Almost Sure Well-Posedness of Cubic NLS on the Torus Below L^2

J. Colliander

University of Toronto

Istanbul, 25 August 2010

joint work [CO09] with Tadahiro Oh (U. Toronto)

- 1 Introduction: Background, Motivation, New Results
- 2 Canonical Gaussian Measures
- 3 Wick Ordered Cubic NLS
- 4 Almost Sure Local Well-Posedness
- 5 Almost Sure Global Well-Posedness
 - Bourgain's High-Low Fourier Truncation
 - Adaptation for Almost Sure GWP Proof
 - Measure Zero Issue?

1. Introduction: Background, Motivation, New Results

Cubic Nonlinear Schrödinger Equation

Consider the following Cauchy problem:

$$\begin{cases} iu_t - u_{xx} \pm u |u|^2 = 0\\ u|_{t=0} = u_0, \ x \in \mathbb{T} = \mathbb{R}/2\pi\mathbb{Z} \end{cases}$$
(NLS[±]₃(T))

with random initial data below $L^2(\mathbb{T})$.

Main Goals:

• Establish almost sure LWP with initial data *u*₀ of the form

$$u_0(x) = u_0^{\omega}(x) = \sum_{n \in \mathbb{Z}} \frac{g_n(\omega)}{\langle |n|^{\alpha} \rangle} e^{inx}, \quad \langle \cdot \rangle = (1 + |\cdot|^2)^{\frac{1}{2}}$$

 $\{g_n\}_{n\in\mathbb{Z}}$ = standard \mathbb{C} -valued Gaussians on $(\Omega, \mathcal{F}, \mathbb{P})$.

Extend local-in-time solutions to global-in-time solutions
 without an available invariant measure.

Well-Posedness vs. Ill-Posedness Threshold Heuristics

Dilation Symmetry and Scaling Invariant Sobolev Norm

■ *NLS*₃(ℝ): Any solution *u* spawns a family of solutions

$$u_{\lambda}(t,x) = \frac{1}{\lambda}u(\frac{t}{\lambda^2},\frac{x}{\lambda}).$$

$$||D_x^s u_\lambda(t)||_{L^2} = \lambda^{s+\frac{1}{2}} ||D_x^s u(t)||_{L^2}.$$

• The dilation invariant Sobolev index $s_c = -\frac{1}{2}$.

■ We expect *NLS*₃(T) is *ill-posed* for s < -¹/₂.
■ Galilean Invariance and Galilean Invariant Sobolev Norm

The galilean symmetry leaves the L² norm invariant.
We expect that NLS₃(T) is *ill-posed* for s < 0.

Well-Posedness Speculations on $NLS_3^{\pm}(\mathbb{T})$ below L^2

Known Results:

- $NLS_3(\mathbb{T})$ is globally well-posed in $L^2(\mathbb{T})$. [Bou93]
- Data-solution map $H^s \ni u_0 \mapsto u(t) \in H^s$ not uniformly continuous for s < 0. [BGT02], [CCT03], [Mol09].
- Data-solution map unbounded on H^s for $s < -\frac{1}{2}$. [CCT03] "Norm Inflation"
- A priori (local-in-time) bound on ||*u*(*t*)||_{H^s(T)} AND weak solutions without uniqueness for *s* ≥ -¹/₆ (CHT09). (Similar prior work on *NLS*₃(ℝ) [CCT06], [KT07].)

Speculations?

- 1 No norm inflation for $NLS_3(\mathbb{R})$ and $NLS_3(\mathbb{T})$ in H^s for $s > -\frac{1}{2}$?
- 2 LWP (merely continuous dependence on data) in H^s for $s > -\frac{1}{2}$?

(Finite Dimensional) Invariant Gibbs Measures

A function $H : \mathbb{R}_p^n \times \mathbb{R}_q^n \to \mathbb{R}$ induces Hamiltonian flow on \mathbb{R}^{2n} :

$$\begin{cases} \dot{p} = \nabla_q H \\ \dot{q} = -\nabla_p H \end{cases}$$
 (Hamilton's Equation)

• The vector field $X = (\nabla_q H, -\nabla_p H)$ is divergence free:

$$\operatorname{div}_{\mathbb{R}^{2n}} X = (\nabla_p, \nabla_q) \cdot (\nabla_q H, -\nabla_p H) = 0.$$

Thus, Lebesgue measure $\prod_{j=1}^{n} dp_j dq_j$ is invariant under the Hamiltonian flow. (Liouville's Theorem)

• H(p(t), q(t)) is invariant under the flow: Poincaré Recurrence

$$\frac{d}{dt}H(p(t),q(t)) = \nabla_p H \cdot \dot{p} + \nabla_q H \cdot \dot{q} = 0.$$

(Hamiltonian Conservation)

<

(Finite Dimensional) Invariant Gibbs Measures

We can combine Hamiltonian conservation and Lebesgue measure invariance to build other flow-invariant measures:

$$d\mu_f(p,q) = f(H(p,q)) \prod_{j=1}^n dp_j dq_j.$$

The *Gibbs measure* arises when we choose f to be a Gaussian and normalize it to have total measure 1:

$$d\mu = Z^{-1}e^{-H(p,q)}\prod_{j=1}^n dp_j dq_j.$$

The Gibbs measure can be shown to be well-defined in infinite dimensions even though the Lebesgue measure can't be.

