Nonlinear Schrödinger Evolutions from Low Regularity Intial Data

J. Colliander
University of Toronto

Graduate Student Seminar

1 Cubic NLS on \mathbb{R}^{2}

2 High-Low Fourier Truncation

3 Bilinear Strichartz Estimate

4 The I-Method of Almost Conservation

1. Cubic NLS Initial Value Problem on \mathbb{R}^{2}

1. Cubic NLS Initial Value Problem on \mathbb{R}^{2}

We consider the initial value problems:

$$
\left\{\begin{array}{c}
\left(i \partial_{t}+\Delta\right) u= \pm|u|^{2} u \tag{3}\\
u(0, x)=u_{0}(x)
\end{array}\right.
$$

The + case is called defocusing; - is focusing. $N L S_{3}^{ \pm}$is ubiquitous in physics. The solution has a dilation symmetry

$$
u^{\lambda}(\tau, y)=\lambda^{-1} u\left(\lambda^{-2} \tau, \lambda^{-1} y\right)
$$

which is invariant in $L^{2}\left(\mathbb{R}^{2}\right)$. This problem is L^{2}-critical.
(This talk mostly addresses the defocusing case.)

Time Invariant Quantities

$$
\begin{aligned}
\text { Mass } & =\int_{\mathbb{R}^{d}}|u(t, x)|^{2} d x . \\
\text { Momentum } & =2 \Im \int_{\mathbb{R}^{2}} \bar{u}(t) \nabla u(t) d x . \\
\text { Energy } & =H[u(t)]=\frac{1}{2} \int_{R^{2}}|\nabla u(t)|^{2} d x \pm \frac{1}{2}|u(t)|^{4} d x . \\
\text { Hamiltonian } & \text { Kinetic Potential }
\end{aligned}
$$

- Mass is L^{2}; Momentum scales $H^{1 / 2}$; Energy involves H^{1}.
- Dynamics on a sphere in L^{2}; focusing/defocusing energy.

■ Local conservation laws express how quantity is conserved: e.g., $\partial_{t}|u|^{2}=\nabla \cdot 2 \Im(\bar{u} \nabla u)$.

Monotone or Almost Conserved Localizations?

Linear Schrödinger Propagator and Estimates

The solution of the linear Schrödinger initial value problem

$$
\left\{\begin{array}{l}
\left(i \partial_{t}+\Delta\right) u=0 \tag{d}\\
u(0, x)=u_{0}(x) .
\end{array}\right.
$$

is denoted $u(t, x)=e^{i t \Delta} u_{0}$. The solution can be given explicitly

- Fourier Multiplier Representation:

$$
e^{i t \Delta} u_{0}(x)=c_{\pi} \int_{\mathbb{R}^{d}} e^{i x \cdot \xi} e^{-i t|\xi|^{2}} \widehat{u_{0}}(\xi) d \xi
$$

- Convolution Representation:

$$
e^{i t \Delta} u_{0}(x)=c_{\pi}^{1} \frac{1}{(i t)^{d / 2}} \int_{\mathbb{R}^{d}} e^{i \frac{|x-y|^{2}}{4 t}} u_{0}(y) d y
$$

Linear Schrödinger Propagator and Estimates

The solution of the linear Schrödinger initial value problem

$$
\left\{\begin{array}{l}
\left(i \partial_{t}+\Delta\right) u=0 \tag{d}\\
u(0, x)=u_{0}(x) .
\end{array}\right.
$$

is denoted $u(t, x)=e^{i t \Delta} u_{0}$. The solution can be given explicitly

- Fourier Multiplier Representation:

$$
e^{i t \Delta} u_{0}(x)=c_{\pi} \int_{\mathbb{R}^{d}} e^{i x \cdot \xi} \frac{e^{-i t|\xi|^{2}}}{\mathbb{N}} \widehat{u_{0}}(\xi) d \xi
$$

- Convolution Representation:

Modulus 1 Multiplier

$$
e^{i t \Delta} u_{0}(x)=c_{\pi}^{1} \frac{1}{(i t)^{d / 2}} \int_{\mathbb{R}^{d}} e^{i \frac{|x-y|^{2}}{4 t}} u_{0}(y) d y
$$

Linear Schrödinger Propagator and Estimates

The solution of the linear Schrödinger initial value problem

$$
\left\{\begin{array}{l}
\left(i \partial_{t}+\Delta\right) u=0 \tag{d}\\
u(0, x)=u_{0}(x) .
\end{array}\right.
$$

is denoted $u(t, x)=e^{i t \Delta} u_{0}$. The solution can be given explicitly

- Fourier Multiplier Representation:

$$
e^{i t \Delta} u_{0}(x)=c_{\pi} \int_{\mathbb{R}^{d}} e^{i x \cdot \xi} e^{-i t|\xi|^{2}} \widehat{u_{0}}(\xi) d \xi
$$

- Convolution Representation:

$$
\begin{gathered}
e^{i t \Delta} u_{0}(x)=c_{\pi}^{1} \frac{1}{(i t)^{d / 2}} \int_{\mathbb{R}^{d}} e^{i \frac{|x-y|^{2}}{4 t}} u_{0}(y) d y \\
\text { decay }
\end{gathered}
$$

Estimates for Linear Schrödinger Propagator

■ Fourier Multiplier Representation \Longrightarrow Unitary in H^{s} :

$$
\left\|D_{x}^{s} e^{i t \Delta} u_{0}\right\|_{L_{x}^{2}}=\left\|D_{x}^{s} u_{0}\right\|_{L_{x}^{2}}
$$

■ Convolution Representation \Longrightarrow Dispersive estimate:

$$
\left\|e^{i t \Delta} u_{0}\right\|_{L_{x}^{2}} \leq \frac{C}{t^{d / 2}}\left\|u_{0}\right\|_{L_{x}^{1}} .
$$

- Spacetime estimates? Strichartz estimates hold, for example,

$$
\left\|e^{i t \Delta} u_{0}\right\|_{L^{4}\left(\mathbb{R}_{t} \times \mathbb{R}_{x}^{2}\right)} \leq C\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}_{x}^{2}\right)}
$$

(Strichartz estimates linked to Fourier restriction phenomena.)

