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1. Introduction: Background, Motivation, New Results



Cubic Nonlinear Schrödinger Equation

Consider the following Cauchy problem:{
iut − uxx ± u|u|2 = 0
u|t=0 = u0, x ∈ T = R/2πZ

(NLS±3 (T))

with random initial data below L2(T).

Main Goals:

Establish almost sure LWP with initial data u0 of the form

u0(x) = uω0 (x) =
∑
n∈Z

gn(ω)

〈|n|α〉
einx, 〈 · 〉 = (1 + | · |2)

1
2

{gn}n∈Z = standard C-valued Gaussians on (Ω,F ,P).

Extend local-in-time solutions to global-in-time solutions
without an available invariant measure.

colliand
Highlight

colliand
Highlight



Well-Posedness vs. Ill-Posedness Threshold Heuristics

Dilation Symmetry and Scaling Invariant Sobolev Norm

NLS3(R): Any solution u spawns a family of solutions

uλ(t, x) =
1
λ

u(
t
λ2 ,

x
λ

).

‖Ds
xuλ(t)‖L2 = λs+ 1

2 ‖Ds
xu(t)‖L2 .

The dilation invariant Sobolev index sc = − 1
2 .

We expect NLS3(T) is ill-posed for s < − 1
2 .

Galilean Invariance and Galilean Invariant Sobolev Norm

The galilean symmetry leaves the L2 norm invariant.
We expect that NLS3(T) is ill-posed for s < 0.



Well-Posedness Speculations on NLS±3 (T) below L2

Known Results:
NLS3(T) is globally well-posed in L2(T). [Bou93]
Data-solution map Hs 3 u0 7−→ u(t) ∈ Hs not uniformly
continuous for s < 0. [BGT02], [CCT03], [Mol09].
Data-solution map unbounded on Hs for s < −1

2 . [CCT03]
“Norm Inflation”
A priori (local-in-time) bound on ‖u(t)‖Hs(T) AND weak
solutions without uniqueness for s ≥ −1

6 (CHT09).
(Similar prior work on NLS3(R) [CCT06], [KT07].)

Speculations?
1 No norm inflation for NLS3(R) and NLS3(T) in Hs for

s > −1
2 ?

2 LWP (merely continuous dependence on data) in Hs for
s > −1

2 ?
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(Finite Dimensional) Invariant Gibbs Measures

A function H : Rn
p × Rn

q → R induces Hamiltonian flow on R2n:{
ṗ = ∇qH

q̇ = −∇pH (Hamilton’s Equation)

The vector field X = (∇qH,−∇pH) is divergence free:

divR2nX = (∇p,∇q) · (∇qH,−∇pH) = 0.

Thus, Lebesgue measure
∏n

j=1 dpjdqj is invariant under the
Hamiltonian flow. (Liouville’s Theorem)
H(p(t), q(t)) is invariant under the flow:

d
dt

H(p(t), q(t)) = ∇pH · ṗ +∇qH · q̇ = 0.

(Hamiltonian Conservation)
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(Finite Dimensional) Invariant Gibbs Measures

We can combine Hamiltonian conservation and Lebesgue
measure invariance to build other flow-invariant measures:

dµf (p, q) = f (H(p, q))

n∏
j=1

dpjdqj.

The Gibbs measure arises when we choose f to be a Gaussian
and normalize it to have total measure 1:

dµ = Z−1e−H(p,q)
n∏

j=1

dpjdqj.

The Gibbs measure can be shown to be well-defined in infinite
dimensions even though the Lebesgue measure can’t be.
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Invariant Gibbs Measures for NLS3(T)

Time Invariant Quantities for NLS±3 flow:

Mass =

∫
T
|u(t, x)|2dx.

Energy = H[u(t)] =

∫
T

1
2
|∂xu(t)|2dx±1

4
|u(t)|4dx.

