Recurrence Relations

Tower of Hanoi
Let $T_{n} \quad$ be the minimum number of moves required.
$\quad \mathrm{T}_{0}=0, \mathrm{~T}_{1}=1$
$\mathrm{~T}_{\mathrm{n}}=2 \mathrm{~T}_{\mathrm{n}-1}+1$$\quad \leftarrow \quad \underline{\text { Initial Conditions }}$
T_{n} is a sequence (fn. on integers). Solve for T_{n} ?

* is a recurrence, difference equation (linear, non-homogeneous, constant coefficient)

Set $\quad \mathrm{U}_{0}=\mathrm{T}_{0}+1, \quad \mathrm{U}_{\mathrm{n}}=\mathrm{T}_{\mathrm{n}}+1 \quad \mathrm{n} \geq 1$
Then $\mathrm{U}_{\mathrm{n}}=\mathrm{T}_{\mathrm{n}}+1=2 \mathrm{~T}_{\mathrm{n}-1}+1+1=2\left(\mathrm{~T}_{\mathrm{n}-1}+1\right)$
so $\quad U_{n}=2 U_{n-1}$

$$
=\quad 2^{2} U_{n-2}=\ldots=2^{n-1} U_{1}=2^{n}
$$

$\therefore \quad \mathrm{T}_{\mathrm{n}}=2^{\mathrm{n}}-1$
Suppose $\quad a_{n+1}=2 a_{n}+n, \quad a_{0}=1$
Let $\mathrm{U}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}}+\mathrm{n}, \quad \mathrm{U}_{0}=1$
Then $\mathrm{U}_{\mathrm{n}+1}=\mathrm{a}_{\mathrm{n}+1}+(\mathrm{n}+1)=2 \mathrm{a}_{\mathrm{n}}+\mathrm{n}+(\mathrm{n}+1)$

$$
\begin{aligned}
& =2\left(\mathrm{a}_{\mathrm{n}}+\mathrm{n}\right)+1 \\
& =2 \mathrm{U}_{\mathrm{n}}+1
\end{aligned}
$$

Thus, U_{n} is like the T_{n} in the preceding example, except
$\mathrm{U}_{0}=1$ while $\mathrm{T}_{0}=0$. In fact, since $\mathrm{T}_{1}=1$, the
$\left\{U_{n}\right\}$ is just $\left\{T_{n}\right\}$ "advanced one step",
i.e. $U_{n}=T_{n+1}=2^{n+1}-1$
$\therefore \quad \mathrm{a}_{\mathrm{n}}=2^{\mathrm{n}+1}-1-\mathrm{n}=2^{\mathrm{n}+1}-(\mathrm{n}+1)$
Notice how the solution of one recurrence often can be reduced to the solution of a simpler one.

Suppose the recursion were

$$
\mathrm{L}_{\mathrm{n}}=\mathrm{L}_{\mathrm{n}-1}+\mathrm{n}, \quad \mathrm{~L}_{0}=1
$$

Then we can "expand out" as follows:

$$
\begin{aligned}
L_{n}= & L_{n-2}+(n-1)+n \\
& =L_{n-3}+(n-2)+(n-1)+n \\
& = \\
& =L_{0}+1+2+\cdots+n \\
& =1+\frac{n(n+1)}{2}
\end{aligned}
$$

This describes the number of regions formed by n intersecting lines in the plane, no 2 parallel and no 3 intersect in a point (PIZZA CUTTING PROBLEM).