LOCAL-IN-TIME THEORY FOR $N L S_{3}^{ \pm}\left(\mathbb{R}^{2}\right)$

- $\forall u_{0} \in L^{2}\left(\mathbb{R}^{2}\right) \exists T_{\text {lwp }}\left(u_{0}\right)$ determined by

$$
\left\|e^{i t \Delta} u_{0}\right\|_{L_{t x}^{4}\left(\left[0, T_{l \text { lwp }]}\right] \times \mathbb{R}^{2}\right)}<\frac{1}{100} \text { such that }
$$

\exists unique $u \in C\left(\left[0, T_{l w p}\right] ; L^{2}\right) \cap L_{t x}^{4}\left(\left[0, T_{l w p}\right] \times \mathbb{R}^{2}\right)$ solving $N L S_{3}^{+}\left(\mathbb{R}^{2}\right)$.

- $\forall u_{0} \in H^{s}\left(\mathbb{R}^{2}\right), s>0, T_{\text {lwp }} \sim\left\|u_{0}\right\|_{H^{s}}^{-\frac{2}{s}}$ and regularity persists: $u \in C\left(\left[0, T_{\text {lwp }}\right] ; H^{s}\left(\mathbb{R}^{2}\right)\right)$.
- Define the maximal forward existence time $T^{*}\left(u_{0}\right)$ by

$$
\|u\|_{L_{t x}^{4}\left(\left[0, T^{*}-\delta\right] \times \mathbb{R}^{2}\right)}<\infty
$$

for all $\delta>0$ but diverges to ∞ as $\delta \searrow 0$.
■ \exists small data scattering threshold $\mu_{0}>0$

$$
\left\|u_{0}\right\|_{L^{2}}<\mu_{0} \Longrightarrow\|u\|_{L_{t x}^{4}\left(\mathbb{R} \times \mathbb{R}^{2}\right)}<2 \mu_{0} .
$$

GLOBAL-IN-TIME THEORY?

What is the ultimate fate of the local-in-time solutions?
L^{2}-critical Scattering Conjecture:
$L^{2} \ni u_{0} \longmapsto u$ solving $N L S_{3}^{+}\left(\mathbb{R}^{2}\right)$ is global-in-time and

$$
\|u\|_{L_{t, x}^{4}}<A\left(u_{0}\right)<\infty
$$

Moreover, $\exists u_{ \pm} \in L^{2}\left(\mathbb{R}^{2}\right)$ such that

$$
\lim _{t \rightarrow \pm \infty}\left\|e^{ \pm i t \Delta} u_{ \pm}-u(t)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}=0
$$

Same statement for focusing $\operatorname{NLS}_{3}^{-}\left(\mathbb{R}^{2}\right)$ if $\left\|u_{0}\right\|_{L^{2}}<\|Q\|_{L^{2}}$. Remarks:

- Known for small data $\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}<\mu_{0}$.
- Known for large radial data [Killip-Tao-Visan 07].

$N L S_{3}^{ \pm}\left(\mathbb{R}^{2}\right)$: Present Status for General Data

regularity	idea	reference
$s>\frac{2}{3}$	high/low frequency decomposition	[Bourgain98]
$s>\frac{4}{7}$	$H(l u)$	[CKSTT02]
$s>\frac{1}{2}$	resonant cut of 2nd energy	[CKSTT07]
$s \geq \frac{1}{2}$	$H(l u)$ \& Interaction Morawetz	[Fang-Grillakis05]
$s>\frac{2}{5}$	$H(l u)$ \& Interaction $/$-Morawetz	[CGTz07]
$s>\frac{1}{3}$	resonant cut \& $/$-Morawetz	[C-Roy08]
$s>\frac{1}{4}$	resonant cut \& $/$-Morawetz	[Dodson09]
$s>0 ?$		

■ Morawetz-based arguments are only for defocusing case.
■ Focusing results assume $\left\|u_{0}\right\|_{L^{2}}<\|Q\|_{L^{2}}$.
■ Unify theory of focusing-under-ground-state and defocusing?

$N L S_{3}^{ \pm}\left(\mathbb{R}^{2}\right)$: Present Status for General Data

regularity	idea	reference
$s>\frac{2}{3}$	high/low frequency decomposition	[Bourgain98]
$s>\frac{4}{7}$	$H(l u)$	[CKSTT02]
$s>\frac{1}{2}$	resonant cut of 2nd energy	[CKSTT07]
$s \geq \frac{1}{2}$	$H(l u) \&$ Interaction Morawetz	[Fang-Grillakis05]
$s>\frac{2}{5}$	$H(l u)$ \& Interaction $/$-Morawetz	[CGTz07]
$s>\frac{1}{3}$	resonant cut \& $/$-Morawetz	[C-Roy08]
$s>\frac{1}{4}$	resonant cut \& $/$-Morawetz	[Dodson09]
$s>0 ?$		

■ Morawetz-based arguments are only for defocusing case.
■ Focusing results assume $\left\|u_{0}\right\|_{L^{2}}<\|Q\|_{L^{2}}$.
■ Unify theory of focusing-under-ground-state and defocusing?

