Nonlinear Schrödinger Evolutions from Low Regularity Initial Data

J. Colliander

University of Toronto

PIMS A

August 2009

- 1 Cubic NLS on \mathbb{R}^2
- 2 High-Low Fourier Truncation
- 3 BILINEAR STRICHARTZ ESTIMATE
- 4 The I-Method of Almost Conservation

1. Cubic NLS Initial Value Problem on \mathbb{R}^2

1. Cubic NLS Initial Value Problem on \mathbb{R}^2

We consider the initial value problems:

$$\begin{cases} (i\partial_t + \Delta)u = \pm |u|^2 u \\ u(0, x) = u_0(x). \end{cases}$$
 (NLS₃[±](R²))

The + case is called defocusing; - is focusing. NLS_3^{\pm} is ubiquitous in physics. The solution has a dilation symmetry

$$u^{\lambda}(\tau, y) = \lambda^{-1}u(\lambda^{-2}\tau, \lambda^{-1}y).$$

which is invariant in $L^2(\mathbb{R}^2)$. This problem is L^2 -critical.

(This talk mostly addresses the defocusing case.)

TIME INVARIANT QUANTITIES

$$\begin{aligned} \mathsf{Mass} &= \int_{\mathbb{R}^d} |u(t,x)|^2 dx. \\ \mathsf{Momentum} &= 2\Im \int_{\mathbb{R}^2} \overline{u}(t) \nabla u(t) dx. \\ \mathsf{Energy} &= H[u(t)] = \frac{1}{2} \int_{R^2} |\nabla u(t)|^2 dx \pm \frac{1}{2} |u(t)|^4 dx. \\ \mathsf{Hamiltonian} & \mathsf{Kinetic} & \mathsf{Potential} \end{aligned}$$

- Mass is L^2 ; Momentum scales $H^{1/2}$; Energy involves H^1 .
- Dynamics on a sphere in L^2 ; focusing/defocusing energy.
- Local conservation laws express **how** quantity is conserved: e.g., $\partial_t |u|^2 = \nabla \cdot 2\Im(\overline{u}\nabla u)$. Monotone or Almost Conserved Localizations?

Linear Schrödinger Propagator and Estimates

The solution of the linear Schrödinger initial value problem

$$\begin{cases} (i\partial_t + \Delta)u = 0\\ u(0, x) = u_0(x). \end{cases}$$
 (LS(\mathbb{R}^d))

is denoted $u(t,x) = e^{it\Delta}u_0$. The solution can be given explicitly

■ Fourier Multiplier Representation:

$$e^{it\Delta}u_0(x)=c_\pi\int_{\mathbb{R}^d}e^{ix\cdot\xi}e^{-it|\xi|^2}\widehat{u_0}(\xi)d\xi.$$

Convolution Representation:

$$e^{it\Delta}u_0(x)=c_{\pi}^1\frac{1}{(it)^{d/2}}\int_{\mathbb{R}^d}e^{i\frac{|x-y|^2}{4t}}u_0(y)dy.$$

Linear Schrödinger Propagator and Estimates

The solution of the linear Schrödinger initial value problem

$$\begin{cases} (i\partial_t + \Delta)u = 0\\ u(0, x) = u_0(x). \end{cases}$$
 (LS(\mathbb{R}^d))

is denoted $u(t,x)=e^{it\Delta}u_0$. The solution can be given explicitly

■ Fourier Multiplier Representation :

$$e^{it\Delta}u_0(x)=c_\pi\int_{\mathbb{R}^d}e^{ix\cdot\xi}\underline{e^{-it|\xi|^2}}\widehat{u_0}(\xi)d\xi.$$

Convolution Representation:

$$e^{it\Delta}u_0(x)=c_{\pi}^1\frac{1}{(it)^{d/2}}\int_{\mathbb{R}^d}e^{i\frac{|x-y|^2}{4t}}u_0(y)dy.$$

Linear Schrödinger Propagator and Estimates

The solution of the linear Schrödinger initial value problem

$$\begin{cases} (i\partial_t + \Delta)u = 0 \\ u(0, x) = u_0(x). \end{cases}$$
 (LS(\mathbb{R}^d))

is denoted $u(t,x) = e^{it\Delta}u_0$. The solution can be given explicitly

■ Fourier Multiplier Representation:

$$e^{it\Delta}u_0(x)=c_\pi\int_{\mathbb{R}^d}e^{ix\cdot\xi}e^{-it|\xi|^2}\widehat{u_0}(\xi)d\xi.$$

