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Subsets of a Set [n]
1) How many k-subsets of [n] are there?

k ≥ 0, integer

n = 4 12 13 14
k = 2 34 23 24

let x be the # of k-subsets
Each such subset can be arranged in k! ways.
Thus, x⋅k! counts the number of ordered
 k-subsets of [n], which is just nk

∴∴  x ⋅ k! = nk

⇒ x = 
kn

k!
 ≡ 

n

k









What is 
n

0







 ?

0

0







 ?  

3

4







 ?

 

Notice:  
n +  1

k







 = 

n

k







  +

n

k -  1









(This is called the triangle formula for binomial coefficients.)
Fix your eye on the element. ( n + 1):
(n + 1) is in or out of any subset

n

k







 counts all k-subsets where (n + 1) is OUT (because these are just k-subsets of [n]).

n

k -  1







 counts all k-subsets where (n + 1) is in.

By the SUM rule, this counts all k-subsets of [n + 1].
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"Algebraic" Proof of the above identity:

n

k







 + 

n

k -  1







  = 

n!

k!(n -  k)!
 + 

n!

(k -  1)!(n -  k +  1)!

             =

           

           =
n!

(k -  1)!(n -  k)!
    

n +  1

k(n -  k +  1)











=  
(n +  1)!

k!(n -  k +  1)!
 ≡  

n +  1

k









Note:
n

k







  =

n

n -  k









Each choice of a k-subset leaves behind an (n - k) subset.
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Graphs of Binomial Coefficients

f2(n) = 
n

2









f3(n) = 
n

3









g2(k) = 
2

k









g3(k) = 
3

k
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f2 (n) = 
n

2







  = n(n -  1)

2

f3 (n) = 
n

3







  = 

1

6
 n(n - 1) (n - 2)

g3(r) = 
3

r









g6(r) = 
6

r









Unimodal:up/down
Single or Double maximum



S. Tanny MAT 344F Fall, 1997

Array of Binomial Coefficients

n

0







 = 1 n ≥ 0

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7   1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 101

56 ⋅ 36 ⋅ 210 = 28 ⋅ 120 ⋅ 126 = 42360   (Hexagon Property)

35 ⋅ 6 ⋅ 10 = 20 ⋅ 21 ⋅ 5

(i)
j=1

n

 j =  
n+1

2∑ 







(1,2) (1,3) (1,4), ..............(1, n + 1) n
                       (2,3) (2,4) ............... (2, n + 1) n - 1
                       (3,4) ...............         (3, n + 1) n - 2

(ii)
0 i n

 
i

k
 =  

n+1

k+1≤ ≤
∑ 
















Note 
0 i n i=k

n

 
i

k
   

i

k≤ ≤
∑ ∑






 ≡
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= 
k

k
 +  

k +  1

k
 +  _  +  

k +  (n -  k)

k

























"Combinatorial argument" goes like this:
RHS counts all ( k + 1) - subsets of [n + 1].

Suppose (n + 1) is in such a subset.  Remaining elements chosen in 
n

k







 ways.

Suppose ( n + 1) not in; now suppose n is in. Remaining elements chosen in 
n -  1

k







  ways.

And so on.  Use SUM RULE since these are "or" possibilities.  This counts all ways to get (k + 1)
- subset, and is just LHS.

Exercise: Prove using triangle formula for binomial coefficients.

(iii)
n

k
 =  

n

k
 

n -  1

k -  1
 ,  k _  0

























This is called the absorption identity

A more general identify: k 
n

k
 =  n

n -  1

k -  1

















(Holds for k = 0)

Exercise: Show that (n -  k)  
n

k
 =  n 

n -  1

k

















(Hint: multiply both sides by (n - k), simplify right hand side)

(iv)
k  n

m +  k

k
 =  

n +  m +  1

n≤
∑



















   = (-1)k 
n(n +  1)  _  (n +  k -  1)

k!
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 =  (-  1)  
n +  k -  1

k
  (-  1)  

n
k!

k k
k






 ≡

(vi) Eq is missing, should be sum (0 to n) of k to the m lower equals (n+1) to the (m+1) lower
all divided by (m+1)

Probabilistic Notions

Sample space: set of possible outcomes
Event - subset  of the set of outcomes (subset of sample space)

Prob (Event) = “Size of Event”/”Size of Sample Space”

DISCRETE CASE
"Size of Sample Space" = total no. of possible outcomes
"Size of Event" = outcomes corresponding to event.
Example: Toss a fair coin 5 times.  What is prob. of precisely 2 heads?
Solution: Sample space is all 5-sequences of H, T.  Those with exactly 2 H, 3 T constitute the
event we seek.

