Subsets of a Set [n]

1) How many k-subsets of $[n]$ are there?
$k \geq 0$, integer

$\mathrm{n}=4$	12	13	14
$\mathrm{k}=2$	34	23	24

let x be the \# of k -subsets
Each such subset can be arranged in k ! ways.
Thus, $x \cdot k$! counts the number of ordered
k -subsets of [n], which is just n^{k}

$$
\begin{aligned}
& \therefore \mathrm{x} \cdot \mathrm{k}!=\mathrm{n}^{\underline{\mathrm{k}}} \\
& \Rightarrow \mathrm{x}=\frac{\mathrm{n}^{\mathrm{k}}}{\mathrm{k}!} \equiv\binom{\mathrm{n}}{\mathrm{k}}
\end{aligned}
$$

What is $\binom{\mathrm{n}}{0} ?\binom{0}{0} ?\binom{3}{4}$?

Notice: $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$
(This is called the triangle formula for binomial coefficients.)
Fix your eye on the element. $(\mathrm{n}+1)$:
$(\mathrm{n}+1)$ is in or out of any subset
$\binom{n}{k}$ counts all k-subsets where $(n+1)$ is OUT (because these are just k-subsets of [n]).
$\binom{n}{k-1}$ counts all k-subsets where $(n+1)$ is in.
By the SUM rule, this counts all k-subsets of $[n+1]$.

$(n+1)$ is not in any
of the subsets
"Algebraic" Proof of the above identity:

$$
\begin{aligned}
&\binom{\mathrm{n}}{\mathrm{k}}+\binom{\mathrm{n}}{\mathrm{k}-1}=\frac{\mathrm{n}!}{k!(n-k)!}+\frac{\mathrm{n}!}{(k-1)!(n-k+l)!} \\
&= \\
&=\frac{\mathrm{n}!}{(\mathrm{k}-1)!(\mathrm{n}-\mathrm{k})!}\left[\frac{\mathrm{n}+1}{\mathrm{k}(\mathrm{n}-\mathrm{k}+1)}\right] \\
&=\frac{(\mathrm{n}+1)!}{k!(n-k+1)!} \equiv\binom{\mathrm{n}+1}{\mathrm{k}}
\end{aligned}
$$

Note: $\quad\binom{n}{k}=\binom{n}{n-k}$

Each choice of a k-subset leaves behind an ($\mathrm{n}-\mathrm{k}$) subset.

Graphs of Binomial Coefficients

$\mathrm{f}_{2}(\mathrm{n})=\binom{\mathrm{n}}{2}$
$\mathrm{f}_{3}(\mathrm{n})=\binom{\mathrm{n}}{3}$
$\mathrm{g}_{2}(\mathrm{k})=\binom{2}{\mathrm{k}}$
$\mathrm{g}_{3}(\mathrm{k})=\binom{3}{\mathrm{k}}$

$\mathrm{f}_{2}(\mathrm{n})=\binom{\mathrm{n}}{2}=\frac{\mathrm{n}(\mathrm{n}-1)}{2}$
$\mathrm{f}_{3}(\mathrm{n})=\binom{\mathrm{n}}{3}=\frac{1}{6} \mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)$
$\mathrm{g}_{3}(\mathrm{r})=\binom{3}{\mathrm{r}}$
$g_{6}(r)=\binom{6}{r}$

Unimodal:up/down
Single or Double maximum

Array of Binomial Coefficients
$\binom{n}{0}=1 \quad n \geq 0$
1
11
$1 \quad 2 \quad 1$
$\begin{array}{llll}1 & 3 & 3 & 1\end{array}$

1	4	6	4	1

$\begin{array}{llllll}1 & 5 & 10 & 10 & 5 & 1\end{array}$

1	6	15	20	15	6	1

1	7	21	35	35	21	7	1

1	8	28	56	70	56	28	81

1	9	36	84	126	126	84	36	9	1

1	10	45	120	210	252	210	120	45	101

$56 \cdot 36 \cdot 210=28 \cdot 120 \cdot 126=42360$ (Hexagon Property)
$35 \cdot 6 \cdot 10=20 \cdot 21 \cdot 5$
(i) $\quad \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{j}=\binom{\mathrm{n}+1}{2}$
$(1,2) \quad(1,3)(1,4), \ldots \ldots \ldots \ldots \ldots .(1, \mathrm{n}+1)$
$(2,3)(2,4) \ldots \ldots \ldots \ldots \ldots . .(2, n+1)$
n-1
$(3,4) \ldots \ldots \ldots \ldots \ldots . \quad(3, n+1)$
n-2
(ii) $\quad \sum_{0 \leq i \leq n}\binom{\mathrm{i}}{\mathrm{k}}=\binom{\mathrm{n}+1}{\mathrm{k}+1}$