■ Convolution Representation :

$$e^{it\Delta}u_0(x)=c_\pi^1rac{1}{(it)^{d/2}}\int_{\mathbb{R}^d}e^{irac{|x-y|^2}{4t}}u_0(y)dy.$$

ESTIMATES FOR LINEAR SCHRÖDINGER PROPAGATOR

■ Fourier Multiplier Representation \implies Unitary in H^s :

$$||D_x^s e^{it\Delta} u_0||_{L_x^2} = ||D_x^s u_0||_{L_x^2}.$$

lacktriangle Convolution Representation \Longrightarrow Dispersive estimate:

$$\|e^{it\Delta}u_0\|_{L^2_x} \leq \frac{C}{t^{d/2}}\|u_0\|_{L^1_x}.$$

Spacetime estimates? Strichartz estimates hold, for example,

$$\|e^{it\Delta}u_0\|_{L^4(\mathbb{R}_t\times\mathbb{R}_x^2)}\leq C\|u_0\|_{L^2(\mathbb{R}_x^2)}.$$

(Strichartz estimates linked to Fourier restriction phenomena.)

Local-in-time theory for $NLS_3^{\pm}(\mathbb{R}^2)$

 \blacksquare \forall $u_0 \in L^2(\mathbb{R}^2) \exists T_{lwp}(u_0)$ determined by

$$\|e^{it\Delta}u_0\|_{L^4_{tx}([0,\mathcal{T}_{lw
ho}] imes\mathbb{R}^2)}<rac{1}{100}$$
 such that

 \exists unique $u \in C([0, T_{lwp}]; L^2) \cap L^4_{tx}([0, T_{lwp}] \times \mathbb{R}^2)$ solving $NLS_3^+(\mathbb{R}^2)$.

- $\forall u_0 \in H^s(\mathbb{R}^2), s > 0, T_{lwp} \sim ||u_0||_{H^s}^{-\frac{2}{s}}$ and regularity persists: $u \in C([0, T_{lwp}]; H^s(\mathbb{R}^2)).$
- Define the maximal forward existence time $T^*(u_0)$ by

$$||u||_{L^4_{t_*}([0,T^*-\delta]\times\mathbb{R}^2)}<\infty$$

for all $\delta > 0$ but diverges to ∞ as $\delta \searrow 0$.

 \blacksquare \exists small data scattering threshold $\mu_0 > 0$

$$||u_0||_{L^2} < \mu_0 \implies ||u||_{L^4_{tv}(\mathbb{R} \times \mathbb{R}^2)} < 2\mu_0.$$

GLOBAL-IN-TIME THEORY?

What is the ultimate fate of the local-in-time solutions?

L²-critical Scattering Conjecture:

 $\overline{L^2 \ni u_0 \longmapsto u}$ solving $NLS_3^+(\mathbb{R}^2)$ is global-in-time and

$$||u||_{L^4_{t,x}} < A(u_0) < \infty.$$

Moreover, $\exists u_{\pm} \in L^2(\mathbb{R}^2)$ such that

$$\lim_{t\to+\infty}\|e^{\pm it\Delta}u_{\pm}-u(t)\|_{L^2(\mathbb{R}^2)}=0.$$

Same statement for focusing $NLS_3^-(\mathbb{R}^2)$ if $||u_0||_{L^2} < ||Q||_{L^2}$.

- Remarks:
 - Known for small data $||u_0||_{L^2(\mathbb{R}^2)} < \mu_0$.
 - Known for large radial data [Killip-Tao-Visan 07].

$NLS_3^{\pm}(\mathbb{R}^2)$: Present Status for General Data

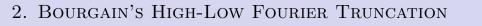
regularity	idea	reference
$s > \frac{2}{3}$	high/low frequency decomposition	[Bourgain98]
$s>\frac{4}{7}$	H(Iu)	[CKSTT02]
$s>rac{1}{2}$	resonant cut of 2nd energy	[CKSTT07]
$s \geq \frac{1}{2}$	H(Iu) & Interaction Morawetz	[Fang-Grillakis05]
$egin{array}{c} s \geq rac{1}{2} \ s > rac{2}{5} \end{array}$	H(Iu) & Interaction I-Morawetz	[CGTz07]
$s>\frac{1}{3}$	resonant cut & <i>I</i> -Morawetz	[C-Roy08]
$\begin{array}{c} s > \frac{1}{4} \\ s > 0? \end{array}$	resonant cut & <i>I</i> -Morawetz	[Dodson09]
s > 0?		