Invariant Gibbs Measures for $NLS_3(\mathbb{T})$

Time Invariant Quantities for NLS_3^{\pm} flow:

$$Mass = \int_{\mathbb{T}} |u(t,x)|^2 dx.$$

Energy = $H[u(t)] = \int_T \frac{1}{2} |\partial_x u(t)|^2 dx \pm \frac{1}{4} |u(t)|^4 dx.$

• The Gibbs measure associated to $NLS_3^{\pm}(\mathbb{T})$,

$$d\mu = Z^{-1} e^{-\frac{1}{2} \int |u|^2 dx - \frac{1}{2} \int |\partial_x u|^2 dx \mp \frac{1}{4} \int |u|^4 dx} \prod_{x \in \mathbb{T}} du(x),$$

(with an appropriate L² cutoff in the focusing case) is normalizable and invariant under NLS₃(T) flow. [Bou94].
Gibbs measure is absolutely cts. w.r.t. *Wiener Measure*

$$d\rho_1 = Z_1^{-1} e^{-\frac{1}{2} \int |\partial_x u|^2 dx} \prod_{x \in \mathbb{T}} du(x).$$

- LWP for $NLS_3^+(\mathbb{T}^2)$ is known for $H^{0+}(\mathbb{T}^2)$ (not L^2). [Bou93]
- For \mathbb{T}^2 , Wiener measure is supported on $H^{0-}(\mathbb{T}^2) \setminus L^2(\mathbb{T}^2)$.
- Nevertheless, the Gibbs measure for the defocusing Wick ordered cubic NLS on T²

$$iu_t - \Delta u + (u|u|^2 - 2u \int |u|^2 dx) = 0$$
 (WNLS(T²))

was normalized and proved to be flow-invariant [Bou96].
WNLS(T²) is GWP on support of Gibbs measure! [Bou96]
Question: Is NLS⁺₃(T²) *ill-posed* on L²?
Or on any space between the Gibbs measure support and H⁰⁺?

Invariant Gibbs Measures for $NLS_3^+(\mathbb{T}^2)$

Commun. Math. Phys. 176, 421-445 (1996)

Invariant Measures for the 2*D*-Defocusing Nonlinear Schrödinger Equation

Jean Bourgain

School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA

Received: 29 August 1994/in revised form: 23 May 1995

Abstract: Consider the 2D defocusing cubic NLS $iu_t + \Delta u - u|u|^2 = 0$ with Hamiltonian $\int (|\nabla \phi|^2 + \frac{1}{2}|\phi|^4)$. It is shown that the Gibbs measure constructed from the Wick ordered Hamiltonian, i.e. replacing $|\phi|^4$ by $: |\phi|^4$, is an invariant measure for the appropriately modified equation $iu_t + \Delta u - [u|u|^2 - 2(\int |u|^2 dx)u] = 0$. There is a well defined flow on the support of the measure. In fact, it is shown that for almost all data ϕ the solution $u, u(0) = \phi$, satisfies $u(t) - e^{itd}\phi \in C_{H^s}(\mathbb{R})$, for

Random Data Cauchy Theory

Consider the cubic NLW on \mathbb{T}^3 :

$$\begin{cases} \Box u + u^3 = 0\\ (u(0), \partial_t u(0)) = (f_0, f_1) \in H^s \times H^{s-1}. \end{cases}$$
(NLW)

- This problem is H^{1/2}-critical. Ill-posedness known for s < 1/2.
 Well-posedness is known for s ≥ 1/2.
- Consider the Gaussian randomization map:

$$\Omega \times H^s \ni (\omega, f) \longmapsto f^{\omega}(x) = \sum_{n \in \mathbb{Z}^3} \widehat{f}(n) g_n(\omega) e^{in \cdot x}.$$

■ NLW is almost surely well-posed for randomized supercritical data (f₀^ω, f₁^ω) ∈ H^s × H^{s-1}, s ≥ ¼. [BT08]

Random Data Cauchy Theory

Invent. math. 173, 449–475 (2008) DOI: 10.1007/s00222-008-0124-z

Inventiones mathematicae

Random data Cauchy theory for supercritical wave equations I: local theory

Nicolas Burq^{1,2}, Nikolay Tzvetkov³

- ¹ Département de Mathématiques, Université Paris XI, 91 405 Orsay Cedex, France (e-mail: nicolas.burg@math.u-psud.fr)
- ² Institut Universitaire de France, Paris, France
- ³ Département de Mathématiques, Université Lille I, 59 655 Villeneuve d'Ascq Cedex, France (e-mail: nikolay.tzvetkov@math.univ-lille1.fr)

Oblatum 17-IX-2007 & 19-II-2008 Published online: 4 April 2008 – © Springer-Verlag 2008

Theorem (Almost Sure Local Well-Posedness for $WNLS(\mathbb{T})$)

 $WNLS(\mathbb{T})$ is almost surely locally well-posed (with respect to a canonical Gaussian measure) on $H^{s}(\mathbb{T})$ for $s > -\frac{1}{3}$.