General Problem

$\left.{ }^{*}\right) \mathrm{F}\left(\mathrm{Y}_{\mathrm{n}+\mathrm{k}}, \mathrm{Y}_{\mathrm{n}+\mathrm{k}-1}, \cdots, \mathrm{Y}_{\mathrm{n}}\right)=0$
Difference equation of order k (DFE)
Assume F linear, constant coefficients
$\left(^{* *}\right) Y_{n+k}+a_{1} Y_{n+k-1}+\cdots+a_{k} Y_{n}-\varphi(n)=0$
If $\varphi(\mathrm{n})=0$, Homogeneous; otherwise non-Homo.
Note the strong analogy with D.E.!
Suppose that $\mathrm{Y}_{\mathrm{n}}=\mathrm{S}_{1}(\mathrm{n})$ is a "solution". Then
$S_{1}(n+k)+a_{1} S_{1}(n+k-1)+\cdots+a_{k} S_{1}(n)-\varphi(n)=0$
If $\mathrm{S}_{2}(\mathrm{n})$ is any other solution, then
$\left[S_{1}(n+k)-S_{2}(n+k)\right]+a_{1}\left[S_{1}(n+k-1)-S_{2}(n+k-1)\right]+\ldots+a_{k}\left[S_{1}(n)-S_{2}(n)\right]=0$
It follows that $S_{1}(n)-S_{2}(n)$ is a solution of
the Homogeneous equation related to $\left({ }^{* *}\right)$
(obtained by (ignoring $\varphi(\mathrm{n})$).
What is the "General Solution" of a DFE?
It's a family of functions, usually characterized by a parameter(s) which can take on different values.

From the above, the general solution for $\left({ }^{* *}\right)$ is just the general solution to the related HOMO equation plus any particular solution to the NON-HOMO equation ($* *$), i.e.

$$
\mathrm{S}_{\mathrm{NH}}(\mathrm{n})=\mathrm{S}_{\mathrm{H}}(\mathrm{n})+\mathrm{S}_{\mathrm{p}}(\mathrm{n})
$$

where $S_{p}(n)$ is any solution of $\left({ }^{* *}\right), S_{H}(n)$ is general solution of related HOMO and $S_{N H}(n)$ is general solution of $\left({ }^{* *}\right)$

Solving HOMO

(i) First Order DFE

Suppose $\quad \mathrm{Y}_{\mathrm{n}+1}+\mathrm{a}_{1} \mathrm{Y}_{\mathrm{n}}=0 \quad(\mathrm{k}=1)$
Then

$$
\begin{aligned}
Y_{n+1}= & -a_{1} Y_{n}=(-1)^{2} a_{1}^{2} Y_{n-1} \\
& =\ldots=(-1)^{n} a_{1}{ }^{n} Y_{1} \\
& =\left(-a_{1}\right)^{n+1} Y_{0}
\end{aligned}
$$

where Y_{0} is an arbitrary number (initial value of sequence).
CHECK: $\quad\left(-a_{1}\right)^{n+1} Y_{0}+a_{1}\left(-a_{1}\right)^{n} Y_{0}$

$$
=-a_{1}\left(-a_{1}\right)^{n} Y_{0}+a_{1}\left(-a_{1}\right)^{n} Y_{0}=0
$$

(ii) Higher Order DFE

Notice that if $U_{1}(n)$ and $U_{2}(n)$ are both solutions of the homo equation
(H) $Y_{n+k}+a_{1} Y_{n-1+k}+\ldots+a_{k} Y_{n}=0$ then so is
$\mathrm{C}_{1} \mathrm{U}_{1}(\mathrm{n})+\mathrm{C}_{2} \mathrm{U}_{2}(\mathrm{n})$ where $\mathrm{C}_{1}, \mathrm{C}_{2} \in \mathbb{R}$. Two
solutions of (H) are different iff $\nexists \mathrm{C}$ such that
$\mathrm{U}_{1}(\mathrm{n})=\mathrm{CU}_{2}(\mathrm{n})$

It can be shown that if $\mathrm{U}_{1}(\mathrm{n}), \mathrm{U}_{2}(\mathrm{n}), \ldots, \mathrm{U}_{\mathrm{k}}(\mathrm{n})$
are k different solutions of (H), then the general
solution is

$$
\mathrm{S}_{\mathrm{H}}(\mathrm{n})=\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{C}_{\mathrm{i}} \mathrm{U}_{\mathrm{i}}(\mathrm{n}) \quad \text { where } \mathrm{C}_{\mathrm{i}} \in \mathbb{R}
$$