Note $\sum_{0 \leq i \leq n}\binom{\mathrm{i}}{\mathrm{k}} \equiv \sum_{\mathrm{i}=\mathrm{k}}^{\mathrm{n}}\binom{\mathrm{i}}{\mathrm{k}}$
$=\binom{\mathrm{k}}{\mathrm{k}}+\binom{\mathrm{k}+1}{\mathrm{k}}++_{-}+\binom{\mathrm{k}+(\mathrm{n}-\mathrm{k})}{\mathrm{k}}$
"Combinatorial argument" goes like this:
RHS counts all $(k+1)$ - subsets of $[n+1]$.
Suppose $(n+1)$ is $\underline{\text { in }}$ such a subset. Remaining elements chosen in $\binom{n}{k}$ ways.
Suppose $(n+1) \underline{\text { not in}}$; now suppose $\mathrm{n} \underline{\text { is }} \underline{\text { in }}$. Remaining elements chosen in $\binom{n-1}{k}$ ways.
And so on. Use SUM RULE since these are "or" possibilities. This counts all ways to get ($\mathrm{k}+1$) - subset, and is just LHS.

Exercise: Prove using triangle formula for binomial coefficients.
(iii) $\binom{\mathrm{n}}{\mathrm{k}}=\binom{\mathrm{n}}{\mathrm{k}}\binom{\mathrm{n}-1}{\mathrm{k}-1}, \mathrm{k}_{-} 0$

This is called the absorption identity
A more general identify: $k\binom{n}{k}=n\binom{n-1}{k-1}$
(Holds for $\mathrm{k}=0$)
Exercise: Show that $(\mathrm{n}-\mathrm{k})\binom{\mathrm{n}}{\mathrm{k}}=\mathrm{n}\binom{\mathrm{n}-1}{\mathrm{k}}$
(Hint: multiply both sides by $(\mathrm{n}-\mathrm{k})$, simplify right hand side)
(iv) $\quad \sum_{k \leq n}\binom{m+k}{k}=\binom{n+m+1}{n}$

$$
=(-1)^{\mathrm{k}} \frac{\mathrm{n}(\mathrm{n}+1)-(\mathrm{n}+\mathrm{k}-1)}{\mathrm{k}!}
$$

$$
=(-1)^{\mathrm{k}}\binom{\mathrm{n}+\mathrm{k}-1}{\mathrm{k}} \equiv(-1)^{\mathrm{k}} \frac{\mathrm{n}^{\overline{\mathrm{k}}}}{\mathrm{k}!}
$$

(vi) Eq is missing, should be sum (0 to n) of k to the m lower equals $(n+1)$ to the ($m+1$) lower all divided by $(\mathrm{m}+1)$

$$
\left(\text { Looks a little like } \int x^{m} d x=\frac{x^{m+1}}{m+1}\right)
$$

Probabilistic Notions

Sample space: set of possible outcomes
Event - subset of the set of outcomes (subset of sample space)
Prob $($ Event $)=$ "Size of Event" $/$ "Size of Sample Space"

DISCRETE CASE

"Size of Sample Space" = total no. of possible outcomes
"Size of Event" = outcomes corresponding to event.
Example: Toss a fair coin 5 times. What is prob. of precisely 2 heads?
Solution: Sample space is all 5 -sequences of H, T. Those with exactly $2 \mathrm{H}, 3 \mathrm{~T}$ constitute the event we seek.

Sample space has $2^{5}=32 \quad 5$-sequences.

Event has $\binom{5}{2} 5$-sequences (just choose the 2 places for the H).
$\operatorname{Prob}=\frac{10}{32}=\frac{5}{16}$
NOTE: All 5-sequences are equi-probable.
Example: Choose 2 numbers from $\{0,1,2, \ldots, 9\}$
(repetition allowed). Find prob that sum $=10$.
Solution: There $10 \times 10=1002$-tuples. Of these, precisely 9 have the required property
$\{(1,9),(2,8), \ldots,(5,5),(6,4), \ldots,(9,1)\}$ so $9 / 100$.

