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Non-Linear DFE

Exercise 1  YnYn+2 = Y2
 n + 1 Y0 =1, Y1 = 2

Follows that Yn … 0 œn.

ˆ
Yn % 2

Yn % 1

'
Yn % 1

Yn

Let Wn = .  Then Wn + 1 = Wn , W0 = 2
Yn % 1

Yn

ˆ Wn = 2 Y Yn + 1 = 2Yn Y Yn = 2n     (Y0 = 1)

N.B.  Could also linearize with logs.

Exercise 2  + -  = 0Y 2
n%2

3Y 2
n%1

4Y2
n

Set  Wn = Yn
2

Wn + 2 + 3Wn + 1 - 4Wn = 0

Wn = c1(-4)n + c2 Y Yn = c1 (&4)n % c2

Solving Recurrences Using Generating Fn

*Basic Idea: G.F. is formal power series with the coeff of interest to us related by the recursion. 
Using formal manipulations this leads to a formal expression (hopefully a recognizable closed form)
from which the coefficients of the FPS can be determined.

Exercise: an + 1 = 2an + 1 a0 = 0 , a1 = 1

Define: A(x) = (“FPS”)j
n$0

anx n

ˆ A(x) = a0 + “Formal manipulation”j
n$1

anx n

      = a0 +  j
n$0

an%1 x n%1

     = j
n$0

(2an%1) x n%1

     = 2j
n$0

an x n%1 % j
n$0

x n%1
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 ˆ A(x) = 2x  +    = 2x A(x) +  .j
n$0

an x n x
1&x

x
1&x

ˆ A(x) =  “Closed Form”
x

(1&x)(1&2x)

= x @j
n$0

x n @ j
n$0

2nx n

= x j
n$0

j
n

j'0

2j x n

ˆj
n$0

anx n ' j
n$0

2n%1&1 x n%1

Comparing coefficients we see that an = 2n - 1

N.B.  If 2 FPS are equal, they are the same coefficient by coefficient.

Exercise: Fn + 2 = Fn + 1 + Fn  n $ 0 , F0 = F1 = 1

Let F(x) = “FPS”j
n$0

Fn x n

= F0 + F1x +j
n$2

Fn x n

= 1 + x + j
n$0

Fn%2 x n%2

= 1 + x + xj
n$0

Fn%1 x n%1%x 2j
n$0

Fnx n

= 1 + x +j
n$0

Fn%1%Fn x n%2

= 1 + x + x [F(x) - F0] + x2F(x)

ˆ   F(x) = 1 + x F(x) + x2F(x)

ˆ   F(x) =  
1

1&x&x 2

How can we determine the coeff of the FPS for F(x) from this?

Use Partial Fraction Expansion of RHS!
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1 - x - x2 = (1 - x R+)(1 - x R-) R± = 
1± 5

2

ˆF(x) = 
1

R
%
&R

&

R
%

1&xR
%

&
R
&

1&xR
&

    =  
1

5
j
n$0

R n%1
%

& R n%1
&

x n

ˆ Fn = 
1

5
R n%1
% & R n%1

&

Sometimes we use e.g.f. just as successfully.

F(x) = j
n

Fn

n!
x n

  = 1 + x +  j
n$0

Fn%2

(n%2)!
x n%2

  = 1 + x +  j
n$0

Fn%1%Fn

(n%2)!
x n%2

ˆ FN(x) = 1 +  j
n$0

Fn%1%Fn

(n%1)!
x n%1

 
= 1%j

n$0

Fn%1

(n%1)!
x n%1

% j
n$0

Fn

(n%1)!
x n%1

= 1 + (F(x) - 1) + j
n$0

Fn

(n%1)!
x n%1

ˆFO(x) = FN(x) +  j
n$0

Fn

n!
x n

= FN(x) + F(x)

This can be solved using ODE approach for FPS (same as if F(x) a real (or complex) function).