2. Bourgain's High-Low Fourier Truncation

2. Bourgain's High-Low Fourier Truncation

IMRN International Mathematics Research Notices
1998, No. 5

Refinements of Strichartz' Inequality and Applications to 2D-NLS with Critical Nonlinearity

J. Bourgain

Summary
Consider the 2D IVP

$$
\left\{\begin{array}{l}
\mathfrak{i} u_{t}+\Delta u+\lambda|\mathfrak{u}|^{2} u=0 \\
u(0)=\varphi \in \mathrm{L}^{2}\left(\mathbb{R}^{2}\right) .
\end{array}\right.
$$

The theory on the Cauchy problem asserts a unique maximal solution

2. Bourgain's High-Low Fourier Truncation

Consider the Cauchy problem for defocusing cubic NLS on \mathbb{R}^{2} :

$$
\left\{\begin{array}{c}
\left(i \partial_{t}+\Delta\right) u=+|u|^{2} u \tag{3}\\
u(0, x)=\phi_{0}(x) .
\end{array}\right.
$$

We describe the first result to give global well-posedness below H^{1}.

- $N L S_{3}^{+}\left(\mathbb{R}^{2}\right)$ is GWP in H^{s} for $s>\frac{2}{3}$ [Bourgain 98].
- First use of Bilinear Strichartz estimate was in this proof.
- Proof cuts solution into low and high frequency parts.
- For $u_{0} \in H^{s}, s>\frac{2}{3}$, Proof gives (and crucially exploits),

$$
u(t)-e^{i t \Delta} \phi_{0} \in H^{1}\left(\mathbb{R}_{x}^{2}\right)
$$

Setting up; Decomposing Data

■ Fix a large target time T.

- Let $N=N(T)$ be large to be determined.
- Decompose the initial data:

$$
\phi_{0}=\phi_{\text {low }}+\phi_{\text {high }}
$$

where

$$
\phi_{\text {low }}(x)=\int_{|\xi|<N} e^{i x \cdot \xi \widehat{\phi_{0}}(\xi) d \xi ~ . ~}
$$

- Our plan is to evolve:

$$
\phi_{0}=\phi_{\text {low }}+\phi_{\text {high }}
$$

$$
u(t)=u_{\text {low }}(t)+u_{\text {high }}(t)
$$

Setting up; Decomposing Data

■ Fix a large target time T.

- Let $N=N(T)$ be large to be determined.
- Decompose the initial data:

$$
\phi_{0}=\phi_{\text {low }}+\phi_{\text {high }}
$$

where

$$
\phi_{\text {low }}(x)=\int_{|\xi|<N} e^{i x \cdot \xi \widehat{\phi_{0}}(\xi) d \xi}
$$

- Our plan is to evolve:

Setting up; Decomposing Data

Low Frequency Data Size:

- Kinetic Energy:

$$
\begin{aligned}
\left\|\nabla \phi_{\text {low }}\right\|_{L^{2}}^{2} & =\int_{|\xi|<N}|\xi|^{2}\left|\widehat{\phi_{0}}(\xi)\right|^{2} d x \\
& =\int_{|\xi|<N}|\xi|^{2(1-s)}|\xi|^{2 s}\left|\widehat{\phi_{0}}(\xi)\right|^{2} d x \\
& \leq N^{2(1-s)}\left\|\phi_{0}\right\|_{H^{s}}^{2} \leq C_{0} N^{2(1-s)} .
\end{aligned}
$$

- Potential Energy: $\left\|\phi_{\text {low }}\right\|_{L_{x}^{4}} \leq\left\|\phi_{\text {low }}\right\|_{L^{2}}^{1 / 2}\left\|\nabla \phi_{\text {low }}\right\|_{L^{2}}^{1 / 2}$

$$
\Longrightarrow H\left[\phi_{\text {low }}\right] \leq C N^{2(1-s)} .
$$

High Frequency Data Size:

$$
\left\|\phi_{h i g h}\right\|_{L^{2}} \leq C_{0} N^{-s},\left\|\phi_{h i g h}\right\|_{H^{s}} \leq C_{0} .
$$

LWP of Low Frequency Evolution along NLS

The NLS Cauchy Problem for the low frequency data

$$
\left\{\begin{align*}
\left(i \partial_{t}+\Delta\right) u_{\text {low }} & =+\left|u_{\text {low }}\right|^{2} u_{\text {low }} \tag{NLS}\\
u_{\text {low }}(0, x) & =\phi_{\text {low }}(x)
\end{align*}\right.
$$

is well-posed on $\left[0, T_{\text {lwp }}\right.$] with $T_{\text {lwp }} \sim\left\|\phi_{\text {low }}\right\|_{H^{1}}^{-2} \sim N^{-2(1-s)}$.

We obtain, as a consequence of the local theory, that

$$
\left\|u_{\text {low }}\right\|_{L_{\left.0, T_{l / w p}\right], x}^{4}} \leq \frac{1}{100}
$$

LWP of High Frequency Evolution along DE

The NLS Cauchy Problem for the high frequency data

$$
\left\{\begin{align*}
\left(i \partial_{t}+\Delta\right) u_{\text {high }}= & +2\left|u_{\text {low }}\right|^{2} u_{\text {high }}+\operatorname{similar}+\left|u_{\text {high }}\right|^{2} u_{\text {high }} \tag{DE}\\
& u_{\text {high }}(0, x)=\phi_{\text {high }}(x)
\end{align*}\right.
$$

is also well-posed on $\left[0, T_{\text {lwp }}\right]$.