Theorem (Almost Sure Global Well-Posedness for $WNLS(\mathbb{T})$)

 $WNLS(\mathbb{T})$ is almost surely globally well-posed (with respect to a canonical Gaussian measure) on $H^{s}(\mathbb{T})$ for $s > -\frac{1}{8}$.

More Precise Statements Later

2. Canonical Gaussian Measures

Canonical Gaussian Measures on Sobolev spaces

We can regard

$$u_0^{\omega}(x) = \sum_{n \in \mathbb{Z}} \frac{g_n(\omega)}{\langle |n|^{\alpha} \rangle} e^{inx}$$

as a typical element in the support of the Gaussian measure

$$d\rho_{\alpha} = Z_{\alpha}^{-1} e^{-\frac{1}{2}\int |u|^2 dx - \frac{1}{2}\int |D^{\alpha}u|^2 dx} \prod_{x \in \mathbb{T}} du(x),$$

where $D = \sqrt{-\partial_x^2}$.

We will make sense of $d\rho_{\alpha}$ using the Gaussian weight even though the Lebesgue measure does not make sense.

Construction of ρ_{α}

Define the Gaussian measure $\rho_{\alpha,N}$ on \mathbb{C}^{2N+1} by

$$d\rho_{\alpha,N} = Z_N^{-1} e^{-\frac{1}{2}\sum_{|n| \le N} (1+|n|^{2\alpha})|\widehat{u}_n|^2} \prod_{|n| \le N} d\widehat{u}_n.$$

We may view $\rho_{\alpha,N}$ as induced probability measure on \mathbb{C}^{2N+1} under the map

$$\omega \to \left\{ \frac{g_n(\omega)}{(1+|n|^{2\alpha})^{\frac{1}{2}}} \right\}_{|n| \le N}$$

Question: As $N \to \infty$, where does the limit $\rho_{\alpha} = \lim_{N\to\infty} \rho_{\alpha,N}$ make sense as a *countably additive* probability measure?

Gaussian Measures on Hilbert Spaces

H, *real* separable Hilbert space

 $B: H \rightarrow H$, linear, positive, self-adjoint operator

 $\{e_n\}_{n=1}^{\infty}$, eigenvectors of *B* forming an O.N. basis of *H* $\{\lambda_n\}_{n=1}^{\infty}$, corresponding eigenvalues

Define

$$\rho_N(M) = (2\pi)^{-\frac{N}{2}} \left(\prod_{n=1}^N \lambda_n^{-\frac{1}{2}}\right) \int_F e^{-\frac{1}{2}\sum_{n=1}^N \lambda_n^{-1} x_n^2} \prod_{n=1}^N dx_n$$

where $\begin{cases} M = \{x \in H : (x_1, \cdots, x_N) \in F\}, & F, & \text{Borel set in } \mathbb{R}^N \\ x_n = \langle x, e_n \rangle = j \text{th coordinate of } x. \end{cases}$

Thus, ρ_N is a Gaussian measure on $E_N = \text{span}\{e_1, \cdots, e_N\}$. Now, define ρ on H by $\rho|_{E_N} = \rho_N$.

Gaussian Measures on Hilbert Spaces

Fact

(1) ρ is countably additive if and only if *B* is of trace class, i.e. $\sum \lambda_n < \infty$

(2) If (1) holds, then
$$\rho_N \rightharpoonup \rho$$
 as $N \rightarrow \infty$

Now, let
$$B = \text{diag}(1 + |n|^{2\sigma} : n \neq 0)$$
. Then, we have
 $-\frac{1}{2} \sum_{|n| \leq N} (1 + |n|^{2\alpha}) |\widehat{u}_n|^2 \sim -\frac{1}{2} \sum_{|n| \leq N} (1 + |n|^{-2\sigma}) (1 + |n|^{2(\sigma+\alpha)}) |\widehat{u}_n|^2$
 $= -\frac{1}{2} \langle B^{-1} \widehat{u}_n, \widehat{u}_n \rangle_{H^{\sigma+\alpha}}.$

B is of trace class iff $\sum_{n \in \mathbb{Z}} \langle n \rangle^{2\sigma} < \infty$ iff $\sigma < -\frac{1}{2}$. Thus $\rho_{\alpha} = \lim_{N \to \infty} \rho_{\alpha,N}$ defines countably additive measure on $H^{\alpha - \frac{1}{2} -} = \bigcap_{s < \alpha - \frac{1}{2}} H^s \setminus H^{\alpha - \frac{1}{2}}.$

Typical Element as Gaussian Random Fourier Series

Typical elements in the support of ρ_{α} may be represented

$$u_0^{\omega}(x) = \sum_{n \in \mathbb{Z}} g_n(\omega) e_n(x), \text{ where } e_n(x) = \frac{1}{\langle |n|^{\alpha} \rangle} e^{inx}$$

Given another O.N. basis $\{\tilde{e}_n\}$ of $H^{\alpha}(\mathbb{T})$, we have

$$u_0^{\omega} = \sum_n \widetilde{g}_n(\omega)\widetilde{e}_n,$$

where {*g̃_n*} is another family of i.i.d. standard Gaussians. *u*₀ can be regarded as Gaussian randomization of the function *φ* with Fourier coefficient *φ̂_n* = 1/(|n|^α).