- Morawetz-based arguments are only for defocusing case.
- Focusing results assume $||u_0||_{L^2} < ||Q||_{L^2}$.
- Unify theory of focusing-under-ground-state and defocusing?

$NLS_3^{\pm}(\mathbb{R}^2)$: Present Status for General Data

regularity	idea	reference
$s > \frac{2}{3}$	high/low frequency decomposition	[Bourgain98]
$s>rac{4}{7}$	H(Iu)	[CKSTT02]
$s>\frac{1}{2}$	resonant cut of 2nd energy	[CKSTT07]
$s \geq \frac{1}{2}$	H(Iu) & Interaction Morawetz	[Fang-Grillakis05]
$s>\frac{2}{5}$	H(Iu) & Interaction I-Morawetz	[CGTz07]
$s>rac{1}{3}$	resonant cut & <i>I</i> -Morawetz	[C-Roy08]
$ s>\frac{1}{4} $ s>0	resonant cut & <i>I</i> -Morawetz	[Dodson09]
s > 0?		

- Morawetz-based arguments are only for defocusing case.
- Focusing results assume $||u_0||_{L^2} < ||Q||_{L^2}$.
- Unify theory of focusing-under-ground-state and defocusing?



2. Bourgain's High-Low Fourier Truncation

IMRN International Mathematics Research Notices 1998, No. 5

Refinements of Strichartz' Inequality and Applications to 2D-NLS with Critical Nonlinearity

J. Bourgain

Summary

Consider the 2D IVP

$$\begin{cases} iu_t + \Delta u + \lambda |u|^2 u = 0 \\ u(0) = \varphi \in L^2(\mathbb{R}^2). \end{cases} \tag{†}$$

The theory on the Cauchy problem asserts a unique maximal solution

2. Bourgain's High-Low Fourier Truncation

Consider the Cauchy problem for defocusing cubic NLS on \mathbb{R}^2 :

$$\begin{cases} (i\partial_t + \Delta)u = +|u|^2 u \\ u(0,x) = \phi_0(x). \end{cases}$$
 (NLS₃⁺(R²))

We describe the first result to give global well-posedness below H^1 .

- $NLS_3^+(\mathbb{R}^2)$ is GWP in H^s for $s>\frac{2}{3}$ [Bourgain 98].
- First use of Bilinear Strichartz estimate was in this proof.
- Proof cuts solution into low and high frequency parts.
- For $u_0 \in H^s$, $s > \frac{2}{3}$, Proof gives (and crucially exploits),

$$u(t) - e^{it\Delta}\phi_0 \in H^1(\mathbb{R}^2_x).$$

SETTING UP; DECOMPOSING DATA

- Fix a large target time T.
- Let N = N(T) be large to be determined.
- Decompose the initial data:

$$\phi_0 = \phi_{low} + \phi_{high}$$

where

$$\phi_{low}(x) = \int_{|\xi| < N} e^{ix \cdot \xi} \widehat{\phi_0}(\xi) d\xi.$$

Our plan is to evolve:

$$\phi_0 = \phi_{low} + \phi_{high}$$

$$u(t) = u_{low}(t) + u_{high}(t).$$

SETTING UP; DECOMPOSING DATA

- Fix a large target time T.
- Let N = N(T) be large to be determined.
- Decompose the initial data:

$$\phi_0 = \phi_{low} + \phi_{high}$$

where

$$\phi_{low}(x) = \int_{|\xi| < N} e^{ix \cdot \xi} \widehat{\phi_0}(\xi) d\xi.$$

Our plan is to evolve:

$$\phi_0 = \phi_{low} + \phi_{high}$$

$$NLS \qquad DE$$

$$u(t) = u_{low}(t) + u_{high}(t)$$

SETTING UP; DECOMPOSING DATA

Low Frequency Data Size:

■ Kinetic Energy:

$$\begin{split} \|\nabla\phi_{low}\|_{L^{2}}^{2} &= \int_{|\xi| < N} |\xi|^{2} |\widehat{\phi_{0}}(\xi)|^{2} dx \\ &= \int_{|\xi| < N} |\xi|^{2(1-s)} |\xi|^{2s} |\widehat{\phi_{0}}(\xi)|^{2} dx \\ &\leq N^{2(1-s)} \|\phi_{0}\|_{H^{s}}^{2} \leq C_{0} N^{2(1-s)}. \end{split}$$

Potential Energy:
$$\|\phi_{low}\|_{L^4_x} \leq \|\phi_{low}\|_{L^2}^{1/2} \|\nabla\phi_{low}\|_{L^2}^{1/2}$$

$$\implies H[\phi_{low}] \leq CN^{2(1-s)}.$$

High Frequency Data Size:

$$\|\phi_{high}\|_{L^2} \le C_0 N^{-s}, \ \|\phi_{high}\|_{H^s} \le C_0.$$

LWP of Low Frequency Evolution along NLS

The NLS Cauchy Problem for the low frequency data

$$\begin{cases} (i\partial_t + \Delta)u_{low} = +|u_{low}|^2 u_{low} \\ u_{low}(0, x) = \phi_{low}(x) \end{cases}$$
 (NLS)

is well-posed on $[0, T_{lwp}]$ with $T_{lwp} \sim \|\phi_{low}\|_{H^1}^{-2} \sim N^{-2(1-s)}$.

We obtain, as a consequence of the local theory, that

$$||u_{low}||_{L^4_{[0,T_{lwp}],\times}} \leq \frac{1}{100}.$$

LWP of High Frequency Evolution along DE

The NLS Cauchy Problem for the high frequency data

$$\begin{cases} (i\partial_t + \Delta)u_{high} = +2|u_{low}|^2 u_{high} + \text{similar} + |u_{high}|^2 u_{high} \\ u_{high}(0, x) = \phi_{high}(x) \end{cases}$$
(DE)

is also well-posed on $[0, T_{lwp}]$.

Remark: The LWP lifetime of *NLS* evolution of u_{low} AND the LWP lifetime of the *DE* evolution of u_{high} are controlled by $||u_{low}(0)||_{H^1}$.

EXTRA SMOOTHING OF NONLINEAR DUHAMEL TERM

The high frequency evolution may be written

$$u_{high}(t) = e^{it\Delta}u_{high} + w.$$

The local theory gives $||w(t)||_{L^2} \lesssim N^{-s}$. Moreover, due to smoothing (obtained via bilinear Strichartz), we have that

$$w \in H^1, \ \|w(t)\|_{H^1} \lesssim N^{1-2s+}.$$
 (SMOOTH!)

Let's postpone the proof of (SMOOTH!).

NONLINEAR HIGH FREQUENCY TERM HIDING STEP!

 $\forall t \in [0, T_{lwp}]$, we have

$$u(t) = u_{low}(t) + e^{it\Delta}\phi_{high} + w(t).$$

■ At time T_{lwp} , we define data for the progressive sheme:

$$u(T_{lwp}) = u_{low}(T_{lwp}) + w(T_{lwp}) + e^{iT_{lwp}\Delta}\phi_{high}.$$

$$u(t) = u_{low}^{(2)}(t) + u_{high}^{(2)}(t)$$

for $t > T_{lwp}$.

NONLINEAR HIGH FREQUENCY TERM HIDING STEP!

 $\forall t \in [0, T_{lwp}]$, we have

$$u(t) = u_{low}(t) + e^{it\Delta}\phi_{high} + w(t).$$

lacktriangle At time T_{lwp} , we define data for the progressive sheme:

$$u(T_{lwp}) = u_{low}(T_{lwp}) + w(T_{lwp}) + e^{iT_{lwp}\Delta}\phi_{high}.$$

$$u(t) = u_{low}^{(2)}(t) + u_{high}^{(2)}(t)$$

for $t > T_{lwp}$.

