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Recurrence Relations

Tower of Hanoi

LetT, be the minimum number of moves required.
T,=0,T,=1 - Initial Conditions
* T,=2T,.,+1 n>2

T, isasequence (fn. on integers). Solve for T,?

* isarecurrence, difference equation (linear, non-homogeneous, constant coefficient)

Set  U,=T,+1, U,=T,+1 n=1
ThenU, =T, +1=2T, ,+1+1=2(T, ,+1)

SO u,=20, ,

= U, ,=.=2"W,=2"
T,=2"-1
Suppose &+1=28,tN, gp=1
LetU,=a,+n, Uy =1

ThenU,,;, =a,.,,+(n+1)=23+n+(n+1)
=2(@,tn)+1
=2U,+1
Thus, U, islike the T, in the preceding example, except
U,=1whileT,=0. Infact, sinceT, =1, the
{U.} isjust {T,} “advanced one step”,
ieU,=T,,,=2""*-1
a,=2""'-1-n=2""'-(n+1)
Notice how the solution of one recurrence often can be reduced to the solution of asimpler one.
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Suppose the recursion were

Then we can “expand out” as follows:
I-n:Ln—Z-*_(n':I-)-'-rl

L,.zg+(n-2)+(n-1)+n

Lo+1+2+-+n

1+ n(n+1)

This describes the number of regions formed by n intersecting linesin the plane, no 2 parallel and
no 3 intersect in apoint (PIZZA CUTTING PROBLEM).

General Problem
(*) I:(Yn+k’Yn+k—1 1 T Yn) = O

Difference equation of order k(DFE)
Assume F linear, constant coefficients

(**) Yn+k + & Yn+k-1 + ot 6\(Yn -Q (n) =0
If @(n) = 0, Homogeneous; otherwise non-Homo.

Note the strong analogy with D.E.!
Supposethat Y, = S;(n) isa*“solution”. Then

S(n+k) +aS, (n+k-1)+-+aS(n)-¢(n)=0

If S,(n) isany other solution, then

[S,(n+K) -S(n+K)] +a[S(n+k-1) -S(ntk-1)]+..+a[S(n)-S,n)] =0
It follows that S;(n) - S,(n) isasolution of

the Homogeneous equation related to (**)

(obtained by (ignoring ¢@(n)).

What is the “General Solution” of a DFE?

It'safamily of functions, usually characterized by a parameter(s) which can take on different
values.
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From the above, the general solution for (**) isjust the general solution to the related HOMO
eguation plus any particular solution to the NON-HOMO equation (**), i.e.

Sun() = Sy(n) + S,(n)
where S,(n) is any solution of (**), S,(n) is genera solution of related HOMO and S4(n) is
general solution of (**)

SolvingHOMO
0] First Order DFE

Suppose Y...+aY, =0 (k=1)
Then Yoo =-aY, = (-1*a%,
=.=(-D)"a"Y,
= (-a)"" Y,
where Y, is an arbitrary number (initial value of sequence).
CHECK: (-a)"" Y, + a(-a)"Y,

=-a(-a)"Y,+a(-a)"Y,=0

(i) Higher Order DFE

Notice that if U, (n) and U,(n) are both solutions of the homo equation
HY taY, . t..+aY,=0thensois

C, U, (n) + C,U,(n) whereC,, C, € R. Two

solutions of (H) are different iff 2 C such that

U,(n) = CU,n)
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It can be shown that if U,(n), U,(n), ..., U,(n)

are k different solutions of (H), then the general

solution is

k
CU, (n) whereC e R.
i=1

Su(n) =

Finding Differ ent Solutions

YoiotaY,, +&Y,=0
Characteristic polynomial p(A) = A2+ aA + a,
Let p(A) haveroots A, # A, (Red A,,A,).
ThenU,(n) = A," U,(n) = A" are different solutions, since
AT aA" t +ald = A" (A2 +al, +a) =0

and the same holds for A, and clearly U,(n) # CU,(n) for any C € R. Thus, the genera solution is
Cl)‘ln + CZ)LZn

Exercise F,,,=F,,,+F, Fo=F=1
I:n+2' I:n+1' I:nzo'
P(A) = A%- A - 1,rootsli7‘/g

General Solution:

&(n)=c1( 1*ﬁ)n+cz(1‘—ﬁ)n
2

2

Fo=5,(0)=1=-C,+C,=1

F1=$4(1)=1=>Cl( 1+2‘/§) +C2( 1_‘/5) =1
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...F:i(]jr\/g)nd-i(l_—\/g)ml
2

EA V5
Since 1+T‘/§>1and 1_7‘/3 <1, fornlarge
n+1
- i(l_ﬁ)
n \/g 2
In fact you can verify that for al n,
n+1
1 (1_5) <05
/5 2
n+1
so that F, = “integer nearest” N +‘/§)
/5 2
(Also notice that 1 - /5 < 0 so that
n+1
1 ( 1+—\/§) is dternately above or below F,.)
/5 2
F
Also, —:1- 1+/5 =t  “Golden Mean”
F, 2
AB _ AC
AC CB

Suppose the two roots were the same
p(h) = (A - 1)
Then U,(n) = A," is one solution, we need a second. Suppose the second looks like A," V(n) for
some V(n), then we have
V(in+2) A,""2-20,V(n+ 1) A" A2V(N)A,"=0
Divide by A,"*?to get
Vin+2)-2V(n+1)+V(n)=0
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By inspection we notice that 2 possible solutions are
V(n)=1(!") and V(n) =n. Thislatter solution for V(n) gives a second (different) solution to the
original equation.
Thus, the general solution is

Sy (n) =C,"A, Cni,"

=1"(C, +C,n)

Exercise: Yoi2-4Y ., +4Y, =0

P(A) =A%-4L+4=(A-2)7?

Y,=(C, +Cn)2’

Thefinal possibility isthat the 2 roots are distinct but not real. Then they must be complex
conjugates (since the coefficients are real), say o * if.

The earlier anaysis gives

Su(n) = Cy(a +iP)" + C, (e - iP)"
(since we never used the fact that the roots were real explicitly!). What’swrong? NOTHING,
except the solution S,(n) , may not bereal. We want real solution for practical problems. What
to do?
Recall: o +ip =r[cosO +i sn0d]
wherer = \/ﬁ cosO = % sno = %
De Moaivre: (o +if)" =r"[cosnO +i snnd]

(o -ip)"=r"[cosnO - i sinno]

Thus. %{(oc +iB)"+ (@- i)Y =" cosnd
%{(oﬁiﬁ)“-(a-iﬁ)”} = sn nd

Thus, r" cosnO and r" sin nO are 2 diff. rea solutions. Genera Solution
S,(n) =c,r"cosnd + ¢ r"snnd
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Examgle: Yn+2:' (Yn+1+Yn)

1
i+%)2:1,0056:—% : sinG:E

V3

I+

p(A) =A%+ A+ 1, roots %(—1

2

2_; +Y,=c,cos 2" . c,sn Z_;m

Next Step: General for any k. Thisisrelatively easy:

1)

2)

3)

if all thek rootsarerea and distinct, say, A;,A,, ..., A, then general solution is

k
S(M=Y oAl

i=1
if A; occurs with multiplicity m,, the distinct solutions associated with it are

A?,nk?,nzk?,...,nmi_lk?

Do thisfor al k roots
whenever aroot is complex, its conjugate must also be aroot (coeff of polynomial are real!)

[Recdll that any polynomia p(A) can be written as a product of linear and quadratic factors.]
Use the approach described above for this pair of complex conjugate roots.

EXGrCi% Yn+3'2Yn+2+Yn+1'2Yn:0

P(A) = A3- 202+ 2 -2= (A - 2)(A2+ 1)

rootsare2, =i , r=1 , 6:%
Yn:ch“+czcosn=27T + Cy sinn=27T

EXHC'% Hn+3'Hn+2'Hn:01HO:H1:H2:1

Find a“neat” formulafor H,.

Wheat about for the recursion:

Gri3-Gni2+tG,=0,G,=G, =G, =1
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Try to generalize these results for :

Hoiws1=HpotH, JHyp=H;=..=H=1
Gn+k+1:Gn+k'Gn’Gozelz---:Gk:

Non-Homogeneous Equations

e nogenera solution, even in case of constant coefficients
* some special cases can be solved, when the function on the RHS is of a certain type, namely,
@(n) = polynomia inn, eg. i + 1
¢(n) = exponomid inn, eg. 3"
@(n) = (poly.) (exp.), eg. n>2"- 1
e many other special cases can also be solved, but we don’t want to get into this (for those
interested, see Kelley and Petersen, Difference Equations, Academic Press (1991))