- $\phi \in H^s$, $s < \alpha \frac{1}{2}$ but not in $H^{\alpha \frac{1}{2}}$.
- Gaussian randomization of the Fourier coefficients does *not* give *any* smoothing a.s. (in the Sobolev scale.) Hence,

$$\operatorname{supp}(\rho_{\alpha}) \subset \cap_{s < \alpha - \frac{1}{2}} H^s \setminus H^{\alpha - \frac{1}{2}}.$$

3. Wick Ordered Cubic NLS

WNLS instead of NLS

- *WNLS* is equivalent to $NLS_3(\mathbb{T})$ when $u_0 \in L^2(\mathbb{T})$.
 - Note that $\mu = \int |u|^2 dx = \frac{1}{2\pi} \int |u|^2 dx$ is conserved.
 - Now set v → e^{±2iµt}u to see that NLS[±]₃ is equivalent to the Wick ordered cubic NLS:

$$\begin{cases} iv_t - v_{xx} \pm (v|v|^2 - 2v \oint |v|^2 dx) = 0\\ v|_{t=0} = u_0 = \sum_{n \in \mathbb{Z}} \frac{g_n(\omega)}{|n|^{\alpha}} e^{inx} \in H^{\alpha - \frac{1}{2} -}. \end{cases}$$
(WNLS)

■ *WNLS* is not equivalent to *NLS*₃ for $u_0 \in H^s$ with s < 0. Indeed, we can't define the phase μ in this case.

We *choose* to consider WNLS for $\alpha < \frac{1}{2}$ (below $L^2(\mathbb{T})$) *instead* of NLS_3 .

Ill-Posedness of *WNLS* below $L^2(\mathbb{T})$

- The example from [BGT02] $u_{N,a}(x,t) = ae^{i(Nx+N^2t\mp|a|^2t)}$, with $a \in \mathbb{C}$ and $N \in \mathbb{N}$, still solves *WNLS*. Thus, uniform continuity of the flow map for *WNLS* fails in H^s , s < 0.
- Molinet's ill-posedness result [Mol09] does not apply to WNLS.
- Local-in-time solutions to (WNLS) in *FL^p* ⊃ *L*²(T), 2

4. Almost Sure Local Well-Posedness

Nonlinear smoothing under randomization

Duhamel formulation of WNLS:

$$u(t) = \Gamma u(t) := S(t)u_0 \pm i \int_0^t S(t-t')\mathcal{N}(u)(t')dt'$$

where $S(t) = e^{-i\partial_x^2 t}$ and $\mathcal{N}(u) = u|u|^2 - 2u f |u|^2$.

- $S(t)u_0$ has the same regularity as u_0 for each fixed $t \in \mathbb{R}$. i.e. $S(t)u_0^{\omega} \in H^{\alpha-\frac{1}{2}-} \setminus H^{\alpha-\frac{1}{2}}$ a.s., below L^2 for $\alpha \leq \frac{1}{2}$.
- Main Observation: By nonlinear smoothing, Duhamel term

$$\int_0^t S(t-t')\mathcal{N}(u)(t')dt' \in L^2(\mathbb{T})$$

even when $\alpha \leq \frac{1}{2}$.

■ This permits us to run a contraction argument in *X*^{*s*,*b*}.

Contraction around random linear solution

- Let Γ denote the right hand side of Duhamel's formula.
- For each small $\delta > 0$, we construct $\Omega_{\delta} \subset \Omega$ with $\rho_{\alpha}(\Omega_{\delta}^{\mathbb{C}}) < e^{-\frac{1}{\delta^{c}}}$ so that Γ defines a contraction on $S(t)u_{0}^{\omega} + B$ on $[-\delta, \delta]$ for all $\omega \in \Omega_{\delta}$, where *B* denotes the ball of radius 1 in the Bourgain space $X^{0, \frac{1}{2} +, \delta}$.
- Recall the Bourgain space $X^{s,b}(\mathbb{T} \times \mathbb{R})$ defined by

$$\|u\|_{X^{s,b}(\mathbb{T}\times\mathbb{R})} = \|\langle n \rangle^s \langle \tau - n^2 \rangle^b \widehat{u}(n,\tau)\|_{L^2_n L^2_\tau(\mathbb{Z}\times\mathbb{R})}$$

and its local-in-time version $X^{s,b,\delta}$ on the time interval $[\delta, \delta]$. For $\omega \in \Omega_{\delta}$ with $\mathbb{P}(\Omega_{\delta}^{c}) < e^{-\frac{1}{\delta^{c}}}$, it suffices to prove

$$\left\|\mathcal{N}(u)\right\|_{X^{0,-\frac{1}{2}+,\delta}} \lesssim \delta^{\theta}, \ \theta > 0$$