HAMILTONIAN INCREMENT: $\phi_{low}(0) \longmapsto u_{low}^{(2)}(T_{lwp})$

The Hamiltonian increment due to $w(T_{lwp})$ being added to low frequency evolution can be calcluated. Indeed, by Taylor expansion, using the bound (SMOOTH!) and energy conservation of u_{low} evolution, we have using

$$H[u_{l}^{(2)}(T_{lwp})] = H[u_{l}(0)] + (H[u_{l}(T_{lwp}) + w(T_{lwp})] - H[u_{l}(T_{lwp})])$$
$$\sim N^{2(1-s)} + N^{2-3s+} \sim N^{2(1-s)}.$$

Moreover, we can accumulate N^s increments of size N^{2-3s+} before we double the size $N^{2(1-s)}$ of the Hamiltonian. During the iteration, Hamiltonian of "low frequency" pieces remains of size $\lesssim N^{2(1-s)}$ so the LWP steps are of uniform size $N^{-2(1-s)}$. We advance the solution on a time interval of size:

$$N^s N^{-2(1-s)} = N^{-2+3s}$$
.

For $s > \frac{2}{3}$, we can choose N to go past target time T.

How do we prove (SMOOTH!)?

Bourgain's Bilinear Strichartz Estimate: For (dyadic) $N \leq L$

$$\|e^{it\Delta}f_Le^{it\Delta}g_N\|_{L^2_{t,x}}\leq \frac{N^{\frac{2-1}{2}}}{L^{\frac{1}{2}}}\|f_L\|_{L^2_x}\|g_N\|_{L^2_x}.$$

COROLLARY

For
$$s \geq \frac{1}{2}$$

$$||D_{x}^{s}(u_{1}u_{2})||_{L_{[0,\delta],x}^{2}} \leq C(||u_{1}||_{X_{[0,\delta]}^{s,1/2+}}||u_{2}||_{X_{[0,\delta]}^{0,1/2+}} + ||u_{1}||_{X_{[0,\delta]}^{1/2,1/2+}}||u_{2}||_{X_{[0,\delta]}^{s-1/2,1/2+}}).$$

Thus, the Bilinear Estimate allows us move half a derivative off the high frequency part and instead onto of the low frequency part.

Treatment of a typical term in w

■ Using the controls we have on u_{low} , u_{high} from the local theory on $[0, T_{lwp}]$, we want to prove for

$$w = \int_0^t e^{i(t-t')\Delta} |u_{low}|^2 u_{high}(t') dt'$$

that $\sup_{t \in [0, T_{hwn}]} \|\nabla w\|_{L^2} < N^{1-2S+}$.

■ By Sobolev embedding, we have

$$||w||_{L^{\infty}_{[0,T_{lwp}]}H^1} \le ||w||_{X^{1,1/2+}_{[0,T_{lwp}]}}.$$

■ The mapping $f \longmapsto \int_0^t e^{i(t-t')\Delta}$ is formally $f \longmapsto (i\partial_t + \Delta)^{-1}f$ which, due to time localization, is essentially $\widehat{f} \longmapsto \langle \tau + |\xi|^2 \rangle \widehat{f}$. It suffices to control $\|D_X|u_{low}|^2 u_{high}\|_{X^{0,-1/2+}}$. Proceed by duality....

TREATMENT OF A TYPICAL TERM IN W

$$\begin{split} \|w\|_{L^{\infty}_{[0,T_{lwp}]}H^{1}} &\leq \sup_{\|g\|_{X^{0,1/2-}} \leq 1} \langle g, D_{x}(|u_{low}|^{2}u_{high}) \rangle. \\ &\lesssim \sup_{g} \langle gD_{x}u_{low}, u_{low}u_{high} \rangle + \sup_{g} \langle gu_{low}, D_{x}(u_{low}u_{high}) \rangle \\ &= \operatorname{easier} + \sup_{g} \langle D_{x}^{1/2}(gu_{low}), D_{x}^{1/2}(u_{low}u_{high}). \end{split}$$

The corollary and the available bounds then give (SMOOTH!).

3. BILINEAR STRICHARTZ ESTIMATE

3. BILINEAR STRICHARTZ ESTIMATE

■ Recall the Strichartz estimate for $(i\partial_t + \Delta)$ on \mathbb{R}^2 :

$$\|e^{it\Delta}u_0\|_{L^4(\mathbb{R}_t\times\mathbb{R}^2_x)}\leq C\|u_0\|_{L^2(\mathbb{R}^2_x)}.$$

■ We can view this trivially as a bilinear estimate by writing

$$\|e^{it\Delta}u_0\ e^{it\Delta}v_0\|_{L^2(\mathbb{R}_t\times\mathbb{R}_x^2)}\leq C\|u_0\|_{L^2(\mathbb{R}_x^2)}\|v_0\|_{L^2(\mathbb{R}_x^2)}.$$

 Bourgain refined this trivial bilinear estimate for functions having certain Fourier support properties.

