+x+\sum_{n \geq 0} \frac{F_{n+2}}{(n+2)!} x^{n+2} \\
& =1+x+\sum_{n \geq 0} \frac{F_{n+1}+F_{n}}{(n+2)!} x^{n+2} \\
& \therefore F^{\prime}(x)=1+\sum_{n \geq 0} \frac{F_{n+1}+F_{n}}{(n+1)!} x^{n+1} \\
& =1+\sum_{n \geq 0} \frac{F_{n+1}}{(n+1)!} x^{n+1} \quad+\sum_{n \geq 0} \frac{F_{n}}{(n+1)!} x^{n+1} \\
& =1+(F(x)-1)+\sum_{n \geq 0} \frac{F_{n}}{(n+1)!} x^{n+1} \\
& \therefore \mathrm{~F}^{\prime \prime}(\mathrm{x})=\mathrm{F}^{\prime}(\mathrm{x})+\sum_{\mathrm{n} \geq 0} \frac{\mathrm{~F}_{\mathrm{n}}}{\mathrm{n}!} \mathrm{x}^{\mathrm{n}} \\
& =F^{\prime}(x)+F(x)
\end{aligned}
$$

This can be solved using ODE approach for FPS (same as if $\mathrm{F}(\mathrm{x})$ a real (or complex) function).
$\mathrm{F}(\mathrm{x})=\mathrm{c}_{1} \mathrm{e}^{\mathrm{R}}{ }_{+}^{\mathrm{x}}+\mathrm{c}_{2} \mathrm{e}^{\mathrm{R} x}{ }_{-}$
where $1=\mathrm{F}_{0}=\mathrm{F}(0)=\mathrm{c}_{1}+\mathrm{c}_{2}$
$1=\mathrm{F}_{1}=\mathrm{F}^{\prime}(0)=\mathrm{c}_{1} \mathrm{R}_{+}+\mathrm{c}_{2} \mathrm{R}$.

Solve for $\mathrm{c}_{1}, \mathrm{c}_{2}$:

$$
c_{1}=\frac{1}{\sqrt{5}} R_{+} \quad c_{2}=-\frac{1}{\sqrt{5}} R_{-}
$$

$\therefore \mathrm{F}(\mathrm{x})=\frac{1}{\sqrt{5}}\left(\mathrm{R}_{+} \mathrm{e}^{\mathrm{R}_{+} \mathrm{x}}-\mathrm{R}_{-} \mathrm{e}^{\mathrm{R}_{-} \mathrm{x}}\right)$
$\therefore \sum_{\mathrm{n} \geq 0} \frac{\mathrm{~F}_{\mathrm{n}}}{\mathrm{n}!} \mathrm{x}^{\mathrm{n}}=\frac{1}{\sqrt{5}} \sum_{\mathrm{n} \geq 0} \frac{1}{\mathrm{n}!}\left(\mathrm{R}_{+}^{\mathrm{n}+1}-\mathrm{R}_{-}^{\mathrm{n}+1}\right) \mathrm{x}^{\mathrm{n}}$

DERANGEMENT RECURSION

$D_{n} \equiv$ number of perms in S_{n} with no fixed points.
$D_{n+1}=n\left(D_{n}+D_{n+1}\right) \quad D_{1}=0, D_{2}=1$
LINEAR BUT NOT CONSTANT COEFF.
Define $D_{0}=1$ to make recursion hold for
$\mathrm{n}=1$.
Let $D(x)=\sum_{n \geq 0} \frac{D_{n}}{n!} x^{n}$

$$
\begin{aligned}
& =1+\sum_{n \geq 2} \frac{D_{n}}{n!} x^{n} \\
& =1+\sum_{n \geq 0} \frac{D_{n+2}}{(n+2)!} x^{n+2}
\end{aligned}
$$

$$
\begin{aligned}
\therefore D^{\prime}(x)=\sum_{n \geq 0} & \frac{D_{n+2}}{(n+1)!} x^{n+1} \\
& =\sum_{n \geq 0} \frac{D_{n+1}+D_{n}}{n!} x^{n+1} \\
& =\sum_{n \geq 0} \frac{D_{n+1}}{n!} x^{n+1}+x D(x)
\end{aligned}
$$

Doesn't look too promising? What now?