Prob that E does not occur $=1-\mathrm{P}(\mathrm{E})=\mathrm{P}\left(\mathrm{E}^{\mathrm{c}}\right)$
NOTE: $\mathrm{S}=\mathrm{E} \cup \mathrm{E}^{\mathrm{c}}, \mathrm{E} \cap \mathrm{E}^{\mathrm{c}}=\varnothing$.
$1=P(S)=P(E)+P\left(E^{c}\right)$.
Prob that E or F occurs is $P(E \cup F)$
Prob that E and F occurs is $\mathrm{P}(\mathrm{E} \cap \mathrm{F})$
If $\mathrm{E} \cap \mathrm{F}=\varnothing, \mathrm{P}(\mathrm{E} \cup \mathrm{F})=\mathrm{P}(\mathrm{E})+\mathrm{P}(\mathrm{F})$
In general, $\mathrm{P}(\mathrm{E} \cup \mathrm{F})=\mathrm{P}(\mathrm{E})+\mathrm{P}(\mathrm{F})-\mathrm{P}(\mathrm{E} \cap \mathrm{F})$

Distribution and Occupancy Problems ("Balls in Boxes")

General idea is to count the number of ways to place r balls into n boxes.
The catch is that the balls and boxes may be distinct (distinguishable) or nondistinct (you can't tell them part). Further, in each case, there are 3 possible restrictions on the number of balls in each box:
(i) as many balls as you like (including none)
(ii) no more than 1 ball in each box
(iii) no box can be empty (that is, at least 1 ball in each box)
a) \# of ways to place r distinct balls in n distinct boxes:
(i) as many balls as you like in each
(ii) no more than 1 ball in each
(iii) no box can be empty
(\equiv at least 1 ball in each)
(i)

$$
\mathrm{n} \times \mathrm{n} \times \mathrm{n} \ldots \times \mathrm{n}=\mathrm{n}^{\mathrm{r}}
$$

r factors
(ii) $n(n-1) \ldots(n-r+1)=$
(iii) We'll do this later!
b) \# of ways to place r nondistinct ball in n distinct boxes:
(i) Since the balls are nondistinct, while the boxes are distinct, all that matters is the number of balls in each distinct box.

Suppose the distinct boxes are numbered $1,2, \ldots, \mathrm{n}$. Associate with each distribution of the r balls in the n boxes an r-tuple of the numbers of the boxes in which each ball is placed. For example, if $\mathrm{r}=4$ and $\mathrm{n}=3$, and 2 balls are in box 3 , and 1 ball in each of boxes 1 and 2 , then thr 4 -tuple would be $1,2,3,3$.

Thus, our problem is equivalent to counting the number of r-tuples which can be made from [n], where we allow the same element of $[\mathrm{n}]$ to occur as many times as we like (that is, we allow repetition of elements) and where the order of the elements of the r-tuple doesn't matter.

Here is the key idea. Since order doesn't matter, let's arrange the elements of the r-tuple in ascending order. Let these elements be
$\mathrm{a}_{1} \leq \mathrm{a}_{2} \leq \ldots \leq \mathrm{a}_{\mathrm{r}}$ (r tuple on [n], repetition allowed)

$$
\leftrightarrow \mathrm{a}_{1}<\mathrm{a}_{2}+1<\mathrm{a}_{3}+2<\ldots \mathrm{a}_{\mathrm{r}}+(\mathrm{r}-1)
$$

(r tuple on $[\mathrm{n}+\mathrm{r}-1$], no repetition

$$
\uparrow
$$

\# of choices of latter is $\binom{n+r-1}{r}=\frac{n^{\bar{r}}}{r!}$

Since this correspondence between increasing r-tuples and strictly increasing r-tuples is $1: 1$, this solves the original problem.

Example: Choose a dozen bagels of different types: onion, garlic, regular. How many ways?
$\mathrm{n}=3, \mathrm{r}=12\binom{3+12-1}{12}=\binom{14}{12}=91$
(ii)

$$
\binom{\mathrm{n}}{\mathrm{r}}
$$

(iii) Put 1 in each box. Then distribute ($\mathrm{r}-\mathrm{n}$) balls left. Since the balls are nondistinct, use the formula from part (i).

$$
\binom{n+(r-n)-1}{r-n}=\binom{r-1}{r-n}
$$