The Gibbs measure associated to NLS±3 (T),

dµ = Z−1e−
1
2

∫
|u|2dx− 1

2

∫
|∂xu|2dx∓ 1

4

∫
|u|4dx

∏
x∈T

du(x),

(with an appropriate L2 cutoff in the focusing case) is
normalizable and invariant under NLS3(T) flow. [Bou94].
Gibbs measure is absolutely cts. w.r.t. Wiener Measure

dρ1 = Z−1
1 e−

1
2

∫
|∂xu|2dx

∏
x∈T

du(x).
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Invariant Gibbs Measures for NLS+
3 (T2)

LWP for NLS+
3 (T2) is known for H0+(T2) (not L2). [Bou93]

For T2, Wiener measure is supported on H0−(T2) \ L2(T2).
Nevertheless, the Gibbs measure for the defocusing Wick
ordered cubic NLS on T2

iut −∆u + (u|u|2 − 2u
∫
−|u|2dx) = 0 (WNLS(T2))

was normalized and proved to be flow-invariant [Bou96].
WNLS(T2) is GWP on support of Gibbs measure! [Bou96]

Question: Is NLS+
3 (T2) ill-posed on L2?

Or on any space between the Gibbs measure support and H0+?
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Invariant Gibbs Measures for NLS+
3 (T2)

Commun. Math. Phys. 176, 421-445 (1996) Communications in 
Mathematical 

�9 Springer-Verlag 1996 

Invariant Measures for the 2D-Defocusing Nonlinear 
Schrfdinger Equation 

Jean Bourgain 
School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA 

Received: 29 August 1994/in revised form: 23 May 1995 

Abstract: Consider the 2D defocusing cubic NLS i u t + A u - u l u [ 2 : 0  with 
Hamiltonian f(IV~b[2 + �89 14). It is shown that the Gibbs measure constructed from 
the Wick ordered Hamiltonian, i.e. replacing [q~[4 by :[~b[ 4 :, is an invariant mea- 
sure for the appropriately modified equation Jut + Au - [ulul 2 - 2 ( f  [u[2dx)u] = O. 
There is a well defined flow on the support o f  the measure. In fact, it is shown that 
for almost all data q~ the solution u, u(0) = ~b, satisfies u(t )  - eitA~9 E CHs(]R), for 
some s > 0. First a result local in time is established and next measure invariance 
considerations are used to extend the local result to a global one (cf. [B2]). 

Introduction 

1 Consider the Wick ordering HN = f [Vul 2 + N f [ul 4 - -  2aN f [ul 2 -t- a~ of  the 2D- 

Hamiltonian f IVul 2 + i f [ul4 corresponding to the 2D-defocusing cubic N L S )  It 
is shown that the solutions UN = u~ v of  the Cauchy problem 

I "3HN ~ A~tN -- PN(blNlblNI 2) "~- 2aNUN 0 (UN) t = l ~ -  

[ U N = PNblN, U (0"~ --  X-~ gn(CO)ei(X n) Nk ] --  Z-~[n[<=N ~ -  
(i) 

converge weakly for all time, for almost all 09. 2 Here {gn(e)) [n E Z} are indepen- 
dent LZ-normalized complex Gaussians and PN denotes the usual Dirichlet projection 
on the trigonometric system. 

In fact, there is some s > 0, such that 

UN(t) -- e 2icN(c~ ~ gn(Og)ei((x'n)+ln[2t) 

I n l < N  In[ 
(ii) 

u is a complex function. 
2 We ignore for notational simplicity the problem of the zero Fourier mode in (i). This problem 

may be avoided replacing In[ by ( Inl  2 -1- ~C) 1/2, tr > 0 (redefining the Laplacian). 
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Random Data Cauchy Theory

Consider the cubic NLW on T3:{
2u + u3 = 0
(u(0), ∂tu(0)) = (f0, f1) ∈ Hs ×Hs−1.

(NLW)

This problem is Ḣ
1
2 -critical. Ill-posedness known for s < 1

2 .
Well-posedness is known for s ≥ 1

2 .
Consider the Gaussian randomization map:

Ω×Hs 3 (ω, f ) 7−→ fω(x) =
∑
n∈Z3

f̂ (n)gn(ω)ein·x.