Let $\alpha > \frac{1}{6}$. Then, *WNLS* is LWP almost surely in $H^{\alpha - \frac{1}{2} -}(\mathbb{T})$. More precisely, there exist c > 0 such that for each $\delta \ll 1$, there exists a set $\Omega_T \in \mathcal{F}$ with the following properties:

(i) $\mathbb{P}(\Omega_T^c) = \rho_\alpha \circ u_0(\Omega_T^c) < e^{-\frac{1}{\delta^c}}$, where $u_0 : \Omega \to H^{\alpha - \frac{1}{2}-}(\mathbb{T})$. (ii) $\forall \omega \in \Omega_T \exists$ a unique solution *u* of *WNLS* in

$$S(t)u_0^{\omega} + C([-\delta,\delta]; L^2(\mathbb{T})) \subset C([-\delta,\delta]; H^{\alpha - \frac{1}{2}}(\mathbb{T})).$$

In particular, we have almost sure LWP with respect to the Gaussian measure ρ_{α} supported on $H^{s}(\mathbb{T})$ for each $s > -\frac{1}{3}$.

Invariance of White Noise under WNLS flow?

• When $\alpha = 0$, ρ_0 corresponds to the white noise

$$d\rho_0 = Z_0^{-1} e^{-\frac{1}{2} \int |u|^2 dx} \prod_{x \in \mathbb{T}} du(x)$$

which is supported on $H^{-\frac{1}{2}-}$ and is formally invariant.

- Our results are partial results in this direction.
- White noise invariance for KdV has been established.
 [QV08], [Oh10].

We write the nonlinearity $\mathcal{N}(u)$ as

$$\mathcal{N}(u) = u|u|^2 - 2u \int |u|^2 = \mathcal{N}_1(u, u, u) - \mathcal{N}_2(u, u, u)$$

where

$$\begin{cases} \mathcal{N}_1(u_1, u_2, u_3)(x) = \sum_{n_2 \neq n_1, n_3} \widehat{u}_1(n_1) \overline{\widehat{u}_2(n_2)} \widehat{u}_3(n_3) e^{i(n_1 - n_2 + n_3)x} \\ \mathcal{N}_2(u_1, u_2, u_3)(x) = \sum_n \widehat{u}_1(n) \overline{\widehat{u}_2(n)} \widehat{u}_3(n) e^{inx}. \end{cases}$$

Main Goal: Prove the trilinear estimates (j = 1, 2):

$$\|\mathcal{N}_{j}(u_{1}, u_{2}, u_{3})\|_{X^{0, -\frac{1}{2}+, \delta}} \lesssim \delta^{\theta}, \ \theta > 0.$$

Random-Linear vs. Deterministic-Smooth

We analyze the $\mathcal{N}_1, \mathcal{N}_2$ contributions leading to

$$\left\|\mathcal{N}_{j}(u_{1},u_{2},u_{3})\right\|_{X^{0,-\frac{1}{2}+,\delta}} \lesssim \delta^{\theta}, \ \theta > 0,$$

by assuming u_i is one of the following forms:

Type I (random, linear, rough):

$$u_j(x,t) = \sum_n \frac{g_n(\omega)}{|n|^{\alpha}} e^{i(nx+n^2t)} \in H^{\alpha-\frac{1}{2}-\alpha}$$

Type II (deterministic, smooth):

$$u_j \text{ with } \|u_j\|_{X^{0,\frac{1}{2}+,\delta}} \leq 1.$$

This is done using a case-by-case analysis. (similar to [Bou96]) Trilinear terms: *I*, *I*, *I*; *I*, *II*; *I*, *II*; *I*, *II*; etc.

Inputs Used in Trilinear Analysis

- The *X*^{*s,b*} machinery, dyadic decomposition, standard stuff.
- Algebraic identity, divisor estimate: For $n = n_1 n_2 + n_3$,

$$n^{2} - (n_{1}^{2} - n_{2}^{2} + n_{3}^{2}) = 2(n_{2} - n_{1})(n_{2} - n_{3}).$$

 Strichartz controls on deterministed Type II terms. The periodic L⁴-Strichartz

$$\|u\|_{L^4_{x,t}} \lesssim \|u\|_{X^{0,\frac{3}{8}}}.$$

and interpolations with the trivial estimate

$$||u||_{L^2_{x,t}} = ||u||_{X^{0,0}}.$$

Probabilistic estimates on Type I terms.

Randomizing Fourier coefficients does not lead to more smoothness but does lead to improved L^p properties.

Large Deviation Estimate

Lemma

Let $f^{\omega}(x,t) = \sum c_n g_n(\omega) e^{i(nx+n^2t)}$, where $\{g_n\}$ is a family of complex valued standard i.i.d. Gaussian random variables. Then, for $p \ge 2$, there exists δ , $T_0 > 0$ such that

$$\mathbb{P}(\|f^{\omega}\|_{L^{p}(\mathbb{T} \times [-T,T])} > C\|c_{n}\|_{l^{2}_{n}}) < e^{-\frac{c}{T^{\delta}}}$$

for $T \leq T_0$.

This gives good L^p control on the Type I terms.