Finding Different Solutions

$$
Y_{n+2}+a_{1} Y_{n+1}+a_{2} Y_{n}=0
$$

Characteristic polynomial $p(\lambda)=\lambda^{2}+a_{1} \lambda+a_{2}$
Let $\mathrm{p}(\lambda)$ have roots $\lambda_{1} \neq \lambda_{2}\left(\right.$ Real $\left.\lambda_{1}, \lambda_{2}\right)$.
Then $U_{1}(n)=\lambda_{1}{ }^{n} \quad U_{2}(n)=\lambda_{2}{ }^{n}$ are different solutions, since
$\lambda_{1}{ }^{\mathrm{n}+2}+\mathrm{a}_{1} \lambda_{1}{ }^{\mathrm{n}+1}+\mathrm{a}_{2} \lambda_{1}^{\mathrm{n}}=\lambda_{1}{ }^{\mathrm{n}}\left(\lambda_{1}{ }^{2}+\mathrm{a}_{1} \lambda_{1}+\mathrm{a}_{2}\right)=0$
and the same holds for λ_{2} and clearly $\mathrm{U}_{1}(\mathrm{n}) \neq \mathrm{CU}_{2}(\mathrm{n})$ for any $\mathrm{C} \in \mathbb{R}$. Thus, the general solution is $\mathrm{C}_{1} \lambda_{1}{ }^{\mathrm{n}}+\mathrm{C}_{2} \lambda_{2}{ }^{\mathrm{n}}$

Exercise: $\mathrm{F}_{\mathrm{n}+2}=\mathrm{F}_{\mathrm{n}+1}+\mathrm{F}_{\mathrm{n}} \quad \mathrm{F}_{0}=\mathrm{F}_{1}=1$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{n}+2}-\mathrm{F}_{\mathrm{n}+1}-\mathrm{F}_{\mathrm{n}}=0 . \\
& \mathrm{P}(\lambda)=\lambda^{2}-\lambda-1, \text { roots } \frac{1 \pm \sqrt{5}}{2}
\end{aligned}
$$

General Solution:

$$
S_{H}(\mathrm{n})=\mathrm{C}_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{\mathrm{n}}+\mathrm{C}_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{\mathrm{n}}
$$

$\mathrm{F}_{0}=\mathrm{S}_{\mathrm{H}}(0)=1 \Rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}=1$
$\mathrm{F}_{1}=\mathrm{S}_{\mathrm{H}}(1)=1 \Rightarrow \mathrm{C}_{1}\left(\frac{1+\sqrt{5}}{2}\right)+\mathrm{C}_{2}\left(\frac{1-\sqrt{5}}{2}\right)=1$
$\therefore \mathrm{C}_{1}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right) \quad \mathrm{C}_{2}=-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)$
$\therefore \mathrm{F}_{\mathrm{n}}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{\mathrm{n}+1}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{\mathrm{n}+1}$

Since $\frac{1+\sqrt{5}}{2}>1$ and $\left|\frac{1-\sqrt{5}}{2}\right|<1$, for n large
$\mathrm{F}_{\mathrm{n}} \sim \frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{\mathrm{n}+1}$
In fact you can verify that for all n ,

$$
\left|\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{\mathrm{n}+1}\right|<0.5
$$

so that $\mathrm{F}_{\mathrm{n}}=$ "integer nearest" $\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{\mathrm{n}+1}$
(Also notice that $1-\sqrt{5}<0$ so that
$\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}$ is alternately above or below F_{n}.)

Also, $\frac{\mathrm{F}_{\mathrm{n}+1}}{\mathrm{~F}_{\mathrm{n}}} \rightarrow \frac{1+\sqrt{5}}{2}=\tau \quad$ "Golden Mean"

$$
\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{AC}}{\mathrm{CB}}
$$

Suppose the two roots were the same

$$
p(\lambda)=\left(\lambda-\lambda_{1}\right)^{2}
$$

Then $U_{1}(n)=\lambda_{1}{ }^{n}$ is one solution, we need a second. Suppose the second looks like $\lambda_{1}{ }^{n} V(n)$ for some $V(n)$, then we have

$$
\mathrm{V}(\mathrm{n}+2) \lambda_{1}{ }^{\mathrm{n}+2}-2 \lambda_{1} \mathrm{~V}(\mathrm{n}+1) \lambda_{1}{ }^{\mathrm{n}+1+} \lambda_{1}{ }^{2} \mathrm{~V}(\mathrm{n}) \lambda_{1}{ }^{\mathrm{n}}=0
$$

Divide by $\lambda_{1}{ }^{n+2}$ to get

$$
V(n+2)-2 V(n+1)+V(n)=0
$$

By inspection we notice that 2 possible solutions are
$\mathrm{V}(\mathrm{n})=1(!!)$ and $\mathrm{V}(\mathrm{n})=\mathrm{n}$. This latter solution for $\mathrm{V}(\mathrm{n})$ gives a second (different) solution to the original equation.