NLW is almost surely well-posed for randomized
supercritical data (fω0 , f

ω
1 ) ∈ Hs ×Hs−1, s ≥ 1

4 . [BT08]



Random Data Cauchy Theory

DOI: 10.1007/s00222-008-0124-z
Invent. math. 173, 449–475 (2008)

Random data Cauchy theory for supercritical
wave equations I: local theory
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France (e-mail: nikolay.tzvetkov@math.univ-lille1.fr)

Oblatum 17-IX-2007 & 19-II-2008
Published online: 4 April 2008 –  Springer-Verlag 2008

Abstract. We study the local existence of strong solutions for the cubic
nonlinear wave equation with data in Hs(M), s < 1/2, where M is a three
dimensional compact Riemannian manifold. This problem is supercritical
and can be shown to be strongly ill-posed (in the Hadamard sense). However,
after a suitable randomization, we are able to construct local strong solution
for a large set of initial data in Hs(M), where s ≥ 1/4 in the case of
a boundary less manifold and s ≥ 8/21 in the case of a manifold with
boundary.

1. Introduction

In the study of the local well-posedness of a nonlinear evolutionary PDE,
one often encounters the presence of a critical threshold for the well-
posedness theory. A typical situation is to have a method showing well-
posedness in Sobolev spaces Hs where s is greater than a critical index
scr. This index is often related to a scale invariance (leading to solutions
concentrating at a point of the space-time) of the considered equation.
In some cases (but not all), a good local well-posedness theory is valid
all the way down to the scaling regularity. On the other hand, at least in
the context of nonlinear dispersive equations, no reasonable local well-
posedness theory is known for any supercritical equation, i.e. for data hav-
ing less regularity than the scaling one. In fact, recently, several methods to
show ill-posedness, or high frequency instability, for s < scr emerged (see

Mathematics Subject Classification (2000): 35Q55, 35BXX, 37K05, 37L50, 81Q20
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New Results (joint work [CO09] with Tadahiro Oh)

Theorem (Almost Sure Local Well-Posedness for WNLS(T))

WNLS(T) is almost surely locally well-posed (with respect to a
canonical Gaussian measure) on Hs(T) for s > −1

3 .

Theorem (Almost Sure Global Well-Posedness for WNLS(T))

WNLS(T) is almost surely globally well-posed (with respect to a
canonical Gaussian measure) on Hs(T) for s > −1

8 .
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2. Canonical Gaussian Measures



Canonical Gaussian Measures on Sobolev spaces

We can regard

uω0 (x) =
∑
n∈Z

gn(ω)

〈|n|α〉
einx

as a typical element in the support of the Gaussian measure

dρα = Z−1
α e−

1
2

∫
|u|2dx− 1

2

∫
|Dαu|2dx

∏
x∈T

du(x),

where D =
√
−∂2

x .

We will make sense of dρα using the Gaussian weight even
though the Lebesgue measure does not make sense.



Construction of ρα

Define the Gaussian measure ρα,N on C2N+1 by

dρα,N = Z−1
N e−

1
2
∑
|n|≤N(1+|n|2α)|ûn|2

∏
|n|≤N

dûn.

We may view ρα,N as induced probability measure on C2N+1

under the map

ω →
{

gn(ω)

(1 + |n|2α)
1
2

}
|n|≤N

Question: As N →∞, where does the limit ρα = limN→∞ ρα,N
make sense as a countably additive probability measure?
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Gaussian Measures on Hilbert Spaces

H, real separable Hilbert space
B : H→ H, linear, positive, self-adjoint operator
{en}∞n=1, eigenvectors of B forming an O.N. basis of H
{λn}∞n=1, corresponding eigenvalues

Define

ρN(M) = (2π)−
N
2

( N∏
n=1

λ
− 1

2
n

)∫
F

e−
1
2
∑N

n=1 λ
−1
n x2

n

N∏
n=1

dxn

where

{
M = {x ∈ H : (x1, · · · , xN) ∈ F}, F, Borel set in RN

xn = 〈x, en〉 = jth coordinate of x.