BILINEAR STRICHARTZ ESTIMATE

THEOREM

For (dyadic) $N \leq L$ and for $x \in \mathbb{R}^2$,

$$\|e^{it\Delta}f_Le^{it\Delta}g_N\|_{L^2_{t,x}} \leq \frac{N^{\frac{1}{2}}}{L^{\frac{1}{2}}}\|f_L\|_{L^2_x}\|g_N\|_{L^2_x}.$$

- Here spt $(\widehat{f_L}) \subset \{|\xi| \sim L\}$, g_N similar.
- lacksquare Observe that $\sqrt{rac{N}{L}}\ll 1$ when $N\ll L$.

3. Bourgain's Proof

Bourgain: IMRN98

Proof. Since the standard Strichartz inequality yields (112) without the

$$\left(\frac{M_1}{M_2}\right)^{\frac{1}{2}}$$
-factor,

we may assume $M_2 \gg M_1$.

Writing

$$(e^{it\Delta}\psi_1)(e^{it\Delta}\psi_2) = \int \widehat{\psi}_1(\xi_1) \widehat{\psi}_2(\xi_2) e^{i[(\xi_1+\xi_2).x+(|\xi_1|^2+|\xi_2|^2)t]} \, d\xi_1 \, d\xi_2,$$

it follows from Parseval's identity and Cauchy-Schwarz that

PROOF BASED ON CHANGE OF VARIABLES

Ideas from (Kenig-Ponce-Vega); see [C-Delort-Kenig-Staffilani].

Recall the Fourier multiplier representation of the propagator:

$$e^{it\Delta}f(x) = c_{\pi} \int_{\mathbb{R}^{2}} e^{ix \cdot \xi} e^{-it|\xi|^{2}} \widehat{f}(\xi) d\xi$$

$$= c_{\pi} \int_{\mathbb{R}^{1+2}} e^{i(x \cdot \xi + t\tau)} \delta_{0}(\tau + |\xi|^{2}) \widehat{f}(\xi) d\tau d\xi.$$
spacetime inverse Fourier transform

With $f = f_L$ and $g = g_N$, we wish to estimate

$$\|e^{it\Delta}f\ e^{it\Delta}g\|_{L^2_{t,x}} = \|\mathcal{F}[e^{it\Delta}f\ e^{it\Delta}g]\|_{L^2_{\tau,\xi}}.$$

Using Fourier tranform property, $\mathcal{F}(ab) = \hat{a} * \hat{b}$, we find....

FOURIER MANIPULATIONS; DIRAC EVALUATIONS

We wish to estimate (in $L_{\tau,\xi}^2$) the expression

$$\int_{0}^{} \delta_{0}(\tau_{1} + |\xi_{1}|^{2})\widehat{f}(\xi_{1})\delta_{0}(\tau_{2} + |\xi_{2}|^{2})\widehat{g}(\xi_{2}).$$

$$\tau = \tau_{1} + \tau_{2}$$

$$\xi = \xi_{1} + \xi_{2}$$

Evaluating the δ functions, we find $\tau_j = -|\xi_j|^2$, so

$$\int_{\widehat{f}(\xi_1)\widehat{g}(\xi_2)} \widehat{f}(\xi_1)\widehat{g}(\xi_2)$$

$$\tau = -|\xi_1|^2 - |\xi_2|^2$$

$$\xi = \xi_1 + \xi_2$$

We proceed by duality. Let's test this against $d(\tau, \xi)$

Duality Reduces Matters to Certain Integral

$$\begin{aligned} \|e^{it\Delta}f \ e^{it\Delta}g\|_{L^2_{t,x}} &= \sup_{\|d\|_{L^2_{\tau,\xi} \le 1}} \left\langle d(\tau,\xi) \ , \qquad \int \widehat{f}(\xi_1)\widehat{g}(\xi_2) \right\rangle. \\ &\tau = -|\xi_1|^2 - |\xi_2|^2 \\ &\xi = \xi_1 + \xi_2 \end{aligned}$$
$$= \sup_{d} \int d(-|\xi_1|^2 - |\xi_2|^2, \xi_1 + \xi_2) \ \widehat{f}(\xi_1)\widehat{g}(\xi_2)d\xi_1d\xi_2.$$

Fourier manipulations reduce matters to bounding an integral.