Thus, the general solution is

$$
\begin{gathered}
\mathrm{S}_{\mathrm{H}}(\mathrm{n})=\mathrm{C}_{1}{ }^{\mathrm{n}} \lambda_{1} \mathrm{C}_{2} \mathrm{n} \lambda_{1}{ }^{\mathrm{n}}=\lambda_{1}{ }^{\mathrm{n}}\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{n}\right) \\
\text { Exercise: } \quad \mathrm{Y}_{\mathrm{n}+2}-4 \mathrm{Y}_{\mathrm{n}+1}+4 \mathrm{Y}_{\mathrm{n}}=0 \\
\mathrm{P}(\lambda)=\lambda^{2}-4 \lambda+4=(\lambda-2)^{2} \\
\\
\mathrm{Y}_{\mathrm{n}}=\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{n}\right) 2^{\mathrm{n}}
\end{gathered}
$$

The final possibility is that the 2 roots are distinct but not real. Then they must be complex conjugates (since the coefficients are real), say $\alpha \pm i \beta$.

The earlier analysis gives

$$
S_{H}(n)=C_{1}(\alpha+i \beta)^{n}+C_{2}(\alpha-i \beta)^{n}
$$

(since we never used the fact that the roots were real explicitly!). What's wrong? NOTHING, except the solution $\mathrm{S}_{\mathrm{H}}(\mathrm{n})$, may not be real. We want real solution for practical problems. What to do?

Recall: $\quad \alpha+i \beta=r[\cos \theta+i \sin \theta]$
where $r=\sqrt{\alpha^{2}+\beta^{2}} \quad \cos \theta=\frac{\alpha}{r} \quad \sin \theta=\frac{\beta}{r}$
De Moivre: $(\alpha+i \beta)^{n}=r^{n}[\cos n \theta+i \sin n \theta]$

$$
(\alpha-i \beta)^{n}=r^{n}[\cos n \theta-i \sin n \theta]
$$

Thus. $\frac{1}{2}\left\{(\alpha+\mathrm{i} \beta)^{\mathrm{n}}+(\alpha-\mathrm{i} \beta)^{\mathrm{n}}\right\}=\mathrm{r}^{\mathrm{n}} \quad \cos \mathrm{n} \theta$

$$
\frac{1}{2 \mathrm{i}}\left\{(\alpha+\mathrm{i} \beta)^{\mathrm{n}}-(\alpha-\mathrm{i} \beta)^{\mathrm{n}}\right\}=\mathrm{r}^{\mathrm{n}} \quad \sin \mathrm{n} \theta
$$

Thus, $r^{n} \cos n \theta$ and $r^{n} \sin n \theta$ are 2 diff. real solutions. General Solution

$$
\mathrm{S}_{\mathrm{H}}(\mathrm{n})=\mathrm{c}_{1} \mathrm{r}^{\mathrm{n}} \cos \mathrm{n} \theta+\mathrm{c}_{2} \mathrm{r}^{\mathrm{n}} \sin \mathrm{n} \theta
$$

Example:

$$
Y_{n+2}=-\left(Y_{n+1}+Y_{n}\right)
$$

$$
\begin{aligned}
& \mathrm{p}(\lambda)=\lambda^{2}+\lambda+1, \operatorname{roots} \frac{1}{2}(-1 \pm \mathrm{i} \sqrt{3}) \\
& r=\left(\frac{1}{4}+\frac{3}{4}\right)^{\frac{1}{2}}=1, \cos \theta=-\frac{1}{2}, \sin \theta=\frac{\sqrt{3}}{2} \\
& \text { so } \theta=\frac{2 \pi}{3} \quad \therefore Y_{n}=c_{1} \cos \frac{2 n \pi}{3}+c_{2} \sin \frac{2 n \pi}{3}
\end{aligned}
$$

Next Step: General for any k. This is relatively easy:

1) if all the k roots are real and distinct, say, $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{k}}$ then general solution is

$$
\mathrm{S}_{\mathrm{H}}(\mathrm{n})=\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{c}_{\mathrm{i}} \lambda_{\mathrm{i}}^{\mathrm{n}}
$$

2) if λ_{i} occurs with multiplicity m_{i}, the distinct solutions associated with it are

$$
\lambda_{\mathrm{i}}^{\mathrm{n}}, \mathrm{n} \lambda_{\mathrm{i}}^{\mathrm{n}}, \mathrm{n}^{2} \lambda_{\mathrm{i}}^{\mathrm{n}}, \ldots, \mathrm{n}_{\mathrm{i}}^{\mathrm{m}}-1 \lambda_{\mathrm{i}}^{\mathrm{n}}
$$

Do this for all k roots
3) whenever a root is complex, its conjugate must also be a root (coeff of polynomial are real!) [Recall that any polynomial $p(\lambda)$ can be written as a product of linear and quadratic factors.] Use the approach described above for this pair of complex conjugate roots.

Exercise $\quad Y_{n+3}-2 Y_{n+2}+Y_{n+1}-2 Y_{n}=0$

$$
\begin{aligned}
& \mathrm{p}(\lambda)=\lambda^{3}-2 \lambda^{2}+\lambda-2=(\lambda-2)\left(\lambda^{2}+1\right) \\
& \text { roots are } 2, \pm i \quad, \quad \mathrm{r}=1 \quad, \quad \theta=\frac{\pi}{2} \\
& \mathrm{Y}_{\mathrm{n}}=\mathrm{c}_{1} 2^{\mathrm{n}}+\mathrm{c}_{2} \cos \frac{\mathrm{n} \pi}{2}+\mathrm{c}_{3} \sin \frac{\mathrm{n} \pi}{2}
\end{aligned}
$$

Exercise

$$
\mathrm{H}_{\mathrm{n}+3}-\mathrm{H}_{\mathrm{n}+2}-\mathrm{H}_{\mathrm{n}}=0, \mathrm{H}_{0}=\mathrm{H}_{1}=\mathrm{H}_{2}=1
$$

Find a "neat" formula for H_{n}.
What about for the recursion:

$$
\mathrm{G}_{\mathrm{n}+3}-\mathrm{G}_{\mathrm{n}+2}+\mathrm{G}_{\mathrm{n}}=0, \mathrm{G}_{0}=\mathrm{G}_{1}=\mathrm{G}_{2}=1
$$

Try to generalize these results for :

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{n}+\mathrm{k}+1}=\mathrm{H}_{\mathrm{n}+\mathrm{k}}+\mathrm{H}_{\mathrm{n}}, \mathrm{H}_{0}=\mathrm{H}_{1}=\ldots=\mathrm{H}_{\mathrm{k}}=1 \\
& \mathrm{G}_{\mathrm{n}+\mathrm{k}+1}=\mathrm{G}_{\mathrm{n}+\mathrm{k}}-\mathrm{G}_{\mathrm{n}}, \mathrm{G}_{0}=\mathrm{G}_{1}=\ldots=\mathrm{G}_{\mathrm{k}}=1
\end{aligned}
$$

Non-Homogeneous Equations

- no general solution, even in case of constant coefficients
- some special cases can be solved, when the function on the RHS is of a certain type, namely,

$$
\begin{aligned}
& \varphi(\mathrm{n})=\text { polynomial in } \mathrm{n} \text {, e.g. } \mathrm{n}^{2}+1 \\
& \varphi(\mathrm{n})=\text { exponomial in } \mathrm{n} \text {, e.g. } 3^{\mathrm{n}} \\
& \varphi(\mathrm{n})=\text { (poly. })(\text { exp. }) \text { e.g. } \mathrm{n}^{2} \cdot 2^{\mathrm{n}}-1
\end{aligned}
$$

- many other special cases can also be solved, but we don't want to get into this (for those interested, see Kelley and Petersen, Difference Equations, Academic Press (1991))