Sample space has 25 = 32    5-sequences.

Looks a little like  x  dx =  
x

m +  1
m

m + 1

∫
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Event has 
5

2







 5-sequences (just choose the 2 places for the H).

Prob =  
10

32
 =  

5

16

NOTE:  All 5-sequences are equi-probable.

Example:  Choose 2 numbers from {0,1,2, … , 9}
(repetition allowed).  Find prob that sum = 10.
Solution:  There 10 × 10 = 100  2-tuples. Of these, precisely 9 have the required property

{(1,9), (2,8), … , (5,5),(6,4), … , (9,1)} so 9/100.

Prob that E does not occur = 1 - P(E) = P(Ec)

NOTE: S = E ∪ Ec , E ∩ Ec = ∅.
1 = P(S) = P(E) + P(Ec).
Prob that E or F occurs is P(E ∪ F)
Prob that E and F occurs is P(E ∩ F)
If E ∩ F = ∅, P(E ∪ F) = P(E) + P(F)
In general, P(E ∪ F) = P(E) + P(F) - P(E ∩ F)

Distribution and Occupancy Problems (“Balls in Boxes”)

General idea is to count the number of ways to place r balls into n boxes.

The catch is that the balls and boxes may be distinct (distinguishable) or nondistinct (you can’t
tell them part).  Further, in each case, there are 3 possible restrictions on the number of balls in
each box:
(i)  as many balls as you like (including none)
(ii)  no more than 1 ball in each box
(iii) no box can be empty (that is, at least 1 ball    in each box)
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a) # of ways to place r distinct balls
in n distinct boxes:

(i) as many balls as you like in each
(ii) no more than 1 ball in each
(iii) no box can be empty

(≡ at least 1 ball in each)

(i) n × n × n … × n = nr

________________

r factors

(ii) n (n - 1) … (n - r + 1) =
(iii) We’ll do this later!

b)  # of ways to place r nondistinct ball in n distinct boxes:
(i) Since the balls are nondistinct, while the boxes are distinct, all that matters is the number

of balls in each distinct box.

Suppose the distinct boxes are numbered 1,2, … , n.  Associate with each distribution of
the r balls in the n boxes an r-tuple of the numbers of the boxes in which each ball is placed.  For
example, if r = 4 and n = 3, and 2 balls are in box 3, and 1 ball in each of boxes 1 and 2, then thr
4-tuple would be 1,2,3,3.

Thus, our problem is equivalent to counting the number of r-tuples which can be made from [n],
where we allow the same element of [n] to occur as many times as we like (that is, we allow
repetition of elements) and where the order of the elements of the r-tuple doesn’t matter.

Here is the key idea. Since order doesn’t matter, let’s arrange the elements of the r-tuple in
ascending order.  Let these elements be

a1 ≤ a2 ≤ … ≤ ar (r tuple on [n], repetition allowed)
↔ a1 < a2 + 1 < a3 + 2 < … ar + (r - 1)

(r tuple on [n + r - 1], no repetition
   ↑

 # of choices of latter is 
n +  r -  1

r
 =  

n
r!

r
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Since this correspondence between increasing r-tuples and strictly increasing r-tuples is 1:1, this
solves the original problem.

Example: Choose a dozen bagels of different types: onion, garlic, regular.  How many ways?

n =  3,   r =  12   
3  +  12  -  1

12
 =  

14

12















  = 91

(ii)
n

r









(iii)  Put 1 in each box.  Then distribute  (r - n) balls left. Since the balls are nondistinct,
use the formula from part (i).

n +  (r -  n)  -  1

r -  n
 =  

r -  1

r -  n


