F(x) = c1e
R

+
x + c2e

R
-
x

where 1= F0 = F(0) = c1 + c2

1 = F1 = FN(0) = c1R+ + c2R-
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Solve for c1 , c2 :

c1 = R+   c2 = - R-
1

5

1

5

ˆ F(x) = ( - )
1

5
R
%
e

R
%

x
R
&
e

R
&

x

ˆ  =  (R+
n + 1 - R-

n + 1) xnj
n$0

Fn

n!
x n 1

5
j
n$0

1
n!

DERANGEMENT RECURSION

Dn / number of perms in Sn with no fixed points.
Dn + 1 = n (Dn + Dn + 1) D1 = 0, D2 = 1

8
LINEAR BUT NOT CONSTANT COEFF.

Define D0 = 1 to make recursion hold for
 n = 1.

Let D(x) = j
n$0

Dn

n!
x n

   = 1 +  j
n$2

Dn

n!
x n

 
= 1 + j

n$0

Dn%2

(n%2)!
x n%2

ˆ DN(x) = j
n$0

Dn%2

(n%1)!
x n%1

=j
n$0

Dn%1 % Dn

n!
x n%1

=j
n$0

Dn%1

n!
x n%1

% xD(x)
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Doesn’t look too promising?  What now?

    = x j
n$0

Dn%1

n!
x n % xD(x)

DN(x) = x (D(x) - D0)N + xD(x)
    
    = xDN(x) + xD(x)

ˆ DN(x) (1 - x) = xD(x)

ˆ DN(x)
D(x)

'
x

1&x
'

1
1&x

& 1

ˆ Rn D(x) = Rn(1 - x) - x + c

  D(x) = 
1

1&x
e &x e c

But D(0) = D0 = 1 Y ec = 1 (Y c = 0.)

ˆ D(x) = 
e &x

1&x

If you don’t know ODE, there is another way to get this result: (See Roberts, pp. 224 ff)

D(x) = 1 +  j
n$0

Dn%2

(n%2)!
x n%2

Dn + 2 = (n + 1) (Dn + 1 + Dn)
  8

If only this were (n + 2) instead!? We can show (see Roberts, p.225)

Dn + 2 = (n + 2) Dn + 1 + (-1)n + 2
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ˆD(x) = 1 +  + j
n$0

Dn%1

(n%1)!
x n%2 j

n$0

(&1)n%2x n%2

(n%2)!

    = 1 + x [D(x) - 1] + (e-x - 1 + x)

ˆ D(x) = 1 + xD(x) - x + e-x - 1 + x.

= x D(x) + e-x

ˆ D(x) = e-x/(1 - x)

= 1 &
x
1!

%
x 2

2!
& ÿ 1 % x % x 2 % ÿ

     j
n$0

Dk

k!
x k ' j

4

k'0

1&
1
1!

%
1
2!

ÿ % (&1)k 1
k!

x k

ˆ Dk =   k! 1 &
1
1!

%
1
2!

ÿ % (&1)k 1
k!

Counting Bracketings in Products

In how many different ways can the “product” x1,x2 ÿ xn be parenthesized?

eg   (x1) 1
(x1 x2) 1

  ((x1 x2) x3) 

   (x1(x2x3))  A 2
Let the number be bn.  Then b1 = 1, b2 = 1, b3 = 2. To bracket n letters, bracket first r, last n - r

bn =      ,     n $ 2j
n&1

r'1

br bn& r

Let b0 = 0.  Then

bn =         ,      n $ 2j
n

r'0

br bn& r

Let B(x) =   j
n$0

bn x n

(B(x))2 =      ,   cn =  j
n$0

cn x n j
n

r$0

br bn& r

=  j
n$2

bn x n
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= B(x) - x

ˆ B(x)2 - B(x) + x = 0.