Exercise $1 \quad \mathrm{Y}_{\mathrm{n}+1}-\mathrm{Y}_{\mathrm{n}}=1$

Let's first find one particular solution.
Clearly Y_{n} is not a constant function (since then
$\left.\mathrm{Y}_{\mathrm{n}+1}-\mathrm{Y}_{\mathrm{n}}=0 \forall \mathrm{n}\right)$. Let's try $\mathrm{Y}_{\mathrm{n}}=\mathrm{b}_{1} \mathrm{n}+\mathrm{b}_{0}$, a linear polynomial
$\mathrm{Y}_{\mathrm{n}+1}-\mathrm{Y}_{\mathrm{n}}=\left[\mathrm{b}_{1}(\mathrm{n}+1)+\mathrm{b}_{0}\right]-\left[\mathrm{b}_{1} \mathrm{n}+\mathrm{b}_{0}\right]=\mathrm{b}_{1}$
Thus, $\mathrm{b}_{1}=1$, while b_{0} is arbitrary.
But recall that the solution (general) to the homogeneous related equation is just a constant K . Thus, the general solution to (1) is

$$
Y_{n}=K+n
$$

CHECK: $\mathrm{Y}_{\mathrm{n}+1}-\mathrm{Y}_{\mathrm{n}}=\mathrm{K}+(\mathrm{n}+1)-(\mathrm{K}+\mathrm{n})=1$

Exercise $2 \quad Y_{n+1}-2 Y_{n}=3 n+2$
The solution to the related homogeneous equation $Y_{n+1}-2 Y_{n}=0$ is $K 2^{n}$, where K is determined by the initial value of this sequence.

We need a particular solution for the non-homogeneous equation. Let's try

Then

$$
\sim \tilde{\sim}_{\sim}^{\sim}=b_{0}+b_{1} n
$$

$$
\begin{aligned}
\tilde{Y}_{n}-2 \tilde{Y}_{n}= & b_{0}+b_{1}(n+1)-2\left(b_{0}+b_{1}{ }^{n}\right) \\
& =\left(b_{0+} b_{1}\right)+n\left(-b_{1}\right)
\end{aligned}
$$

$\therefore 3 \mathrm{n}+2=-\mathrm{b}_{1} \mathrm{n}+\left(\mathrm{b}_{1}-\mathrm{b}_{0}\right)$
$\therefore \mathrm{b}_{1}=-3 \quad \mathrm{~b}_{0}=-5$
CHECK:
$[-3(n+1)-5]-2[-3 n-5]=-3 n-8+6 n+10=3 n+2$.

Exercise $3 \quad Y_{n+1}+Y_{n}=4^{n}$
Solution to the related homo equation is $K(-1)^{\mathrm{n}}$.
A particular solution : try

$$
\tilde{\mathrm{Y}}_{\mathrm{n}} \quad=\mathrm{b} .4^{\mathrm{n}}
$$

Then $\tilde{\mathrm{Y}}_{\mathrm{n}+1}+\tilde{\mathrm{Y}}_{\mathrm{n}}=\mathrm{b} \cdot 4^{\mathrm{n}+1}+\mathrm{b} \cdot 4^{\mathrm{n}}=\mathrm{b} \cdot 4^{\mathrm{n}}[4+1]=5 \mathrm{~b} 4^{\mathrm{n}}$
$\therefore \quad 4^{\mathrm{n}}=5 \mathrm{~b} \cdot 4^{\mathrm{n}} \Rightarrow \mathrm{b}=\frac{1}{5}$
CHECK: $\frac{1}{5} 4^{\mathrm{n}+1}+\frac{1}{5} 4^{\mathrm{n}}=\frac{1}{5} 4^{\mathrm{n}}[4+1]=4^{\mathrm{n}}$
General Solution: $\mathrm{Y}_{\mathrm{n}}=\frac{1}{5} 4^{\mathrm{n}}+\mathrm{K}(-1)^{\mathrm{n}}$
Exercise 4

$$
Y_{n+1}-3 Y_{n}=(n+3) \cdot 7^{n}
$$

solution to related homo equation $\mathrm{K} \cdot 3^{\mathrm{n}}$
For a particular solution try:

$$
\begin{aligned}
& \tilde{\mathrm{Y}}_{\mathrm{n}}=\left(\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{n}\right) 7^{\mathrm{n}} \\
& \tilde{\mathrm{Y}}_{\mathrm{n}+1}-3 \tilde{\mathrm{Y}}_{\mathrm{n}}=\left[\left(\mathrm{b}_{0}+\mathrm{b}_{1}(\mathrm{n}+1)\right] 7^{\mathrm{n}+1}-3\left[\mathrm{~b}_{0}+\mathrm{b}_{1} \mathrm{n}\right] 7^{\mathrm{n}}\right. \\
& \therefore \quad(\mathrm{n}+3) 7^{\mathrm{n}}=\left(4 \mathrm{~b}_{0}+7 \mathrm{~b}_{1}\right) 7^{\mathrm{n}}+\mathrm{n} \cdot 4 \mathrm{~b}_{1} \cdot 7^{\mathrm{n}} \\
& \therefore \quad 4 \mathrm{~b}_{1}=1 \quad 4 \mathrm{~b}_{0}+7 \mathrm{~b}_{1}=3 . \\
& \therefore \quad \mathrm{b}_{1}=\frac{1}{4} \quad \mathrm{~b}_{0}=\frac{5}{16}
\end{aligned}
$$

CHECK: $\left[\frac{5}{16}+\frac{1}{4}(\mathrm{n}+1)\right] 7^{\mathrm{n}+1}-3\left[\frac{5}{16}+\frac{1}{4} \mathrm{n}\right] 7^{\mathrm{n}}$

$$
=\quad\left(\frac{35}{16}-\frac{15}{16}+\frac{7}{4}\right) 7^{n}+\left[\frac{7}{4} n-\frac{3}{4} n\right] 7^{n}
$$

$$
=\quad 3 \cdot 7^{\mathrm{n}}+\mathrm{n} \cdot 7^{\mathrm{n}}=(\mathrm{n}+3) 7^{\mathrm{n}}
$$

$$
\therefore \quad Y_{n}=K \cdot 3^{n}+\left(\frac{5}{16}+\frac{1}{4} n\right) 7^{n}
$$

In general, for

$$
Y_{n+1}+a Y_{n}=P_{m}(n) s^{n}
$$

where $P_{m}(n)$ is a pol. of degree m, a non-
homo solution is given by

$$
\begin{array}{ll}
\tilde{\mathrm{Y}}_{\mathrm{n}}=\mathrm{Q}_{\mathrm{m}}(\mathrm{n}) \mathrm{s}^{\mathrm{n}} & \mathrm{~s} \neq-\mathrm{a} \\
\tilde{\mathrm{Y}}_{\mathrm{n}}=\mathrm{nQ}_{\mathrm{m}}(\mathrm{n}) \mathrm{s}^{\mathrm{n}} & \mathrm{~s}=-\mathrm{a}
\end{array}
$$

and the coefficients of the pol. $Q_{m}(n)$ (of deg m) can be determined by subst. \tilde{Y} into above equation (method of undetermined coeff.)

For

$$
Y_{n+2}+a_{1} Y_{n+1}+a_{2} Y_{n}=P_{m}(n) s^{n}
$$

we can show that a particular solution is

$$
\begin{array}{lll}
\tilde{\mathrm{Y}}_{\mathrm{n}}=\mathrm{Q}_{\mathrm{m}}(\mathrm{n}) \mathrm{s}^{\mathrm{n}} & , & \mathrm{~s} \neq \lambda_{1}, \lambda_{2} \\
\tilde{\mathrm{Y}}_{\mathrm{n}}=\mathrm{nQ}_{\mathrm{m}}(\mathrm{n}) \mathrm{s}^{\mathrm{n}} & , & \mathrm{~s}=\lambda_{1}, \neq \lambda_{2} \\
\tilde{\mathrm{Y}}_{\mathrm{n}}=\mathrm{n}^{2} \mathrm{Q}_{\mathrm{m}}(\mathrm{n}) \mathrm{s}^{\mathrm{n}} & , & \mathrm{~s}=\lambda_{1}=\lambda_{2}
\end{array}
$$

where λ_{1}, λ_{2} are the roots of the characteristic pol. of the related HOMO equation.
$\underline{\text { Exercise } 1} \quad \mathrm{Y}_{\mathrm{n}+2}+2 \mathrm{Y}_{\mathrm{n}+1}+\mathrm{Y}_{\mathrm{n}}=(\mathrm{n}+3) 2^{\mathrm{n}}$

