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Recurrence Relations

Tower of Hanoi

 Let Tn be the minimum number of moves required.

T0 = 0, T1 = 1 7 Initial Conditions
* Tn = 2 Tn - 1 + 1 n $ 2

Tn is a sequence (fn. on integers). Solve for Tn? 

* is a recurrence, difference equation (linear, non-homogeneous, constant coefficient)

Set U0 = T0 + 1 , Un = Tn + 1 n $ 1
Then Un = Tn + 1 = 2Tn - 1 + 1 + 1 = 2(Tn - 1 + 1)

so    Un = 2Un - 1

 = 22Un - 2 = ÿ = 2n - 1U1 = 2n

ˆ     Tn = 2n - 1
Suppose an + 1 = 2an + n , a0 = 1

Let Un = an + n , U0 = 1

Then Un + 1 = an + 1 + (n + 1) = 2an + n + (n + 1)

 = 2(an + n) + 1
      
        = 2 Un + 1

Thus, Un is like the Tn in the preceding example, except 

U0 = 1 while T0 = 0.  In fact, since T1 = 1, the 

{Un} is just {Tn} “advanced one step”, 

i.e. Un = Tn + 1 = 2n + 1 - 1 

ˆ an = 2n + 1 - 1 - n = 2n + 1 - (n + 1)

Notice how the solution of one recurrence often can be reduced to the solution of a simpler one.
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Suppose the recursion were

Ln = Ln - 1 + n , L0 = 1

Then we can “expand out” as follows:

Ln = Ln - 2 + (n - 1) + n

= Ln - 3 + (n - 2) + (n - 1) + n
=
= L0 + 1 + 2 + þ + n

= 1 + 
n(n%1)

2

This describes the number of regions formed by n intersecting lines in the plane, no 2 parallel and
no 3  intersect in a point (PIZZA CUTTING PROBLEM).

General Problem 
(*) F(Yn + k,Yn + k - 1 , þ , Yn) = 0

Difference equation of order k(DFE)
Assume F linear, constant coefficients

(**) Yn + k + a1 Yn + k - 1 +  þ + akYn - n (n) = 0 

If n(n) = 0, Homogeneous; otherwise non-Homo.  

Note the strong analogy with D.E.!
Suppose that Yn = S1(n) is a “solution”. Then

S1(n + k) + a1S1 (n + k - 1) + þ + akS1(n) -n(n)=0 

If S2(n) is any other solution, then
[S1 (n + k)  - S2(n + k)] + a1 [S1( n + k - 1)  - S2(n+ k - 1)] + ÿ + ak[S1(n) - S2(n)] = 0
It follows that S1(n) - S2(n) is a solution of 
the Homogeneous equation related to (**) 
(obtained by (ignoring n(n)).  

What is the “General Solution” of a DFE? 
It’s a family of functions, usually characterized by a parameter(s) which can take on different
values.
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From the above, the general solution for (**) is just the general solution to the related HOMO
equation plus any particular solution to the NON-HOMO equation (**), i.e.

SNH(n) = SH(n) + Sp(n)

where Sp(n) is any solution of (**), SH(n) is general solution of related HOMO and SNH(n) is
general solution of (**)

Solving HOMO
(i) First Order DFE

Suppose Yn + 1 + a1Yn = 0 (k = 1)

Then Yn + 1 = -a1Yn = (-1)2 a1
2Yn - 1

= ÿ = (-1)n a1
nY1

= (-a1)
n + 1Y0

where Y0 is an arbitrary number (initial value of sequence).