Remark: The LWP lifetime of NLS evolution of $u_{\text {low }}$ AND the LWP lifetime of the $D E$ evolution of $u_{h i g h}$ are controlled by $\left\|u_{\text {low }}(0)\right\|_{H^{1}}$.

Extra Smoothing of Nonlinear Duhamel Term

The high frequency evolution may be written

$$
u_{h i g h}(t)=e^{i t \Delta} u_{h i g h}+w .
$$

The local theory gives $\|w(t)\|_{L^{2}} \lesssim N^{-s}$. Moreover, due to smoothing (obtained via bilinear Strichartz), we have that

$$
\begin{equation*}
w \in H^{1},\|w(t)\|_{H^{1}} \lesssim N^{1-2 s+} . \tag{SMOOTH!}
\end{equation*}
$$

Let's postpone the proof of (SMOOTH!).

Nonlinear High Frequency Term Hiding Step!

- $\forall t \in\left[0, T_{\text {lwp }}\right]$, we have

$$
u(t)=u_{\text {low }}(t)+e^{i t \Delta} \phi_{h i g h}+w(t)
$$

- At time $T_{\text {lwp }}$, we define data for the progressive sheme:

$$
u\left(T_{\text {lwp }}\right)=u_{\text {low }}\left(T_{\text {lwp }}\right)+w\left(T_{\text {lwp }}\right)+e^{i T_{\text {lwp }} \Delta} \phi_{\text {high }} .
$$

$$
u(t)=u_{\text {low }}^{(2)}(t)+u_{\text {high }}^{(2)}(t)
$$

for $t>T_{\text {lwp }}$.

Nonlinear High Frequency Term Hiding Step!

- $\forall t \in\left[0, T_{\text {lwp }}\right]$, we have

$$
u(t)=u_{\text {low }}(t)+e^{i t \Delta} \phi_{\text {high }}+w(t) .
$$

- At time $T_{\text {lwp }}$, we define data for the progressive sheme:

$$
\begin{gathered}
u\left(T_{\text {lwp }}\right)=\frac{u_{\text {low }}\left(T_{\text {lwp }}\right)+w\left(T_{\text {lwp }}\right)}{}+e^{i T_{\text {lwp }} \Delta} \phi_{\text {high }} . \\
\downarrow \\
u(t)=u_{\text {low }}^{(2)}(t)+u_{\text {high }}^{(2)}(t)
\end{gathered}
$$

for $t>T_{\text {lwp }}$.

HAMILTONIAN INCREMENT: $\phi_{\text {low }}(0) \longmapsto u_{\text {low }}^{(2)}\left(T_{\text {lwp }}\right)$

The Hamiltonian increment due to $w\left(T_{l w p}\right)$ being added to low frequency evolution can be calcluated. Indeed, by Taylor expansion, using the bound (SMOOTH!) and energy conservation of $u_{\text {low }}$ evolution, we have using

$$
\begin{aligned}
H\left[u_{l}^{(2)}\left(T_{l w p}\right)\right] & =H\left[u_{l}(0)\right]+\left(H\left[u_{l}\left(T_{l w p}\right)+w\left(T_{l w p}\right)\right]-H\left[u_{l}\left(T_{l w p}\right)\right]\right) \\
& \sim N^{2(1-s)}+N^{2-3 s+} \sim N^{2(1-s)} .
\end{aligned}
$$

Moreover, we can accumulate N^{s} increments of size $N^{2-3 s+}$ before we double the size $N^{2(1-s)}$ of the Hamiltonian. During the iteration, Hamiltonian of "low frequency" pieces remains of size $\lesssim N^{2(1-s)}$ so the LWP steps are of uniform size $N^{-2(1-s)}$. We advance the solution on a time interval of size:

$$
N^{s} N^{-2(1-s)}=N^{-2+3 s} .
$$

For $s>\frac{2}{3}$, we can choose N to go past target time T.

How do we prove (SMOOTH!)?

Bourgain's Bilinear Strichartz Estimate: For (dyadic) $N \leq L$

$$
\left\|e^{i t \Delta} f_{L} e^{i t \Delta} g_{N}\right\|_{L_{t, x}^{2}} \leq \frac{N^{\frac{2-1}{2}}}{L^{\frac{1}{2}}}\left\|f_{L}\right\|_{L_{x}^{2}}\left\|g_{N}\right\|_{L_{x}^{2}}
$$

Corollary

For $s \geq \frac{1}{2}$

$$
\begin{aligned}
\left\|D_{x}^{s}\left(u_{1} u_{2}\right)\right\|_{L_{[0, \delta], x}^{2}} \leq & C\left(\left\|u_{1}\right\|_{X_{[0, \delta]}^{s, 1 / 2+}}\left\|u_{2}\right\|_{X_{[0, \delta]}^{0,1 / 2+}}\right. \\
& \left.+\left\|u_{1}\right\|_{X_{[0, \delta]}^{1 / 2,1 / 2+}}\left\|u_{2}\right\|_{X_{[0, \delta]}^{s-1 / 2,1 / 2+}}\right) .
\end{aligned}
$$

Thus, the Bilinear Estimate allows us move half a derivative off the high frequency part and instead onto of the low frequency part.

Treatment of a typical term in w

- Using the controls we have on $u_{\text {low }}, u_{\text {high }}$ from the local theory on $\left[0, T_{\text {lwp }}\right]$, we want to prove for

$$
w=\int_{0}^{t} e^{i\left(t-t^{\prime}\right) \Delta}\left|u_{\text {low }}\right|^{2} u_{\text {high }}\left(t^{\prime}\right) d t^{\prime}
$$

that $\sup _{t \in\left[0, T_{\text {lwop }}\right]}\|\nabla w\|_{L^{2}}<N^{1-2 S+}$.