Thus, ρN is a Gaussian measure on EN = span{e1, · · · , eN}.

Now, define ρ on H by ρ
∣∣
EN

= ρN.



Gaussian Measures on Hilbert Spaces

Fact

(1) ρ is countably additive if and only if B is of trace class, i.e.∑
λn <∞

(2) If (1) holds, then ρN ⇀ ρ as N →∞

Now, let B = diag(1 + |n|2σ : n 6= 0). Then, we have

− 1
2

∑
|n|≤N

(1 + |n|2α)|ûn|2 ∼ −1
2

∑
|n|≤N

(1 + |n|−2σ)(1 + |n|2(σ+α))|ûn|2

= −1
2〈B
−1ûn, ûn〉Hσ+α .

B is of trace class iff
∑

n∈Z〈n〉2σ <∞ iff σ < − 1
2 .

Thus ρα = limN→∞ ρα,N defines countably additive measure on

Hα− 1
2− = ∩s<α− 1

2
Hs \Hα− 1

2 .



Typical Element as Gaussian Random Fourier Series

Typical elements in the support of ρα may be represented

uω0 (x) =
∑
n∈Z

gn(ω)en(x), where en(x) =
1
〈|n|α〉

einx

Given another O.N. basis {̃en} of Hα(T), we have

uω0 =
∑

n

g̃n(ω)̃en,

where {g̃n} is another family of i.i.d. standard Gaussians.
u0 can be regarded as Gaussian randomization of the
function φ with Fourier coefficient φ̂n = 1

〈|n|α〉 .

φ ∈ Hs, s < α− 1
2 but not in Hα− 1

2 .
Gaussian randomization of the Fourier coefficients does not
give any smoothing a.s. (in the Sobolev scale.) Hence,

supp(ρα) ⊂ ∩s<α− 1
2
Hs \Hα− 1

2 .
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3. Wick Ordered Cubic NLS



WNLS instead of NLS

WNLS is equivalent to NLS3(T) when u0 ∈ L2(T).
Note that µ =

∫
−|u|2dx = 1

2π

∫
|u|2dx is conserved.

Now set v→ e±2iµtu to see that NLS±3 is equivalent to the
Wick ordered cubic NLS:{

ivt − vxx ± (v|v|2 − 2v
∫
−|v|2dx) = 0

v|t=0 = u0 =
∑

n∈Z
gn(ω)
|n|α einx ∈ Hα− 1

2−.
(WNLS)

WNLS is not equivalent to NLS3 for u0 ∈ Hs with s < 0.
Indeed, we can’t define the phase µ in this case.

We choose to consider WNLS for α < 1
2 (below L2(T)) instead of

NLS3.

colliand
Highlight

colliand
Highlight

colliand
Highlight



Ill-Posedness of WNLS below L2(T)

The example from [BGT02] uN,a(x, t) = aei(Nx+N2t∓|a|2t),
with a ∈ C and N ∈ N, still solves WNLS. Thus, uniform
continuity of the flow map for WNLS fails in Hs, s < 0.
Molinet’s ill-posedness result [Mol09] does not apply to
WNLS.
Local-in-time solutions to (WNLS) in FLp ⊃ L2(T),
2 < p <∞, by a power series method. [Chr07]
Uniqueness is unknown.
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4. Almost Sure Local Well-Posedness



Nonlinear smoothing under randomization

Duhamel formulation of WNLS:

u(t) = Γu(t) := S(t)u0 ± i
∫ t

0
S(t− t′)N (u)(t′)dt′

where S(t) = e−i∂2
x t and N (u) = u|u|2 − 2u

∫
−|u|2.