CHECK: (-a1)
n + 1Y0 + a1(-a1)

nY0

= -a1(-a1)
nY0 + a1(-a1)

nY0 = 0

(ii) Higher Order DFE

Notice that if U1 (n) and U2(n) are both solutions of the homo equation

(H) Yn+k + a1Yn - 1 + k + ÿ + akYn = 0 then so is 

C1 U1 (n) + C2 U2(n) where C1, C2 0 ú. Two 

solutions of (H) are different iff ò C such that 

U1(n) = CU2(n)
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It can be shown that if U1(n), U2(n), ÿ , Uk(n) 

are k different solutions of (H), then the general 

solution is 

SH(n) =        where Ci 0  ú.j
k

i'1

CiUi (n)

Finding Different Solutions

Yn + 2 + a1Yn + 1 + a2Yn = 0

Characteristic polynomial p(8) = 82 + a18 + a2

Let p(8) have roots 81 … 82 (Real 81,82).  

Then U1(n) = 81
n U2(n) = 82

n are different solutions, since

81
n + 2 + a181

n + 1 + a281
n = 81

n (81
2 + a181 +a2) = 0

     
and the same holds for 82 and clearly U1(n) … CU2(n) for any C 0 ú.  Thus, the general solution is
C181

n + C282
n

Exercise:    Fn + 2 = Fn + 1 + Fn F0 = F1 = 1

Fn + 2 - Fn + 1 - Fn = 0.

P(8) = 82 - 8 - 1 , roots 
1± 5

2

General Solution:

SH (n) = C1  + C2 
1% 5

2

n
1& 5

2

n

F0 = SH (0) = 1 Y C1 + C2 = 1

F1 = SH (1) = 1 Y C1  + C2  = 1
1% 5

2
1& 5

2

ˆ C1 = C2 = -  
1

5

1% 5
2

1

5

1& 5
2
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ˆ Fn =  - 
1

5

1% 5
2

n%1
1

5

1& 5
2

n%1

Since   > 1 and   < 1 , for n large 
1% 5

2
/000 /000

1& 5
2

Fn -  
1

5

1% 5
2

n%1

In fact you can verify that for all n,

 < 0.5/0000
/0000

1

5

1& 5
2

n%1

so that Fn = “integer nearest”   
1

5

1% 5
2

n%1

(Also notice that 1 -  < 0 so that  5

 is alternately above or below Fn.)
1

5

1% 5
2

n%1

Also,   P  = J “Golden Mean”
Fn%1

Fn

1% 5
2

AB
AC

'
AC
CB

Suppose the two roots were the same
p(8) = (8 - 81)

2

Then U1(n) = 81
n is one solution, we need a second.  Suppose the second looks like 81

n V(n) for
some V(n), then we have 
 
V(n + 2) 81

n + 2 - 281 V(n + 1) 81
n + 1 +81

2 V(n)81
n = 0

Divide by 81
n + 2 to get

V(n + 2) - 2 V(n + 1) + V(n) = 0
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By inspection we notice that 2 possible solutions are 
V(n) = 1 (!!) and V(n) = n.  This latter solution for V(n) gives a second (different) solution to the
original equation.  

Thus, the general solution is
SH (n) =C1

n81 C2n81
n

= 81
n(C1 + C2n)

Exercise: Yn + 2 - 4Yn + 1 + 4Yn = 0

P(8) = 82 - 48 + 4 = (8 - 2)2

Yn = (C1 + C2n)2n

The final possibility is that the 2 roots are distinct but not real.  Then they must be complex
conjugates (since the coefficients are real), say " ± i$.

The earlier analysis gives

SH(n) = C1(" + i$)n + C2 (" - i$)n

(since we never used the fact that the roots were real explicitly!).  What’s wrong?  NOTHING,
except the solution SH(n) , may not be real.  We want real solution for practical problems.  What
to do?