We establish almost sure global well-posedness for *WNLS* by adapting Bourgain's high/low Fourier truncation method [Bou98].

Overview of Discussion:

- **1** Precise statement of almost sure GWP result.
- 2 Describe high/low Fourier truncation method for GWP.
- 3 Explain adaptation to prove almost sure GWP.

Let $\alpha \in (\frac{3}{8}, \frac{1}{2}]$. Then, *WNLS* is LWP almost surely in $H^{\alpha - \frac{1}{2}-}(\mathbb{T})$. More precisely, for almost every $\omega \in \Omega \exists !$ solution

$$u \in e^{-it\partial_x^2} u_0^\omega + C(\mathbb{R}; H^{\alpha - \frac{1}{2}}(\mathbb{T}))$$

of WNLS with initial data given by the random Fourier series

$$u_0^{\omega}(x) = \sum_{n \in \mathbb{Z}} \frac{g_n(\omega)}{1 + |n|^{\alpha}} e^{inx}.$$

In particular, we have almost sure global well-posedness with respect to the Gaussian measure supported on $H^{s}(\mathbb{T}), s > -\frac{1}{8}$.

Bourgain's High-Low Fourier Truncation

IMRN International Mathematics Research Notices 1998, No. 5

Refinements of Strichartz' Inequality and Applications to 2D-NLS with Critical Nonlinearity

J. Bourgain

Summary

Consider the 2D IVP

$$\begin{split} & \mathrm{i} \mathfrak{u}_t + \Delta \mathfrak{u} + \lambda |\mathfrak{u}|^2 \mathfrak{u} = 0 \\ & \mathfrak{u}(0) = \phi \in L^2(\mathbb{R}^2). \end{split} \tag{t}$$

The theory on the Cauchy problem asserts a unique maximal solution

 $u \in \mathcal{C}(1 - T \quad T^*[\mid I^2(\mathbb{R}^2)) \cap I^4(1 - T \quad T^*[\cdot I^4(\mathbb{R}^2))$

Consider the Cauchy problem for defocusing cubic NLS on \mathbb{R}^2 :

$$\begin{cases} (i\partial_t + \Delta)u = +|u|^2 u\\ u(0, x) = \phi_0(x). \end{cases}$$
 (NLS⁺₃(ℝ²))

We describe the first result to give GWP below H^1 .

- $NLS_3^+(\mathbb{R}^2)$ is GWP in H^s for $s > \frac{2}{3}$ [Bou98].
- Proof cuts solution into low and high frequency parts.
- For $u_0 \in H^s$, $s > \frac{2}{3}$, Proof gives (and crucially exploits),

$$u(t) - e^{it\Delta}\phi_0 \in H^1(\mathbb{R}^2_x).$$

Setting up; Decomposing Data

- Fix a large target time *T*.
- Let N = N(T) be large to be determined.
- Decompose the initial data:

$$\phi_0 = \phi_{low} + \phi_{high}$$

where

$$\phi_{low}(x) = \int_{|\xi| < N} e^{ix \cdot \xi} \widehat{\phi_0}(\xi) d\xi.$$

Our plan is to evolve:

Setting up; Decomposing Data

Low Frequency Data Size:

Kinetic Energy:

$$\begin{split} \|\nabla\phi_{low}\|_{L^{2}}^{2} &= \int_{|\xi| < N} |\xi|^{2} |\widehat{\phi_{0}}(\xi)|^{2} dx \\ &= \int_{|\xi| < N} |\xi|^{2(1-s)} |\xi|^{2s} |\widehat{\phi_{0}}(\xi)|^{2} dx \\ &= N^{2(1-s)} \|\phi_{0}\|_{H^{s}}^{2} \leq C_{0} N^{2(1-s)}. \end{split}$$

• Potential Energy: $\|\phi_{low}\|_{L^4_x} \le \|\phi_{low}\|_{L^2}^{1/2} \|\nabla\phi_{low}\|_{L^2}^{1/2}$ $\implies H[\phi_{low}] \le CN^{2(1-s)}.$

High Frequency Data Size:

 $\|\phi_{high}\|_{L^2} \leq C_0 N^{-s}, \ \|\phi_{high}\|_{H^s} \leq C_0.$

The NLS Cauchy Problem for the low frequency data

$$\begin{cases} (i\partial_t + \Delta)u_{low} = +|u_{low}|^2 u_{low} \\ u_{low}(0, x) = \phi_{low}(x) \end{cases}$$

is well-posed on $[0, T_{lwp}]$ with $T_{lwp} \sim \|\phi_{low}\|_{H^1}^{-2} \sim N^{-2(1-s)}$.

We obtain, as a consequence of the local theory, that

$$\|u_{low}\|_{L^4_{[0,T_{lwp}],x}} \leq \frac{1}{100}.$$

The NLS Cauchy Problem for the low frequency data

$$\begin{cases} (i\partial_t + \Delta)u_{high} = +2|u_{low}|^2 u_{high} + \text{similar} + |u_{high}|^2 u_{high} \\ u_{high}(0, x) = \phi_{high}(x) \end{cases}$$

is also well-posed on $[0, T_{lwp}]$.