S(t)u0 has the same regularity as u0 for each fixed t ∈ R.
i.e. S(t)uω0 ∈ Hα− 1

2− \Hα− 1
2 a.s., below L2 for α ≤ 1

2 .
Main Observation: By nonlinear smoothing, Duhamel term∫ t

0
S(t− t′)N (u)(t′)dt′ ∈ L2(T)

even when α ≤ 1
2 .

This permits us to run a contraction argument in Xs,b.
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Contraction around random linear solution

Let Γ denote the right hand side of Duhamel’s formula.
For each small δ > 0, we construct Ωδ ⊂ Ω with
ρα(ΩC

δ ) < e−
1
δc so that Γ defines a contraction on S(t)uω0 + B

on [−δ, δ] for all ω ∈ Ωδ, where B denotes the ball of radius
1 in the Bourgain space X0, 1

2 +,δ.
Recall the Bourgain space Xs,b(T× R) defined by

‖u‖Xs,b(T×R) = ‖〈n〉s〈τ − n2〉bû(n, τ)‖L2
nL2
τ (Z×R)

and its local-in-time version Xs,b,δ on the time interval [δ, δ].

For ω ∈ Ωδ with P(Ωc
δ) < e−

1
δc , it suffices to prove

‖N (u)‖
X0,− 1

2 +,δ . δθ, θ > 0



Theorem (Almost Sure LWP for WNLS)

Let α > 1
6 . Then, WNLS is LWP almost surely in Hα− 1

2−(T).
More precisely, there exist c > 0 such that for each δ � 1, there
exists a set ΩT ∈ F with the following properties:

(i) P(Ωc
T) = ρα ◦ u0(Ωc

T) < e−
1
δc , where u0 : Ω→ Hα− 1

2−(T).
(ii) ∀ ω ∈ ΩT ∃ a unique solution u of WNLS in

S(t)uω0 + C([−δ, δ]; L2(T)) ⊂ C([−δ, δ]; Hα− 1
2−(T)).

In particular, we have almost sure LWP with respect to the
Gaussian measure ρα supported on Hs(T) for each s > −1

3 .



Invariance of White Noise under WNLS flow?

When α = 0, ρ0 corresponds to the white noise

dρ0 = Z−1
0 e−

1
2

∫
|u|2dx

∏
x∈T

du(x)

which is supported on H−
1
2− and is formally invariant.

Our results are partial results in this direction.
White noise invariance for KdV has been established.
[QV08], [Oh10].
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Decompose Nonlinearity: Wick Order Cancellation

We write the nonlinearity N (u) as

N (u) = u|u|2 − 2u
∫
− |u|2 = N1(u,u,u)−N2(u,u,u)

whereN1(u1,u2,u3)(x) =
∑

n2 6=n1,n3
û1(n1)û2(n2)û3(n3)ei(n1−n2+n3)x

N2(u1,u2,u3)(x) =
∑

n û1(n)û2(n)û3(n)einx.

Main Goal: Prove the trilinear estimates (j = 1, 2):

‖Nj(u1,u2,u3)‖
X0,− 1

2 +,δ . δθ, θ > 0.



Random-Linear vs. Deterministic-Smooth

We analyze the N1,N2 contributions leading to

‖Nj(u1,u2,u3)‖
X0,− 1

2 +,δ . δθ, θ > 0,

by assuming uj is one of the following forms:
Type I (random, linear, rough):

uj(x, t) =
∑

n

gn(ω)

|n|α
ei(nx+n2t) ∈ Hα− 1

2−

Type II (deterministic, smooth):

uj with ‖uj‖X0, 1
2 +,δ ≤ 1.

This is done using a case-by-case analysis. (similar to [Bou96])
Trilinear terms: I, I, I; I, I, II; I, II, II; etc.
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Inputs Used in Trilinear Analysis

The Xs,b machinery, dyadic decomposition, standard stuff.
Algebraic identity, divisor estimate: For n = n1 − n2 + n3,

n2 − (n2
1 − n2

2 + n2
3) = 2(n2 − n1)(n2 − n3).