Recall: " + i$ = r[cos2 + i sin2]

where r = cos 2 = sin 2 =  "2%$2 "
r

$
r

De Moivre: (" + i$)n = rn[cos n2 + i sin n2]

 (" - i$)n = rn[cos n2 - i sin n2]

Thus. {(" + i$)n + (" - i$)n} = rn  cos n21
2

  
       {(" + i$)n - (" - i$)n} = rn  sin  n21

2i

Thus, rn cos n2 and rn sin n2 are 2 diff. real solutions.  General Solution

SH(n) = c1r
ncos n2 + c2r

n sin n2
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Example: Yn + 2 = - (Yn + 1 + Yn)

p(8) = 82 + 8 + 1 , roots 
1
2
&1 ± i 3

 r '
1
4

%
3
4

1
2 '1 , cos2 ' &

1
2

, sin2 '
3

2

so  2 = ˆ Yn = c1
2B
3

cos 2nB
3

% c2 sin 2nB
3

Next Step: General for any k. This is relatively easy:

1) if all the k roots are real and distinct, say, 81,82, ÿ , 8k then general solution is

SH(n) = j
k

i'1

ci8
n
i

2) if  8i occurs with multiplicity mi, the distinct solutions associated with it are 

8n
i
, n8n

i
,n 28n

i
,ÿ ,nm&1

i
8n

i

Do this for all k roots

3) whenever a root is complex, its conjugate must also be a root (coeff of polynomial are real!)
[Recall that any polynomial p(8) can be written as a product of linear and quadratic factors.]
Use the approach described above for this pair of complex conjugate roots.

Exercise Yn + 3 - 2Yn + 2 + Yn + 1 - 2Yn = 0

p(8) = 83 - 282 + 8 - 2 = (8 - 2)(82 + 1)

roots are 2, ± i     ,   r = 1   ,   2 = 
B
2

Yn = c12
n + c2  cos nB

2
% c3 sin nB

2

Exercise Hn + 3 - Hn + 2 - Hn = 0 , H0 = H1 = H2 = 1

Find a “neat” formula for Hn.

What about for the recursion:

Gn + 3 - Gn + 2 + Gn = 0 , G0 = G1 = G2 = 1
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Try to generalize these results for :

Hn + k + 1 = Hn + k + Hn   , H0 = H1 = ÿ = Hk = 1
Gn + k + 1 = Gn + k - Gn , G0 = G1 = ÿ = Gk = 1

Non-Homogeneous Equations

C no general solution, even in case of constant coefficients

C some special cases can be solved, when the function on the RHS is of a certain type, namely,

n(n) = polynomial in n, e.g. n2 + 1
n(n) = exponomial in n, e.g. 3n

n(n) = (poly.) (exp.), e.g. n2@2n - 1

C many other special cases can also be solved, but we don’t want to get into this (for those
interested, see Kelley and Petersen, Difference Equations, Academic Press (1991))

Exercise 1 Yn + 1 - Yn = 1

Let’s first find one particular solution.
Clearly Yn is not a constant function (since then

Yn + 1 - Yn = 0  œn).  Let’s try Yn = b1n + b0 , a linear polynomial
  

Yn + 1 - Yn = [b1(n + 1) + b0] - [b1n + b0] = b1

Thus, b1 = 1, while b0 is arbitrary.
But recall that the solution (general) to the homogeneous related equation is just a constant K.  Thus,
the general solution to (1) is

Yn = K + n

CHECK: Yn + 1 - Yn = K + (n + 1) - (K + n) = 1 

Exercise 2 Yn + 1 - 2Yn = 3n + 2
The solution to the related homogeneous equation 
Yn + 1 - 2Yn = 0 is K2n, where K is determined by the initial value of this sequence.

We need a particular solution for the non-homogeneous equation.  Let’s try 
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n = b0 + b1nY
-

Then 

n - 2 n = b0 + b1 (n + 1) - 2 (b0 + b1
n)Y

-
Y
-

 = (b0 + b1) + n (-b1)
ˆ 3n + 2 = -b1n + (b1 - b0)
ˆ b1 = -3 b0 = -5

CHECK:
[-3(n + 1) - 5] - 2 [-3n -5] = -3n - 8 + 6n + 10 = 3n + 2.