$$
=x\left(\sum_{n \geq 0} \frac{D_{n+1}}{n!} x^{n}\right)+x D(x)
$$

$\mathrm{D}^{\prime}(\mathrm{x})=\mathrm{x}\left(\mathrm{D}(\mathrm{x})-\mathrm{D}_{0}\right)^{\prime}+\mathrm{xD}(\mathrm{x})$

$$
=x^{\prime}(x)+x D(x)
$$

$\therefore \mathrm{D}^{\prime}(\mathrm{x})(1-\mathrm{x})=\mathrm{xD}(\mathrm{x})$
$\therefore \frac{\mathrm{D}^{\prime}(\mathrm{x})}{\mathrm{D}(\mathrm{x})}=\frac{\mathrm{x}}{1-\mathrm{x}}=\frac{1}{1-\mathrm{x}}-1$
$\therefore \ln \mathrm{D}(\mathrm{x})=\ln (1-\mathrm{x})-\mathrm{x}+\mathrm{c}$

$$
D(x)=\frac{1}{1-x} e^{-x} e^{c}
$$

But $D(0)=D_{0}=1 \Rightarrow e^{c}=1(\Rightarrow c=0$.
$\therefore \mathrm{D}(\mathrm{x})=\frac{\mathrm{e}^{-\mathrm{x}}}{1-\mathrm{x}}$

If you don't know ODE, there is another way to get this result: (See Roberts, pp. 224 ff)

$$
\begin{aligned}
& D(x)=1+\sum_{n \geq 0} \frac{D_{n+2}}{(n+2)!} x^{n+2} \\
& D_{n+2}=(n+1)\left(D_{n+1}+D_{n}\right)
\end{aligned}
$$

If only this were $(\mathrm{n}+2)$ instead!? We can show (see Roberts, p .225)
$D_{n+2}=(n+2) D_{n+1}+(-1)^{n+2}$

$$
\begin{aligned}
& \begin{array}{l}
\therefore \mathrm{D}(\mathrm{x})=1+\sum_{\mathrm{n} \geq 0} \frac{D_{\mathrm{n}+1}}{(\mathrm{n}+1)!} \mathrm{x}^{\mathrm{n}+2}+\sum_{\mathrm{n} \geq 0} \frac{(-1)^{\mathrm{n}+2} \mathrm{x}^{\mathrm{n}+2}}{(\mathrm{n}+2)!} \\
\quad=1+\mathrm{x}[\mathrm{D}(\mathrm{x})-1]+\left(\mathrm{e}^{-\mathrm{x}}-1+\mathrm{x}\right)
\end{array} \\
& \begin{array}{l}
\therefore \mathrm{D}(\mathrm{x})=1+\mathrm{xD}(\mathrm{x})-\mathrm{x}+\mathrm{e}^{-\mathrm{x}}-1+\mathrm{x} . \\
\quad=\mathrm{xD}(\mathrm{x})+\mathrm{e}^{-\mathrm{x}}
\end{array}
\end{aligned}
$$

$\therefore \mathrm{D}(\mathrm{x})=\mathrm{e}^{-\mathrm{x}} /(1-\mathrm{x})$

$$
=\left(1-\frac{x}{1!}+\frac{x^{2}}{2!}-\ldots\right)\left(1+x+x^{2}+\ldots\right)
$$

$$
\sum_{n \geq 0} \frac{D_{k}}{k!} x^{k}=\sum_{k=0}^{\infty}\left(1-\frac{1}{1!}+\frac{1}{2!} \ldots+(-1)^{k} \frac{1}{k!}\right) x^{k}
$$

$\therefore \mathrm{D}_{\mathrm{k}}=\mathrm{k}!\left(1-\frac{1}{1!}+\frac{1}{2!} \ldots+(-1)^{\mathrm{k}} \frac{1}{\mathrm{k}!}\right)$

Counting Bracketings in Products

In how many different ways can the "product" $\mathrm{x}_{1}, \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{n}}$ be parenthesized?
eg

$$
\begin{array}{rlll}
\left.\begin{array}{r}
\left(\mathrm{x}_{1}\right) \\
\left(\mathrm{x}_{1} \mathrm{x}_{2}\right) \\
\left(\left(\mathrm{x}_{1} \mathrm{x}_{2}\right) \mathrm{x}_{3}\right) \\
\left(\mathrm{x}_{1}\left(\mathrm{x}_{2} \mathrm{x}_{3}\right)\right)
\end{array}\right\} & 1 & 1 & \\
2 & &
\end{array}
$$

Let the number be b_{n}. Then $\mathrm{b}_{1}=1, \mathrm{~b}_{2}=1, \mathrm{~b}_{3}=2$. To bracket n letters, bracket first r , last $\mathrm{n}-\mathrm{r}$

$$
b_{n}=\sum_{r=1}^{n-1} b_{r} b_{n-r} \quad, \quad \underline{\underline{n \geq 2}}
$$