Remark: The LWP lifetime of *NLS* evolution of u_{low} AND the LWP lifetime of the *DE* evolution of u_{high} are controlled by $||u_{low}(0)||_{H^1}$.

The high frequency evolution may be written

$$u_{high}(t) = e^{it\Delta} u_{high} + w.$$

The local theory gives $||w(t)||_{L^2} \leq N^{-s}$. Moreover, due to smoothing (obtained via bilinear Strichartz), we have that

$$w \in H^1, \ \|w(t)\|_{H^1} \lesssim N^{1-2s+}.$$
 (SMOOTH!)

Let's assume (SMOOTH!).

Nonlinear High Frequency Term Hiding Step!

• $\forall t \in [0, T_{lwp}]$, we have

$$u(t) = u_{low}(t) + e^{it\Delta}\phi_{high} + w(t).$$

• At time T_{lwp} , we define data for the progressive sheme:

$$u(T_{lwp}) = \underbrace{u_{low}(T_{lwp}) + w(T_{lwp})}_{u(t) = u_{low}^{(2)}(t) + u_{high}^{(2)}(t)} + e^{iT_{lwp}\Delta}\phi_{high}.$$

for $t > T_{lwp}$.

Hamiltonian Increment: $\phi_{low}(0) \mapsto u_{low}^{(2)}(T_{lwp})$

The Hamiltonian increment due to $w(T_{lwp})$ being added to low frequency evolution can be calcluated. Indeed, by Taylor expansion, using the bound (SMOOTH!) and energy conservation of u_{low} evolution, we have using

$$H[u_{low}^{(2)}(T_{lwp})] = H[u_{low}(0)] + (H[u_{low}(T_{lwp}) + w(T_{lwp})] - H[u_{low}(T_{lwp})])$$

 $\sim N^{2(1-s)} + N^{2-3s+} \sim N^{2(1-s)}.$

Moreover, we can accumulate N^s increments of size N^{2-3s+} before we double the size $N^{2(1-s)}$ of the Hamiltonian. During the iteration, Hamiltonian of "low frequency" pieces remains of size $\leq N^{2(1-s)}$ so the LWP steps are of uniform size $N^{-2(1-s)}$. We advance the solution on a time interval of size:

$$N^s N^{-2(1-s)} = N^{-2+3s}.$$

For $s > \frac{2}{3}$, we can choose *N* to go past target time *T*.

Along the time steps T_{lwp} , $2T_{lwp}$, ..., $\lfloor N^s \rfloor T_{lwp}$, the low and high frequency data have uniform properties:

- High frequency Duhamel term small in *H*¹.
- Low frequency data: Hamiltonian Conservation!
- High frequency data: Linear!

For almost sure GWP result, similar scheme progresses:

- High frequency Duhamel term small in *L*².
- Low frequency data: Mass Conservation!
- High frequency data: Linear!
 - \implies uniform Gaussian probability bounds.

Adaptation for Almost Sure GWP Proof

Adaptation for Almost Sure GWP Proof

We are studying the Cauchy problem for WNLS

$$\begin{cases} iv_t - v_{xx} \pm (v|v|^2 - 2v \oint |v|^2 dx) = 0\\ v|_{t=0} = u_0 = \sum_{n \in \mathbb{Z}} \frac{g_n(\omega)}{|n|^{\alpha}} e^{inx} \in H^{\alpha - \frac{1}{2} -}. \end{cases}$$
(WNLS)

Let $s = \alpha - \frac{1}{2} < 0$. By a large deviation estimate,

 $\mathbb{P}(\|u_0^{\omega}\|_{H^s}>K)\leq e^{-cK^2}.$

Restrict to $u_0^{\omega} \in \Omega_K = \{\omega : ||u_0^{\omega}||_{H^s} < K\}$. Eventually, $K \nearrow \infty$. Let $\phi_0 = \mathbb{P}_{|\xi| \le N} u_0^{\omega}$ and $\phi_0 + \psi_0 = u_0$. Low frequency part has

 $\|\phi_0\|_{L^2} \le N^{-s} K.$

Low Frequency WNLS Evolution

Consider the flow of the low frequency part:

$$\begin{cases} i\partial_t u^1 - \partial_x^2 u^1 \pm \mathcal{N}(u^1) = 0\\ u^1|_{t=0} = \phi_0. \end{cases}$$

- This problem is GWP with $||u^1(t)||_{L^2} = ||\phi_0||_{L^2} \lesssim N^{-s}K$.
- Standard local theory ⇒ spacetime control:

$$\|u^1\|_{X^{0,\frac{1}{2}+}[0,\delta]} \lesssim \|\phi_0\|_{L^2} \lesssim N^{-s}K,$$

where δ is the time of local existence, i.e. $\delta = \delta(N^{-s}K) \lesssim \delta(\|\phi_0\|_{L^2}).$ Consider the difference equation for the high-frequency part:

$$\begin{cases} i\partial_t v^1 - \partial_x^2 v^1 \pm (\mathcal{N}(u^1 + v^1) - \mathcal{N}(u^1)) = 0\\ v^1|_{t=0} = \psi_0 = \sum_{|n| > N} \frac{g_n(\omega)}{1 + |n|^{\alpha}} e^{inx}. \end{cases}$$
(DE)

Then, $u(t) = u^{1}(t) + v^{1}(t)$ solves *WNLS* as long as v^{1} solves *DE*.