- By Sobolev embedding, we have

$$
\|w\|_{L_{\left[0, T_{l / p p}\right]}^{\infty} H^{1}} \leq\|w\|_{\left.X_{\left[0, T_{l w p}\right.}^{1,1 / 2+}\right]} .
$$

- The mapping $f \longmapsto \int_{0}^{t} e^{i\left(t-t^{\prime}\right) \Delta}$ is formally $f \longmapsto\left(i \partial_{t}+\Delta\right)^{-1} f$ which, due to time localization, is essentially $\left.\left.\widehat{f} \longmapsto\langle\tau+| \xi\right|^{2}\right\rangle \widehat{f}$. It suffices to control $\left\|D_{X}\left|u_{\text {low }}\right|^{2} u_{\text {high }}\right\|_{X^{0,-1 / 2+}}$. Proceed by duality....

Treatment of a typical term in w

$$
\begin{gathered}
\|w\|_{L_{\left[0, T_{\text {lwp }]}\right.}^{\infty} H^{1}} \leq \sup _{\|g\|_{x^{0,1 / 2-}} \leq 1}\left\langle g, D_{x}\left(\left|u_{\text {low }}\right|^{2} u_{h i g h}\right)\right\rangle \\
\lesssim \sup _{g}\left\langle g D_{x} u_{\text {low }}, u_{\text {low }} u_{h i g h}\right\rangle+\sup _{g}\left\langle g u_{\text {low }}, D_{x}\left(u_{\text {low }} u_{\text {high }}\right)\right\rangle \\
=\text { easier }+\sup _{g}\left\langle D_{x}^{1 / 2}\left(g u_{\text {low }}\right), D_{x}^{1 / 2}\left(u_{\text {low }} u_{h i g h}\right\rangle\right.
\end{gathered}
$$

The corollary and the available bounds then give (SMOOTH!).

3. Bilinear Strichartz Estimate

3. Bilinear Strichartz Estimate

- Recall the Strichartz estimate for $\left(i \partial_{t}+\Delta\right)$ on \mathbb{R}^{2} :

$$
\left\|e^{i t \Delta} u_{0}\right\|_{L^{4}\left(\mathbb{R}_{t} \times \mathbb{R}_{x}^{2}\right)} \leq C\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}_{x}^{2}\right)}
$$

■ We can view this trivially as a bilinear estimate by writing

$$
\left\|e^{i t \Delta} u_{0} e^{i t \Delta} v_{0}\right\|_{L^{2}\left(\mathbb{R}_{t} \times \mathbb{R}_{x}^{2}\right)} \leq C\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}_{x}^{2}\right)}\left\|v_{0}\right\|_{L^{2}\left(\mathbb{R}_{x}^{2}\right)}
$$

■ Bourgain refined this trivial bilinear estimate for functions having certain Fourier support properties.

Bilinear Strichartz Estimate

TheOREM

For (dyadic) $N \leq L$ and for $x \in \mathbb{R}^{2}$,

$$
\left\|e^{i t \Delta} f_{L} e^{i t \Delta} g_{N}\right\|_{L_{t, x}^{2}} \leq \frac{N^{\frac{1}{2}}}{L^{\frac{1}{2}}}\left\|f_{L}\right\|_{L_{x}^{2}}\left\|g_{N}\right\|_{L_{x}^{2}}
$$

- Here spt $\left(\widehat{f}_{L}\right) \subset\{|\xi| \sim L\}, g_{N}$ similar.
- Observe that $\sqrt{\frac{N}{L}} \ll 1$ when $N \ll L$.

3. Bourgain's Proof

Bourgain: IMRN98

Proof. Since the standard Strichartz inequality yields (112) without the

$$
\left(\frac{M_{1}}{M_{2}}\right)^{\frac{1}{2}} \text {-factor, }
$$

we may assume $M_{2} \gg M_{1}$.

$$
\begin{aligned}
& \text { Writing } \\
& \left(e^{i t \Delta} \psi_{1}\right)\left(e^{i t \Delta} \psi_{2}\right)=\int \widehat{\psi}_{1}\left(\xi_{1}\right) \widehat{\psi}_{2}\left(\xi_{2}\right) e^{i\left[\left(\xi_{1}+\xi_{2}\right) \cdot x+\left(\left|\xi_{1}\right|^{2}+\left|\xi_{2}\right|^{2}\right) t\right]} d \xi_{1} d \xi_{2}
\end{aligned}
$$

it follows from Parseval's identity and Cauchy-Schwarz that

$$
\begin{aligned}
&\left\|\left(e^{i t \Delta} \psi_{1}\right)\left(e^{i t \Delta} \psi_{2}\right)\right\|_{2}^{2}= \int \mathrm{d} \xi \mathrm{~d} \lambda\left|\int \widehat{\psi}_{1}\left(\xi_{1}\right) \widehat{\psi}_{2}\left(\xi-\xi_{1}\right) \delta_{0}\left(\left|\xi_{1}\right|^{2}+\left|\xi-\xi_{1}\right|^{2}-\lambda\right) \mathrm{d} \xi_{1}\right|^{2} \\
& \leq\left\|\psi_{1}\right\|_{2}^{2}\left\|\psi_{2}\right\|_{2}^{2}\left[\operatorname { s u p } _ { \lambda , | \xi | \sim M _ { 2 } } \operatorname { m e s } _ { (1) } \left[\xi_{1}| | \xi_{1} \mid \sim M_{1}\right.\right. \\
&\left.\left.\quad \text { and }\left|\xi_{1}\right|^{2}+\left|\xi-\xi_{1}\right|^{2}=\lambda\right]\right] \\
&< \\
& \\
& \\
& M_{1}
\end{aligned}
$$