Strichartz controls on deterministed Type II terms.
The periodic L4-Strichartz

‖u‖L4
x,t

. ‖u‖
X0, 3

8
.

and interpolations with the trivial estimate

‖u‖L2
x,t

= ‖u‖X0,0 .

Probabilistic estimates on Type I terms.

Randomizing Fourier coefficients does not lead to more
smoothness but does lead to improved Lp properties.



Large Deviation Estimate

Lemma

Let fω(x, t) =
∑

cngn(ω)ei(nx+n2t), where {gn} is a family of complex
valued standard i.i.d. Gaussian random variables. Then, for p ≥ 2,
there exists δ, T0 > 0 such that

P(‖fω‖Lp(T×[−T,T]) > C‖cn‖l2n) < e−
c

Tδ

for T ≤ T0.

This gives good Lp control on the Type I terms.



5. Almost Sure Global Well-Posedness

We establish almost sure global well-posedness for WNLS by
adapting Bourgain’s high/low Fourier truncation method
[Bou98].

Overview of Discussion:

1 Precise statement of almost sure GWP result.
2 Describe high/low Fourier truncation method for GWP.
3 Explain adaptation to prove almost sure GWP.



Theorem (Almost Sure GWP for WNLS)

Let α ∈ (3
8 ,

1
2 ]. Then, WNLS is LWP almost surely in Hα− 1

2−(T).
More precisely, for almost every ω ∈ Ω ∃! solution

u ∈ e−it∂2
x uω0 + C(R; Hα− 1

2 (T))

of WNLS with initial data given by the random Fourier series

uω0 (x) =
∑
n∈Z

gn(ω)

1 + |n|α
einx.

In particular, we have almost sure global well-posedness with
respect to the Gaussian measure supported on Hs(T), s > −1

8 .



Bourgain’s High-Low Fourier Truncation

IMRN International Mathematics Research Notices
1998, No. 5

Refinements of Strichartz’ Inequality

and Applications to 2D-NLS

with Critical Nonlinearity

J. Bourgain

Summary

Consider the 2D IVP

{
iut + ∆u + λ|u|2u = 0

u(0) = ϕ ∈ L2(R2).
(†)

The theory on the Cauchy problem asserts a unique maximal solution

u ∈ C(] − T∗, T
∗[, L2(R2)) ∩ L4(] − T∗, T

∗[; L4(R2)),

where T∗, T ∗ > 0. Assume, for instance, T ∗ < ∞. It is shown then that

lim sup
t→T∗

sup
I⊂R2 interval

of size <(T∗−t)1/2

(∫

I

|u(x, t)|2 dx

)1/2

> c

where c > 0 is some absolute constant.

This fact (and more precise versions of it) was known if ϕ ∈ H1(R2), λ > 0 (cf.

[C]). We also show that, given M > 0, there is ε > 0 such that (†) satisfies T∗ = T ∗ = ∞
whenever

‖ϕ‖2 ≤ M,

and

sup
A∈R,τ∈CA

1
A

∫

τ

|ϕ̂| < ε,

where CA stands for the squares τ ⊂ R2 of size A and arbitrary center. This fact permits

us to generate initial data φ ∈ L2(R2) of arbitrary large ‖φ‖2-norm for which T∗ = T ∗ = ∞
in (†).

Received 18 December 1997. Revision received 28 January 1998.
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Bourgain’s High-Low Fourier Truncation

Consider the Cauchy problem for defocusing cubic NLS on R2:{
(i∂t + ∆)u = +|u|2u

u(0, x) = φ0(x).
(NLS+

3 (R2))

We describe the first result to give GWP below H1.
NLS+

3 (R2) is GWP in Hs for s > 2
3 [Bou98].

Proof cuts solution into low and high frequency parts.
For u0 ∈ Hs, s > 2

3 , Proof gives (and crucially exploits),

u(t)− eit∆φ0 ∈ H1(R2
x).



Setting up; Decomposing Data

Fix a large target time T.
Let N = N(T) be large to be determined.
Decompose the initial data:

φ0 = φlow + φhigh

where
φlow(x) =

∫
|ξ|<N

eix·ξφ̂0(ξ)dξ.