Here $\mathrm{P}_{\mathrm{m}}(\mathrm{n})=\mathrm{n}+3, \mathrm{~s}=2$ and the ch. pol. is $\lambda^{2}+2 \lambda+1$, with roots $\lambda_{1}=\lambda_{2}=-1$.
Thus, a particular solution has form

$$
\tilde{\mathrm{Y}}_{\mathrm{n}}=\left(\alpha_{0}+\alpha_{1} \mathrm{n}\right) 2^{\mathrm{n}}
$$

Solve for α_{0}, α_{1} by substitution.
$\left[\alpha_{0}+\alpha_{1}(\mathrm{n}+2)\right] 2^{\mathrm{n}+2}+2\left[\alpha_{0}+\alpha_{1}(\mathrm{n}+1)\right] 2^{\mathrm{n}+1}+\left(\alpha_{0}+\alpha_{1} \mathrm{n}\right) 2^{\mathrm{n}}=(\mathrm{n}+3) 2^{\mathrm{n}}$
$\Rightarrow 4\left(\alpha_{0}+\alpha_{1} \mathrm{n}+2 \alpha_{1}\right)+4\left(\alpha_{0}+\alpha_{1} \mathrm{n}+\alpha_{1}\right)+\alpha_{0}+\alpha_{1} \mathrm{n}=\mathrm{n}+3$
$\Rightarrow 9 \alpha_{0}+12 \alpha_{1}=3, \quad 9 \alpha_{1}=1$
$\therefore \alpha_{1}=\frac{1}{9}, \quad \alpha_{0}=\frac{5}{27}$
Exercise $2 \quad Y_{n+2}+Y_{n+1}+Y_{n}=\alpha^{n}$
Here $\mathrm{P}_{\mathrm{m}}(\mathrm{n})=1, \mathrm{~s}=\alpha$, roots of characteristic polynomial
$\lambda^{2}+\lambda+1$ are $\frac{1}{2}(-1 \pm \mathrm{i} \sqrt{3})$. A particular
solution has form $\mathrm{c} \alpha^{\mathrm{n}}$. Substitution yields

$$
\mathrm{c} \alpha^{\mathrm{n}+2}+\mathrm{c} \alpha^{\mathrm{n}+1}+\mathrm{c} \alpha^{\mathrm{n}}=\alpha^{\mathrm{n}}
$$

Assume $\alpha \neq 0$. Then $\mathrm{c} \alpha^{2}+\mathrm{c} \alpha+\mathrm{c}=1$ or $\mathrm{c}\left(\alpha^{2}+\alpha+1\right)=1$. If α not a root of the ch. Pol. then $\mathrm{c}=\frac{1}{\alpha^{2}+\alpha+1}$. Since the roots of the ch. pol. are complex, if $\alpha \in \mathbb{R}$ we know that α is not a root so we're done.

Exercise 3. $\quad \mathrm{Y}_{\mathrm{n}+2}+2 \mathrm{Y}_{\mathrm{n}+1+} \mathrm{Y}_{\mathrm{n}}=(-1)^{\mathrm{n}}$
Like Exercise 1 above. Try $\tilde{\mathrm{Y}}_{\mathrm{n}}=\mathrm{cn}^{2}(-1)^{\mathrm{n}}$

$$
\begin{aligned}
& (-1)^{\mathrm{n}+2} \mathrm{c}(\mathrm{n}+2)^{2}+2(-1)^{\mathrm{n}+1} \mathrm{c}(\mathrm{n}+1)^{2}+(-1)^{\mathrm{n}} \mathrm{cn}^{2} \\
& \quad=(-1)^{\mathrm{n}} \mathrm{c}\left[\mathrm{n}^{2}+4 \mathrm{n}+4-2 \mathrm{n}^{2}-4 \mathrm{n}-2+\mathrm{n}^{2}\right] \\
& \quad=(-1)^{\mathrm{n}} 2 \mathrm{c} \\
& \therefore \quad 2 \mathrm{c}=1 \Rightarrow \mathrm{c}=\frac{1}{2}
\end{aligned}
$$