Let $\mathrm{b}_{0}=0$. Then

$$
\mathrm{b}_{\mathrm{n}}=\sum_{\mathrm{r}=0}^{\mathrm{n}} \mathrm{~b}_{\mathrm{r}} \mathrm{~b}_{\mathrm{n}-\mathrm{r}} \quad, \quad \mathrm{n} \geq 2
$$

Let $B(x) \quad=\sum_{n \geq 0} b_{n} x^{n}$
$(B(x))^{2} \quad=\sum_{n \geq 0} c_{n} x^{n} \quad, \quad c_{n}=\sum_{r \geq 0}^{n} b_{r} b_{n-r}$
$=\sum_{n \geq 2} b_{n} x^{n}$

$$
=B(x)-x
$$

$\therefore \mathrm{B}(\mathrm{x})^{2}-\mathrm{B}(\mathrm{x})+\mathrm{x}=0$.

$$
\mathrm{B}(\mathrm{x})=\frac{1 \pm \sqrt{1-4 \mathrm{x}}}{2}
$$

Two possible solutions - must check each
$\sqrt{1-4 x}=\quad \sum_{n \geq 0}\binom{1 / 2}{n}(-4)^{n} x^{n}$
Show $\binom{1 / 2}{n}(-4)^{n}=-\frac{2}{n}\binom{2 n-2}{n-1}, n \geq 1$
$2_{2}^{1-4 x}=\frac{1}{2}-\sum_{n \geq 1} \frac{1}{n}\binom{2 n-2}{n-1} x^{n}$
$\therefore \mathrm{B}(\mathrm{x})=\sum_{\mathrm{n} \geq 1} \frac{1}{\mathrm{n}}\binom{2 \mathrm{n}-2}{\mathrm{n}-1} \mathrm{x}^{\mathrm{n}}$ (-ive root req'd!!)
$\therefore \mathrm{b}_{\mathrm{n}}=\frac{1}{\mathrm{n}}\binom{2 \mathrm{n}-2}{\mathrm{n}-1} \xlongequal{\text { Catalan }}(1814-94)$

If we take the positive root we get

$$
B(x)=1-\sum_{n \geq 1} \frac{1}{n}\binom{2 n-2}{n-1} x^{n}
$$

which give only negative values for the coefficients for $\mathrm{n} \geq 1$, which makes no sense.

A variety of problems lead to essentially the same recurrence as the above one:
(1) counting the number of simple, ordered rooted (SOR) trees

- unlabeled rooted trees, each vertex has 0,1 , or 2 descendents, "left" and "right" descendents distinguished

(2) Secondary structure in RNA [not precisely

Root

but similar - see Roberts]
(3) Triangulation of an n-gon by diagonals - division of the inside into triangles using
only nonintersecting diagonals
(4) Let S_{n} be the number of distinct ordered sets of n integers $a_{1}, a_{2}, \ldots, a_{n}$ (allow some to be 0) such that

$$
\mathrm{a}_{1}+\ldots+\mathrm{a}_{\mathrm{n}}=\mathrm{n}, \mathrm{a}_{1}+\mathrm{a}_{2}+\ldots+\mathrm{a}_{\mathrm{k}} \geq \mathrm{k} \text { for each } \mathrm{k}<\mathrm{n} .
$$

Then $S_{n}=\frac{1}{n+1}\binom{2 n}{n}$
(5) Let S_{n} be the no. of sequences of length $2 n$,

$$
\begin{array}{r}
a_{1}, a_{2}, \ldots, a_{2 n}, a_{i}=+1 \text { or }-1 \text { and } \\
\sum_{j=1}^{2 n} a_{j}=0, \quad \sum_{j=1}^{k} a_{j} \geq 0, \quad k<2 n
\end{array}
$$

Then $S_{n}=\frac{1}{n+1}\binom{2 n}{n}$

INCLUSION - EXCLUSION

How many positive integers between 1 and 30 are not divisible by 2 or 3 ?
$6=2 \times 3$.
Divisible by $6 \Leftrightarrow$ divisible by 2 and 3 .
Exactly 15 are divisible by 2
Exactly 10 are divisible by 3 .
Exactly 5 are divisible by 6 (hence are divisible by both 2 and 3)
$\therefore 30-(10+15)+5=10$ are not divisible by 2 and 3
$\{1,5,7,11,13,17,19,23,25,29\}$
Let A be a set of N objects.