Proof Based on Change of Variables

Ideas from (Kenig-Ponce-Vega); see [C-Delort-Kenig-Staffilani].
Recall the Fourier multiplier representation of the propagator:

$$
\begin{aligned}
& e^{i t \Delta} f(x)=c_{\pi} \int_{\mathbb{R}^{2}} e^{i x \cdot \xi} e^{-i t|\xi|^{2}} \widehat{f}(\xi) d \xi \\
&=c_{\pi} \int_{\mathbb{R}^{1+2}} e^{i(x \cdot \xi+t \tau)} \delta_{0}\left(\tau+|\xi|^{2}\right) \widehat{f}(\xi) d \tau d \xi \\
& \begin{array}{l}
\text { spacetime inverse } \\
\text { Fourier transform }
\end{array}
\end{aligned}
$$

With $f=f_{L}$ and $g=g_{N}$, we wish to estimate

$$
\left\|e^{i t \Delta} f e^{i t \Delta} g\right\|_{L_{t, x}^{2}}=\left\|\mathcal{F}\left[e^{i t \Delta} f e^{i t \Delta} g\right]\right\|_{L_{\tau, \xi}^{2}}
$$

Using Fourier tranform property, $\mathcal{F}(a b)=\widehat{a} * \widehat{b}$, we find....

Fourier Manipulations; Dirac Evaluations

We wish to estimate (in $L_{\tau, \xi}^{2}$) the expression

$$
\begin{aligned}
& \quad \int \delta_{0}\left(\tau_{1}+\left|\xi_{1}\right|^{2}\right) \widehat{f}\left(\xi_{1}\right) \delta_{0}\left(\tau_{2}+\left|\xi_{2}\right|^{2}\right) \widehat{g}\left(\xi_{2}\right) \\
& \tau=\tau_{1}+\tau_{2} \\
& \xi=\xi_{1}+\xi_{2}
\end{aligned}
$$

Evaluating the δ functions, we find $\tau_{j}=-\left|\xi_{j}\right|^{2}$, so

$$
\begin{aligned}
& \int \quad \widehat{f}\left(\xi_{1}\right) \widehat{g}\left(\xi_{2}\right) \\
& \tau=-\left|\xi_{1}\right|^{2}-\left|\xi_{2}\right|^{2} \\
& \xi=\xi_{1}+\xi_{2}
\end{aligned}
$$

We proceed by duality. Let's test this against $d(\tau, \xi) \ldots$

Duality Reduces Matters to Certain Integral

$$
\begin{gathered}
\left\|e^{i t \Delta} f e^{i t \Delta} g\right\|_{L_{t, x}^{2}}=\sup _{\|d\|_{L_{\tau, \xi} \leq 1} \leq 1}\left\langle d(\tau, \xi), \int_{\tau=-\left|\xi_{1}\right|^{2}-\left|\xi_{2}\right|^{2}} \widehat{f}\left(\xi_{1}\right) \widehat{g}\left(\xi_{2}\right)\right\rangle . \\
=\sup _{d} \int d\left(-\left|\xi_{1}\right|^{2}-\left|\xi_{2}\right|^{2}, \xi_{1}+\xi_{2}\right) \widehat{f}\left(\xi_{1}\right) \widehat{g}\left(\xi_{2}\right) d \xi_{1} d \xi_{2} .
\end{gathered}
$$

Fourier manipulations reduce matters to bounding an integral.

Our task: Show the integral above is bounded by

$$
\lesssim{\sqrt{\frac{N}{L}}\|f\|_{L^{2}}\|g\|_{L^{2}}\|d\|_{L^{2}} .}
$$

Setting Up the Change of Variables

Let's define a change of variables motivated by the arguments of d :

$$
u=-\left|\xi_{1}\right|^{2}-\left|\xi_{2}\right|^{2}, \quad v=\xi_{1}+\xi_{2}
$$

■ Note that $u \in \mathbb{R}$ and $v \in \mathbb{R}^{2}$. Thus, $d u d v$ is a measure in 3d while $d \xi_{1} d \xi_{2}$ is a measure in 4 d .

- Note also that ξ_{2} is the argument of $g=g_{N}$ so it is localized to the smaller dyadic shell $\left|\xi_{2}\right| \sim N \ll L$.
- Let's denote the components of $\xi_{j} \in \mathbb{R}^{2}$ with superscripts:

$$
\xi_{j}=\left(\xi_{j}^{1}, \xi_{j}^{2}\right)
$$

- The full change of variables is the defined via

$$
d u d v d \xi_{2}^{1}=|J| d \xi_{1}^{1} d \xi_{1}^{2} d \xi_{2}^{2} d \xi_{2}^{1}
$$

We have an extra variable outside the changed integral.

The Jacobian

The Jacobian matrix J is calculated as

$$
J=\left[\begin{array}{lll}
\frac{\partial u}{\partial \xi_{1}^{1}} & \frac{\partial v^{1}}{\partial \xi_{1}^{1}} & \frac{\partial v^{2}}{\partial \xi^{1}} \\
\frac{\partial u}{\partial \xi_{2}^{1}} & \frac{\partial v^{1}}{\partial \xi^{1}} & \frac{\partial v^{2}}{\partial \xi_{2}^{1}} \\
\frac{\partial u}{\partial \xi_{2}^{2}} & \frac{\partial v^{1}}{\partial \xi_{2}^{2}} & \frac{\partial v^{2}}{\partial \xi_{2}^{2}}
\end{array}\right] .
$$

The explicit forms for u, v permit calculating

$$
|J|=2\left|\xi_{1}^{2}-\xi_{2}^{2}\right| .
$$

Since $\left|\xi_{1}\right| \sim L$, we may assume by rotation that $|J| \sim L$.