- Probabilistic local theory applies to *DE*.
- u^1 is *large* in the $X^{0,\frac{1}{2}+,\delta}$ norm; only quadratic in *DE*.

High/Low Time Step Iteration

• By the probabilistic local theory, we can show that *DE* is LWP on $[0, \delta]$ except on a set of measure $e^{-\frac{1}{\delta^c}}$. We then obtain

$$v^{1}(t) = S(t)\psi_{0} + w^{1}(t),$$

where the nonlinear Duhamel part $w^1(t) \in L^2(\mathbb{T})$. • At time $t = \delta$, we hide $w^1(\delta)$ inside ϕ^1 : $\phi_1 := u^1(\delta) + w^1(\delta) \in L^2$ $\psi_1 := S(\delta)\psi_0 = \sum_{|n| \ge N} \frac{g_n e^{in^2\delta}}{|n|^{\alpha}} e^{inx}$.

Low frequency data φ₁ has (essentially) same L² size.
High frequency data ψ₁ has same bounds as ψ₀.

Measure Zero Issue?

Measure Zero Issue?

Almost sure LWP involves set with nontrivial complement.

- \rightarrow Almost sure GWP claimed almost everywhere w.r.t Ω .
 - Measure theory clarifies this apparent contradiction.

Proposition (GWP off small set)

Let $\alpha > \frac{1}{4}$. Given $T > 0, \varepsilon > 0$ (unlinked!), $\exists \Omega_{T,\varepsilon} \in \mathcal{F}$ such that: (i) $\mathbb{P}(\Omega_{T,\varepsilon}^{c}) = \rho_{\alpha} \circ u_{0}(\Omega_{T,\varepsilon}^{c}) < \varepsilon$, where $u_{0} : \Omega \to H^{\alpha - \frac{1}{2} -}(\mathbb{T})$. (ii) $\forall \omega \in \Omega_{T,\varepsilon} \exists$ unique solution u of WNLS in $S(t)u_{0} + C([-T,T];L^{2}(\mathbb{T})) \subset C([-T,T];H^{\alpha - \frac{1}{2} -}(\mathbb{T}))$

Measure Zero Issue?

- For fixed $\gamma > 0$: Apply Proposition with $T_j = 2^j$ and $\varepsilon_j = 2^{-j}\gamma$ to get $\Omega_{T_j,\varepsilon_j}$.
- Let $\Omega_{\gamma} = \bigcap_{j=1}^{\infty} \Omega_{T_j,\varepsilon_j}$. WNLS is globally well-posed on Ω_{γ} with $\mathbb{P}(\Omega_{\gamma}^c) < \gamma$.

Now, let
$$\widetilde{\Omega} = \bigcup_{\gamma>0} \Omega_{\gamma}$$
.
WNLS is GWP on $\widetilde{\Omega}$ and $\mathbb{P}(\widetilde{\Omega}^c) = 0$.

- Nicolas Burq, Patrick Gérard, and Nikolay Tzvetkov, An instability property of the nonlinear Schrödinger equation on S^d, Math.Res.Lett.(2002).
- Jean Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107–156.
- *______, Periodic nonlinear Schrödinger equation and invariant measures,* Comm. Math. Phys. **166** (1994), no. 1, 1–26.
- Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Comm. Math. Phys. 176 (1996), no. 2, 421–445.

- , Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity, Int. Math. Res. Not. 1998 (1998), no. 5, 253.
- Nicolas Burq and Nikolay Tzvetkov, *Random data Cauchy theory for supercritical wave equations*. *I. local theory*, Invent. Math. **173** (2008), no. 3, 449–475.
- Michael Christ, James Colliander, and Terence Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math. 125 (2003), no. 6, 1235–1293.
- A priori bounds and weak solutions for the nonlinear Schrödinger equation in Sobolev spaces of negative order, arXiv math.AP (2006), 22 pages.

- Michael Christ, *Power series solution of a nonlinear Schrödinger equation*, Mathematical aspects of nonlinear dispersive ... (2007).
- James Colliander and Tadahiro Oh, *Almost sure well-posedness of the cubic nonlinear Schrödinger equation below* $L^2(\mathbb{T}), arXivmath.AP(2009).$
- Herbert Koch and Daniel Tataru, *A priori bounds for the 1D cubic NLS in negative Sobolev spaces*, Int. Math. Res. Not. (2007), no. 16, Art. ID rnm053, 36.
- Luc Molinet, *On ill-posedness for the one-dimensional periodic cubic Schrödinger equation*, Math. Res. Lett (2009).
- Tadahiro Oh, *White noise for KdV and mKdV on the circle,* arXiv **math.AP** (2010), 26 pages. To appear in RIMS Kokyuroku Bessatsu.

Jeremy Quastel and Benedek Valko, *KdV preserves white noise*, Comm. Math. Phys. **277** (2008), no. 3, 707–714.