Our plan is to evolve:

φ0 = φlow + φhigh

u(t) = ulow(t) + uhigh(t).
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Setting up; Decomposing Data

Low Frequency Data Size:
Kinetic Energy:

‖∇φlow‖2
L2 =

∫
|ξ|<N

|ξ|2|φ̂0(ξ)|2dx

=

∫
|ξ|<N

|ξ|2(1−s)|ξ|2s|φ̂0(ξ)|2dx

= N2(1−s)‖φ0‖2
Hs ≤ C0N2(1−s).

Potential Energy: ‖φlow‖L4
x
≤ ‖φlow‖

1/2
L2 ‖∇φlow‖

1/2
L2

=⇒ H[φlow] ≤ CN2(1−s).

High Frequency Data Size:

‖φhigh‖L2 ≤ C0N−s, ‖φhigh‖Hs ≤ C0.



LWP of Low Frequency Evolution along NLS

The NLS Cauchy Problem for the low frequency data{
(i∂t + ∆)ulow = +|ulow|2ulow

ulow(0, x) = φlow(x)

is well-posed on [0,Tlwp] with Tlwp ∼ ‖φlow‖−2
H1 ∼ N−2(1−s).

We obtain, as a consequence of the local theory, that

‖ulow‖L4
[0,Tlwp],x

≤ 1
100

.



LWP of High Frequency Evolution along DE

The NLS Cauchy Problem for the low frequency data{
(i∂t + ∆)uhigh = +2|ulow|2uhigh + similar + |uhigh|2uhigh

uhigh(0, x) = φhigh(x)

is also well-posed on [0,Tlwp].

Remark: The LWP lifetime of NLS evolution of ulow AND the
LWP lifetime of the DE evolution of uhigh are controlled by
‖ulow(0)‖H1 .



Extra Smoothing of Nonlinear Duhamel Term

The high frequency evolution may be written

uhigh(t) = eit∆uhigh + w.

The local theory gives ‖w(t)‖L2 . N−s. Moreover, due to
smoothing (obtained via bilinear Strichartz), we have that

w ∈ H1, ‖w(t)‖H1 . N1−2s+. (SMOOTH!)

Let’s assume (SMOOTH!).



Nonlinear High Frequency Term Hiding Step!

∀ t ∈ [0,Tlwp], we have

u(t) = ulow(t) + eit∆φhigh + w(t).

At time Tlwp, we define data for the progressive sheme:

u(Tlwp) = ulow(Tlwp) + w(Tlwp) + eiTlwp∆φhigh.

u(t) = u(2)
low(t) + u(2)

high(t)

for t > Tlwp.
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Hamiltonian Increment: φlow(0) 7−→ u(2)
low(Tlwp)

The Hamiltonian increment due to w(Tlwp) being added to low
frequency evolution can be calcluated. Indeed, by Taylor
expansion, using the bound (SMOOTH!) and energy
conservation of ulow evolution, we have using

H[u(2)
low(Tlwp)] = H[ulow(0)] + (H[ulow(Tlwp) + w(Tlwp)]−H[ulow(Tlwp)])

∼ N2(1−s) + N2−3s+ ∼ N2(1−s).

Moreover, we can accumulate Ns increments of size N2−3s+

before we double the size N2(1−s) of the Hamiltonian. During
the iteration, Hamiltonian of “low frequency” pieces remains of
size . N2(1−s) so the LWP steps are of uniform size N−2(1−s).
We advance the solution on a time interval of size:

NsN−2(1−s) = N−2+3s.

For s > 2
3 , we can choose N to go past target time T.

colliand
Highlight

colliand
Highlight

colliand
Highlight



Why did the scheme progress?

Along the the time steps Tlwp, 2Tlwp, . . . , bNscTlwp,
the low and high frequency data have uniform properties:

High frequency Duhamel term small in H1.
Low frequency data: Hamiltonian Conservation!
High frequency data: Linear!