Changing Variables

Our task: Estimate, for $\left|\xi_{1}\right| \sim L,\left|\xi_{2}\right| \sim N$, the integral

$$
\int_{\left|\xi_{2}^{1}\right| \lesssim N} \int_{\xi_{1}, \xi_{2}^{2}} d\left(-\left|\xi_{1}\right|^{2}-\left|\xi_{2}\right|^{2}, \xi_{1}+\xi_{2}\right) \widehat{f}\left(\xi_{1}\right) \widehat{g}\left(\xi_{2}\right) d \xi_{1}^{1} d \xi_{1}^{2} d \xi_{2}^{2} d \xi_{2}^{1}
$$

We insert the Jacobian and reexpress inner integration as

$$
\int_{\xi_{1}, \xi_{2}^{2}} d\left(-\left|\xi_{1}\right|^{2}-\left|\xi_{2}\right|^{2}, \xi_{1}+\xi_{2}\right) \frac{\widehat{f}\left(\xi_{1}\right) \widehat{g}\left(\xi_{2}\right)}{|J|}|J| d \xi_{1}^{1} d \xi_{1}^{2} d \xi_{2}^{2}
$$

Changing variables, we observe this equals

$$
\int_{u, v} d(u, v) H\left(u, v ; \xi_{2}^{1}\right)|J| d u d v
$$

where

$$
H\left(u, v ; \xi_{2}^{1}\right)=\frac{\widehat{f}\left(\xi_{1}\right) \widehat{g}\left(\xi_{2}\right)}{|J|}
$$

Cauchy-Schwarz; Jacobian Remnant

We apply Cauchy-Schwarz in u, v to bound by

$$
\|d\|_{L^{2}}\left(\int_{u, v}\left|H\left(u, v ; \xi_{2}^{1}\right)\right|^{2} d u d v\right)^{1 / 2}
$$

We drop $\|d\|_{L^{2}} \leq 1$ by duality and change variables back. We get

$$
\left(\int_{\xi_{1}, \xi_{2}^{2}}\left|\frac{\widehat{f}\left(\xi_{1}\right) \widehat{g}\left(\xi_{2}\right)}{|J|}\right|^{2}|J| d \xi_{1}^{1} d \xi_{1}^{2} d \xi_{2}^{2}\right)^{1 / 2}
$$

One factor of the Jacobian denominator remains! We gain $L^{-1 / 2}$.

We still have the extra outside integration....

Trivial Cauchy-Schwarz on Extra Integral

Recalling what we must control, using what we have obtained....

$$
\frac{1}{L^{1 / 2}} \int_{\left|\xi_{2}^{1}\right| \lesssim N}\left(\int_{\xi_{1}, \xi_{2}^{2}}\left|\widehat{f}\left(\xi_{1}\right) \widehat{g}\left(\xi_{2}\right)\right|^{2} d \xi_{1}^{1} d \xi_{1}^{2} d \xi_{2}^{2}\right)^{1 / 2} d \xi_{2}^{1} .
$$

Apply Cauchy-Schwarz in ξ_{2}^{1} and pay the penalty of $N^{1 / 2}$.
We gain over the trivial bilinear estimate by the factor

$$
\sqrt{\frac{(\text { measure of extra support })}{|J|}}=\sqrt{\frac{N}{L}} \text {. }
$$

4. The I-Method of Almost Conservation

4. The I-Method of Almost Conservation

Let $H^{s} \ni u_{0} \longmapsto u$ solve $N L S$ for $t \in\left[0, T_{\text {lwp }}\right], T_{\text {lwp }} \sim\left\|u_{0}\right\|_{H^{s}}^{-2 / s}$.
Consider two ingredients (to be defined):
■ A smoothing operator $I=I_{N}: H^{s} \longmapsto H^{1}$. The NLS evolution $u_{0} \longmapsto u$ induces a smooth reference evolution $H^{1} \ni I u_{0} \longmapsto l u$ solving $I(N L S)$ equation on $\left[0, T_{l w p}\right]$.

- A modified energy $\tilde{E}[I u]$ built using the reference evolution.

First Version of the $/$-method: $\widetilde{E}=H[/ u]$

For $s<1, N \gg 1$ define smooth monotone $m: \mathbb{R}_{\xi}^{2} \rightarrow \mathbb{R}^{+}$s.t.

$$
m(\xi)=\left\{\begin{array}{cc}
1 & \text { for }|\xi|<N \\
\left(\frac{|\xi|}{N}\right)^{s-1} & \text { for }|\xi|>2 N
\end{array}\right.
$$

The associated Fourier multiplier operator, $\widehat{(I u)}(\xi)=m(\xi) \widehat{u}(\xi)$, satisfies I: $H^{s} \rightarrow H^{1}$. Note that, pointwise in time, we have

$$
\|u\|_{H^{s}} \lesssim\|l u\|_{H^{1}} \lesssim N^{1-s}\|u\|_{H^{s}}
$$

Set $\widetilde{E}[l u(t)]=H[l u(t)]$. Other choices of \widetilde{E} are mentioned later.