Let $a_{1}, a_{2}, \ldots, a_{r}$ to be collection of r properties that each of the objects of A may have (but need not have)
Let $N\left(a_{i}\right)=\#$ of objects of A with property a_{i}
Let $N\left(\mathrm{a}^{\prime}{ }_{\mathrm{i}}\right)=$ \# of objects of A without property a_{i}
For all $\mathrm{i}, \mathrm{N}\left(\mathrm{a}_{\mathrm{i}}\right)+\mathrm{N}\left(\mathrm{a}_{\mathrm{i}}{ }_{\mathrm{j}}\right)=\mathrm{N}$
Let $N\left(a_{i} a_{j}\right)=\#$ of objects with both properties a_{i}, a_{j}
Obvious definition for $\mathrm{N}\left(\mathrm{a}_{\mathrm{i}} \mathrm{a}^{\prime}{ }_{\mathrm{j}}\right), \mathrm{N}\left(\mathrm{a}_{\mathrm{i}} \mathrm{a}_{\mathrm{j}} \mathrm{a}_{\mathrm{k}}\right)$ and so on
$\mathrm{N}\left(\mathrm{a}_{\mathrm{i}}\right)=\mathrm{N}\left(\mathrm{a}_{\mathrm{i}} \mathrm{a}_{\mathrm{j}}\right)+\mathrm{N}\left(\mathrm{a}_{\mathrm{i}} \mathrm{a}_{\mathrm{j}}{ }_{\mathrm{j}}\right)$

$$
\mathrm{N}\left(\mathrm{a}_{\mathrm{i}}^{\prime} \mathrm{a}_{\mathrm{j}}{ }_{\mathrm{j}}\right)=\mathrm{N}-\left(\mathrm{N}\left(\mathrm{a}_{\mathrm{i}}\right)+\mathrm{N}\left(\mathrm{a}_{\mathrm{j}}\right)\right)+\mathrm{N}\left(\mathrm{a}_{\mathrm{i}} \mathrm{a}_{\mathrm{j}}\right)
$$

Remove object objects with add back in objects with a_{i} or $a_{j} \quad a_{i} a_{j}$ included with both a_{i} and in this count a_{j} since these were removed twice

If we use above notation:

$$
\begin{array}{rl}
\mathrm{N}\left(\mathrm{a}^{\prime}{ }_{1} \mathrm{a}^{\prime}{ }_{2} \ldots \mathrm{a}^{\prime}{ }_{\mathrm{r}}\right)=\mathrm{N}-\sum_{\mathrm{i}} & \mathrm{~N}\left(\mathrm{a}_{\mathrm{i}}\right)+\sum_{\mathrm{i} \neq \mathrm{j}} \mathrm{~N}\left(\mathrm{a}_{\mathrm{i}} \mathrm{a}_{\mathrm{j}}\right) \\
& -\sum_{\mathrm{i}, \mathrm{j}, \mathrm{k}} \mathrm{~N}\left(\mathrm{a}_{\mathrm{i}} \mathrm{a}_{\mathrm{j}} \mathrm{a}_{\mathrm{k}}\right)+\ldots+(-1)^{\mathrm{r}} \mathrm{~N}\left(\mathrm{a}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{r}}\right) \\
\text { different }
\end{array}
$$

Proof: LHS counts each object without $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{r}}$ exactly once. Show that the RHS does as well, and all others zero times.
\rightarrow if an object β has none of the properties it is counted in N built never in any other term in RHS so
we're OK.
\rightarrow if an object β has exactly p of the properties then it is counted once in $N,\binom{p}{1}=p$ times in
$\sum_{i \neq j} N\left(a_{i} a_{j}\right),\binom{p}{3}$ times in $\sum_{i \neq j \neq k} N\left(a_{i} a_{j}\right)$ and so on.
Thus it is counted $\sum_{j=0}^{p}\binom{p}{j}(-1)^{i \neq j}=0$ times, as required
This is called the Principle of Inclusion-Exclusion (PIE)
Corollary The number of elements of A that have at least one of the properties is $\mathrm{N}-\mathrm{N}\left(\mathrm{a}^{\prime}{ }_{1} \mathrm{a}^{\prime}{ }_{2} \ldots\right.$ $\mathrm{a}_{\mathrm{r}}{ }_{\mathrm{r}}$.

Exercise 1 Find the number of non negative integers satisfying solutions to $x_{1}+x_{2}+x_{3}+x_{4}=18$ with each $\mathrm{x}_{\mathrm{i}} \leq 7$.

Solution: Without the restriction on all x_{i} the answer is
$\binom{4+18-1}{18}=\binom{21}{18}=\binom{21}{3}$
Define the property a_{i} for a solution to the equation if $x_{i} \geq 8$, i.e. a solution $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ satisfies a_{i} if $\mathrm{x}_{\mathrm{i}} \geq 8, \mathrm{i}=1,2,3,4$. We want to count