For almost sure GWP result, similar scheme progresses:
High frequency Duhamel term small in L2.
Low frequency data: Mass Conservation!
High frequency data: Linear!
=⇒ uniform Gaussian probability bounds.
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Adaptation for Almost Sure GWP Proof



Adaptation for Almost Sure GWP Proof

We are studying the Cauchy problem for WNLS{
ivt − vxx ± (v|v|2 − 2v

∫
−|v|2dx) = 0

v|t=0 = u0 =
∑

n∈Z
gn(ω)
|n|α einx ∈ Hα− 1

2−.
(WNLS)

Let s = α− 1
2 < 0. By a large deviation estimate,

P(‖uω0 ‖Hs > K) ≤ e−cK2
.

Restrict to uω0 ∈ ΩK = {ω : ‖uω0 ‖Hs < K}. Eventually, K↗∞.

Let φ0 = P|ξ|≤Nuω0 and φ0 + ψ0 = u0. Low frequency part has

‖φ0‖L2 ≤ N−sK.



Low Frequency WNLS Evolution

Consider the flow of the low frequency part:{
i∂tu1 − ∂2

xu1 ±N (u1) = 0
u1|t=0 = φ0.

This problem is GWP with ‖u1(t)‖L2 = ‖φ0‖L2 . N−sK.
Standard local theory =⇒ spacetime control:

‖u1‖
X0, 1

2 +[0,δ]
. ‖φ0‖L2 . N−sK,

where δ is the time of local existence, i.e.
δ = δ(N−sK) . δ(‖φ0‖L2).



High Frequency DE evolution

Consider the difference equation for the high-frequency part:{
i∂tv1 − ∂2

xv1 ± (N (u1 + v1)−N (u1)) = 0
v1|t=0 = ψ0 =

∑
|n|>N

gn(ω)
1+|n|α einx.

(DE)

Then, u(t) = u1(t) + v1(t) solves WNLS as long as v1 solves DE.

Probabilistic local theory applies to DE.

u1 is large in the X0, 1
2 +,δ norm; only quadratic in DE.



High/Low Time Step Iteration

• By the probabilistic local theory, we can show that DE is LWP
on [0, δ] except on a set of measure e−

1
δc . We then obtain

v1(t) = S(t)ψ0 + w1(t),

where the nonlinear Duhamel part w1(t) ∈ L2(T).
• At time t = δ, we hide w1(δ) inside φ1:

φ1 := u1(δ) + w1(δ) ∈ L2

ψ1 := S(δ)ψ0 =
∑
|n|≥N

gnein2δ

|n|α einx.

Low frequency data φ1 has (essentially) same L2 size.
High frequency data ψ1 has same bounds as ψ0.
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Measure Zero Issue?



Measure Zero Issue?

Almost sure LWP involves set with nontrivial complement.
Almost sure GWP claimed almost everywhere w.r.t Ω.
Measure theory clarifies this apparent contradiction.

Proposition (GWP off small set)

Let α > 1
4 . Given T > 0, ε > 0 (unlinked!), ∃ ΩT,ε ∈ F such that:

(i) P(Ωc
T,ε) = ρα ◦ u0(Ωc

T,ε) < ε, where u0 : Ω→ Hα− 1
2−(T).

(ii) ∀ ω ∈ ΩT,ε ∃ unique solution u of WNLS in

S(t)u0 + C([−T,T]; L2(T)) ⊂ C([−T,T]; Hα− 1
2−(T))
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Measure Zero Issue?

For fixed γ > 0:
Apply Proposition with Tj = 2j and εj = 2−jγ to get ΩTj,εj .
Let Ωγ =

⋂∞
j=1 ΩTj,εj .

WNLS is globally well-posed on Ωγ with P(Ωc
γ) < γ.

Now, let Ω̃ =
⋃
γ>0 Ωγ .

WNLS is GWP on Ω̃ and P(Ω̃c) = 0.
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