   B(x) = 
1± 1&4x

2

Two possible solutions - must check each

 = 1&4x j
n$0

½
n

&4 nx n

Show 
½
n

&4 n
' &

2
n

2n&2
n&1

, n $ 1

 = 
1
2

1&4x 1
2

& j
n$1

1
n

2n&2
n&1

x n

ˆ B(x) =   (-ive root req’d!!)j
n$1

1
n

2n&2
n&1

x n

ˆ bn =  Catalan (1814-94)
1
n

2n&2
n&1

If we take the positive root we get

B(x) = 1 -  j
n$1

1
n

2n&2
n&1

x n

which give only negative values for the coefficients for 
n $ 1, which makes no sense.

A variety of problems lead to essentially the same recurrence as the above one:

(1) counting the number of simple, ordered rooted (SOR) trees

- unlabeled rooted trees, each vertex has 0, 1, or 2 descendents, “left” and “right”
descendents distinguished
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Root Root

(2) Secondary structure in RNA [not precisely but similar - see Roberts]

(3) Triangulation of an n-gon by diagonals - division of the inside into triangles using only non-
intersecting diagonals

(4) Let Sn be the number of distinct ordered sets of n integers a1, a2, ÿ , an (allow some to be 0) such
that

a1 + ÿ + an = n, a1 + a2 + ÿ + ak $ k for each k < n.  

Then Sn = 
1

n%1
2n
n

(5) Let Sn be the no. of sequences of length 2n, 

a1,a2,ÿ , a2n, ai = + 1 or !1 and  

j
2n

j'1

aj ' 0 , j
k

j'1

aj $ 0 , k < 2n

Then Sn = 
1

n% 1
2n
n

INCLUSION - EXCLUSION

How many positive integers between 1 and 30 are not divisible by 2 or 3?
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6 = 2 × 3.

Divisible by 6 ] divisible by 2 and 3.
Exactly 15 are divisible by 2
Exactly 10 are divisible by 3.
Exactly 5   are divisible by 6 (hence are divisible by both 2 and 3)

ˆ 30 - (10 + 15) + 5 = 10 are not divisible by 2 and 3

{1, 5, 7, 11, 13, 17, 19, 23, 25, 29}

Let A be a set of N objects.

Let a1, a2 , ÿ , ar to be collection of r properties that each of the objects of A may have (but need not
have)
Let N(ai) = # of objects of A with property ai

Let N(aNi) = # of objects of A without property ai

For all i, N(ai) + N(aNi) = N
Let N(aiaj) = # of objects with both properties ai, aj 

Obvious definition for N(aiaNj) , N(aiajak) and so on
N(ai) = N(ai aj) + N(ai aNj)
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N(aNi aNj) = N - (N(ai) + N (aj)) + N(ai aj)
        _ 8    8

Remove object objects with   add back in objects
with ai or aj ai aj included  with both ai and

in this count aj since these were
removed twice

If we use above notation:

N( ) = N -aN1 aN2ÿaNr j
i

N(ai) % j
i…j

N(aiaj)

 - j
i,j,k

N(aiajak) % ÿ%(&1)r N(a1 a2þar)
 
  different

Proof:  LHS counts each object without a1 , a2 , ÿ , ar exactly once.  Show that the RHS does as well,
and all others zero times.  
6if an object $ has none of the properties it is counted in N built never in any other term in RHS so
we’re OK.
6 if an object $ has exactly p of the properties then it  is counted once in N, = p times in

p
1

  , times in  and so on.j
i…j

N(aiaj)
p
3 j

i…j…k

N(ai aj)

Thus it is counted   times, as requiredj
p

j'0

p
j

(&1)j ' 0

This is called the Principle of Inclusion-Exclusion (PIE)

Corollary The number of elements of A that have at least one of the properties is N - N(aN1 aN2 þ
aNr).

Exercise 1 Find the number of non negative integers satisfying solutions to x1 + x2 + x3 + x4 = 18
with each xi # 7.

Solution: Without the restriction on all xi the answer is 

4%18&1
18

'
21
18

'
21
3

Define the property ai for a solution to the equation if xi $ 8, i.e. a solution (x1, x2, x3, x4) satisfies ai if
xi $ 8, i = 1, 2, 3, 4.  We want to count