Exercise 1 Yoer-Yo=1

Let’sfirst find one particular solution.
Clearly Y, is not a constant function (since then

Yoi1-Y,=0 Vn). Let'stry Y, =Db,n+Db,, alinear polynomia
Yor- Yo=[by(n+ 1) + b -[bn+by] =b,
Thus, b, = 1, while b, is arbitrary.
But recall that the solution (general) to the homogeneous related equation is just a constant K. Thus,
the general solutionto (1) is
Y,=K+n
CHECK:Y,,;-Y,=K+(n+1)-(K+n=1
Exercise 2 Yoe1-2Y,=3n+2
The solution to the related homogeneous equation

Y..1-2Y,=0isK2" whereK isdetermined by the initial value of this sequence.

We need a particular solution for the non-homogeneous equation. Let’stry
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Yn =b,+byn
Then ~ ~
Y.-2Y =, +b, (n+1)-2 (b, + by)
= (by.b) + n(-by)
~3n+2=-bn+ (b, - by
~b=3  b=-5

CHECK:
[-3(n+1)-5]-2[-3n-5]=-3n-8+6n+10=3n+2.
Exercise 3 Yy 7Y, =4

Solution to the related homo equation is K(-1)".
A particular solution : try

Y, =ba"
ThenY,,,+Y,=b4"* 1+ b4"=p4"[4+ 1] =5b4"

4 =5h4 = b=

gl

CHECK: L a4+ tan= Lapasqy=a
5 5 5

General Solution: Y, = % A+ K (1)

Exercise4 Yii1-3Y,=(n+3)7"
solution to related homo equation K - 3"

For a particular solution try:

Vo= (bt by n) 7"

Voe1-3Y, = [(by+ by(n + )]7"* - 3[bg + byn] 7"

(n + 3)7" = (4b, + 7Tb) 7" + n-4b, 7"

4b, =1 4p, + 7h, = 3.
1 5

b, == ==

Yoy ° 16
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CHECK: |= + L+l - 3= + Ln|m
6 4 16

E—E‘FZ "+ Zn—§n7”
16 16 4 4 4

37"+n7"=(n+3)7"

In generad, for
Y,.,taYy,=P,(n) s
where P, (n) isapol. of degree m, anon-
homo solution is given by
Y, =Q,(n)s" s+-a
Y, =nQ,(n)s" s=-a
and the coefficients of the pol. Q,,(n) (of deg m) can be determined by subst. Y

into above equation (method of undetermined coeff.)

For Yn+2+aiYn+1+azYn: m(n)Sn
we can show that a particular solution is

Y, = Qun)s’ , s Ak,
\N(n =nQ,,(n)s" , S= Ay #A,
Y, = Q. (ns’ , s= A=A,

where A,,A, are the roots of the characteristic pol. of the related HOMO equation.

Exercisel  Y,,,+2Y,,tY,=(n+3)2"
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Here P, (nN) =n+ 3, s=2andthech. pol.is A%+ 2\ + 1, withroots A, = A, = -1.

Thus, a particular solution has form

Y, = (0g + tyn)2"

Solve for «,, o,by substitution.

[otg + 00y (N+2)]272 + 2[ 0t + oy (N + 1)]2"7 + (et + )27 =(n + 3)2"
=40y + o N+ 200)) + Aoy + N+ o) gt on=n+3

=90, + 120, = 3, 9, =1

=X gz 2

I R Y

Exercise2 Y, ,+Y, ., tY,=a"

HereP (n) =1, s=«a, roots of characteristic polynomial
A2+ A+ lae %(—1 +iy/3). A paticular
solution has form ca". Substitution yields

co"t 2+ co"tt + co"= "

Spring 1999

Assumec # 0. Thence?+ca+c=1orc(e?+ a + 1) =1. If « not aroot of the ch. Pal.

thenc= 1 . Since the roots of the ch. pol. are

o + o + 1
complex, if « € R we know that « is not aroot so we're done.
Exercise3. Y,.,+2Y,,..Y,=(1"
Like Exercise 1 above. Try Y, = cn? (-1)"
(-D)""Zc(n+2)7 + 2(-1)""te(n + 1)* + (-1)" er?
=DM +4n+4-2n*-4n- 2+ 7
=(-1)"2c

2c=l1l=c=

N[
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