AC Law Decay and Sobolev GWP index

1 Modified LWP. Initial v_{0} s.t. $\left\|\nabla / v_{0}\right\|_{L^{2}} \sim 1$ has $T_{\text {lwp }} \sim 1$.
2 Goal. $\forall u_{0} \in H^{s}, \forall T>0$, construct $u:[0, T] \times \mathbb{R}^{2} \rightarrow \mathbb{C}$.
$3 \Longleftrightarrow$ Dilated Goal. Construct $u^{\lambda}:\left[0, \lambda^{2} T\right] \times \mathbb{R}^{2} \rightarrow \mathbb{C}$.
4 Rescale Data. $\left\|I \nabla u_{0}^{\lambda}\right\|_{L^{2}} \lesssim N^{1-s} \lambda^{-s}\left\|u_{0}\right\|_{H^{s}} \sim 1$ provided we choose $\lambda=\lambda(N) \sim N^{\frac{1-s}{s}} \Longleftrightarrow N^{1-s} \lambda^{-s} \sim 1$.
5 Almost Conservation Law. $\|/ \nabla u(t)\|_{L^{2}} \lesssim H[/ u(t)]$ and

$$
\sup _{t \in\left[0, T_{\text {lwp }]}\right.} H[l u(t)] \leq H[l u(0)]+N^{-\alpha} .
$$

6 Delay of Data Doubling. Iterate modified LWP N^{α} steps with $T_{l w p} \sim 1$. We obtain rescaled solution for $t \in\left[0, N^{\alpha}\right]$.

$$
\lambda^{2}(N) T<N^{\alpha} \Longleftrightarrow T<N^{\alpha+\frac{2(s-1)}{s}} \text { so } s>\frac{2}{2+\alpha} \text { suffices. }
$$

First Version of the $/$-method: $\widetilde{E}=H[/ u]$

A Fourier analysis established the almost conservation property of $\widetilde{E}=H[l u]$ with $\alpha=\frac{3}{2}$ which led to...

Theorem (CKSTT 02)

$N L S_{3}^{+}\left(\mathbb{R}^{2}\right)$ is globally well-posed for data in $H^{s}\left(\mathbb{R}^{2}\right)$ for $\frac{4}{7}<s<1$. Moreover, $\|u(t)\|_{H^{s}} \lesssim\langle t\rangle^{\beta(s)}$ for appropriate $\beta(s)$.

- The smoothing property $u(t)-e^{i t \Delta} u_{0} \in H^{1}$ is not obtained.

■ Same result for $N L S_{3}^{-}\left(\mathbb{R}^{2}\right)$ if $\left\|u_{0}\right\|_{L^{2}}<\|Q\|_{L^{2}}$. Here Q is the ground state (unique positive solution of $-Q+\Delta Q=-Q^{3}$).

- Fourier analysis leading to $\alpha=\frac{3}{2}$ in fact gives $\alpha=2$ for most frequency interactions.

Almost Conservation Law for $H[/ u]$

Proposition

Given $s>\frac{4}{7}, N \gg 1$, and initial data $\phi_{0} \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ with $E\left(I_{N} u_{0}\right) \leq 1$, then there exists a $T_{\text {lwp }} \sim 1$ so that the solution

$$
u(t, x) \in C\left(\left[0, T_{l w p}\right], H^{s}\left(\mathbb{R}^{2}\right)\right)
$$

of $\mathrm{NLS}_{3}^{+}\left(\mathbb{R}^{2}\right)$ satisfies

$$
E\left(I_{N} u\right)(t)=E\left(I_{N} u\right)(0)+O\left(N^{-\frac{3}{2}+}\right)
$$

for all $t \in\left[0, T_{\text {lwp }}\right]$.

Ideas in the Proof of Almost Conservation

- Standard Energy Conservation Calculation:

$$
\begin{align*}
\partial_{t} H(u) & =\Re \int_{\mathbb{R}^{2}} \overline{u_{t}}\left(|u|^{2} u-\Delta u\right) d x \tag{cancellation}\\
& =\Re \int_{\mathbb{R}^{2}} \overline{u_{t}}\left(|u|^{2} u-\Delta u-i u_{t}\right) d x=0 .
\end{align*}
$$

■ For the smoothed reference evolution, we imitate....

$$
\begin{aligned}
\partial_{t} H(I u) & =\Re \int_{\mathbb{R}^{2}} \overline{\overline{u_{t}}}\left(\left.| | u\right|^{2} l u-\Delta l u-i l u_{t}\right) d x \\
& =\Re \int_{\mathbb{R}^{2}} \overline{\operatorname{lu}}\left(\left.| | u\right|^{2} l u-\zeta\left(|u|^{2} u\right)\right) d x \neq 0 .
\end{aligned}
$$

■ The increment in modified energy involves a commutator,

$$
H(I u)(t)-H(I u)(0)=\Re \int_{0}^{t} \int_{\mathbb{R}^{2}} \overline{I u_{t}}\left(|I u|^{2} l u-I\left(|u|^{2} u\right)\right) d x d t
$$

■ Littlewood-Paley, Case-by-Case, (Bi)linear Strichartz, $X_{s, b \ldots}$

Remarks

- The almost conservation property

$$
\sup _{t \in\left[0, T_{\text {ww }}\right]} \tilde{E}[l u(t)] \leq \widetilde{E}\left[/ u_{0}\right]+N^{-\alpha}
$$

leads to GWP for

$$
s>s_{\alpha}=\frac{2}{2+\alpha} .
$$

- The I-method is a subcritical method. To prove the Scattering Conjecture at $s=0$ via the I-method would require $\alpha=+\infty$.
- The I-method localizes the conserved density in frequency. Similar ideas appear in recent critical scattering results.
- There is a multilinear corrections algorithm for defining other choices of \widetilde{E} which yield a better AC property.