Exercise 3  Yn + 1 + Yn = 4n

Solution to the related homo equation is K(-1)n.
A particular solution : try

n  = b.4nY
-

Then n + 1 + n = b@4n + 1 + b@4n = b@4n [4 + 1]  = 5b4nY
-

Y
-

ˆ 4n = 5b@4n Y b = 
1
5

CHECK:   4n + 1 + 4n = 4n[4 + 1] = 4n1
5

1
5

1
5

General Solution: Yn =   4n + K (-1)n1
5

Exercise 4 Yn + 1 - 3Yn = (n + 3)@7n

solution to related homo equation K @ 3n

For a particular solution try:

n = (b0 + b1 n) 7nY
-

n + 1 - 3 n = [(b0 + b1(n + 1)]7n + 1 - 3[b0 + b1n]7nY
-

Y
-

ˆ   (n + 3)7n = (4b0 + 7b1)7
n + n@4b1@7

n

ˆ 4b1 = 1 4b0 + 7b1 = 3.

ˆ b1 = b0 = 
1
4

5
16
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CHECK:   
5
16

%
1
4

(n % 1) 7n%1 & 3
5

16
%

1
4

n 7n

 
=  

35
16

&
15
16

%
7
4

7n %
7
4

n &
3
4

n 7n

= 3@7n + n@7n = (n + 3)7n

ˆ Yn = K@3n +  
5

16
%

1
4

n 7n

In general, for 

Yn + 1 + aYn = Pm (n) sn

where Pm(n) is a pol. of degree m, a non-

homo solution is given by

n = Qm(n)sn s … -aY
-

n = nQm(n)sn s = -aY
-

and the coefficients of the pol. Qm(n) (of deg m) can be determined by subst.  Y
-

into above equation (method of undetermined coeff.)

For Yn + 2 + a1Yn + 1 + a2Yn = Pm(n) sn

we can show that a particular solution is 

n = Qm(n)sn , s …  81,82Y
-

n = nQm(n)sn , s =  81,…82Y
-

n = n2Qm(n)sn , s =  81=82Y
-

where 81,82 are the roots of the characteristic pol. of the related HOMO equation.

Exercise 1 Yn + 2 + 2Yn +1 +Yn = (n + 3)2n
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Here Pm(n) = n + 3 , s = 2 and the ch. pol. is 82 + 28 + 1, with roots 81 = 82 = -1.
Thus, a particular solution has form

 n = ("0 + "1n)2nY
-

Solve for "0, "1by substitution.

["0 + "1 (n + 2)]2n + 2 + 2["0 + "1(n + 1)]2n + 1 + ("0 + "1n)2n =(n + 3)2n

Y4("0 + "1n + 2"1) + 4("0 + "1n + "1) + "0 + "1n = n + 3

Y9"0 + 12"1 = 3 , 9"1 = 1

ˆ"1 =   , "0 =  
1
9

5
27

Exercise 2 Yn+2 + Yn + 1 + Yn = "n

Here Pm(n) = 1 , s = " , roots of characteristic polynomial

82 + 8 + 1 are .  A particular
1
2
&1 ± i 3

solution has form c"n.  Substitution yields

c"n + 2 + c"n +1 + c"n = "n

Assume " … 0.  Then c"2 + c" + c = 1 or c("2 + " + 1) = 1.  If " not a root of the ch. Pol. 

then c = .  Since the roots of the ch. pol. are 
1

"2 % " % 1

complex, if  " 0 ú we know that " is not a root so we’re done.

Exercise 3.  Yn + 2 + 2Yn + 1 + Yn = (-1)n

Like Exercise 1 above. Try  n = cn2 (-1)n Y
-

(-1)n + 2c (n + 2)2 + 2(-1)n + 1c(n + 1)2 + (-1)n cn2 
 
= (-1)nc[n2 + 4n + 4 - 2n2 - 4n - 2 + n2]

= (-1)n 2c

ˆ 2c = 1 Y c = 
1
2