Our task: Show the integral above is bounded by

$$\lesssim \sqrt{\frac{N}{L}} \|f\|_{L^2} \|g\|_{L^2} \|d\|_{L^2}.$$

SETTING UP THE CHANGE OF VARIABLES

Let's define a change of variables motivated by the arguments of d:

$$u = -|\xi_1|^2 - |\xi_2|^2$$
, $v = \xi_1 + \xi_2$.

- Note that $u \in \mathbb{R}$ and $v \in \mathbb{R}^2$. Thus, dudv is a measure in 3d while $d\xi_1 d\xi_2$ is a measure in 4d.
- Note also that ξ_2 is the argument of $g = g_N$ so it is localized to the smaller dyadic shell $|\xi_2| \sim N \ll L$.
- Let's denote the components of $\xi_j \in \mathbb{R}^2$ with superscripts:

$$\xi_j = (\xi_j^1, \xi_j^2).$$

■ The full change of variables is the defined via

dudv
$$d\xi_2^1 = |J| d\xi_1^1 d\xi_1^2 d\xi_2^2 d\xi_2^1$$
.

We have an extra variable outside the changed integral.

THE JACOBIAN

The Jacobian matrix J is calculated as

$$J = \begin{bmatrix} \frac{\partial u}{\partial \xi_1^1} & \frac{\partial v^1}{\partial \xi_1^1} & \frac{\partial v^2}{\partial \xi_1^1} \\ \frac{\partial u}{\partial \xi_2^1} & \frac{\partial v^1}{\partial \xi_2^1} & \frac{\partial v^2}{\partial \xi_2^1} \\ \frac{\partial u}{\partial \xi_2^2} & \frac{\partial v^1}{\partial \xi_2^2} & \frac{\partial v^2}{\partial \xi_2^2} \end{bmatrix}.$$

The explicit forms for u, v permit calculating

$$|J| = 2|\xi_1^2 - \xi_2^2|.$$

Since $|\xi_1| \sim L$, we may assume by rotation that $|J| \sim L$.

CHANGING VARIABLES

Our task: Estimate, for $|\xi_1| \sim L$, $|\xi_2| \sim N$, the integral

$$\int_{|\xi_1^1| \le N} \int_{|\xi_1| \le 2} d(-|\xi_1|^2 - |\xi_2|^2, \xi_1 + \xi_2) \widehat{f}(\xi_1) \widehat{g}(\xi_2) d\xi_1^1 d\xi_1^2 d\xi_2^2 d\xi_2^1.$$

We insert the Jacobian and reexpress inner integration as

$$\int_{\xi_1,\xi^2} d(-|\xi_1|^2 - |\xi_2|^2, \xi_1 + \xi_2) \frac{\widehat{f}(\xi_1)\widehat{g}(\xi_2)}{|J|} |J| d\xi_1^1 d\xi_1^2 d\xi_2^2.$$

Changing variables, we observe this equals

$$\int_{u,v} d(u,v)H(u,v;\xi_2^1)|J|dudv$$

where

$$H(u,v;\xi_2^1)=\frac{\widehat{f}(\xi_1)\widehat{g}(\xi_2)}{|J|}.$$

Cauchy-Schwarz; Jacobian Remnant

We apply Cauchy-Schwarz in u, v to bound by

$$||d||_{L^2} \left(\int_{u,v} |H(u,v;\xi_2^1)|^2 du dv \right)^{1/2}.$$

We drop $\|d\|_{L^2} \leq 1$ by duality and change variables back. We get

$$\left(\int_{\xi_1,\xi_2^2} \left| \frac{\widehat{f}(\xi_1)\widehat{g}(\xi_2)}{|J|} \right|^2 |J| d\xi_1^1 d\xi_1^2 d\xi_2^2 \right)^{1/2}.$$

One factor of the Jacobian denominator remains! We gain $L^{-1/2}$.

We still have the extra outside integration....

TRIVIAL CAUCHY-SCHWARZ ON EXTRA INTEGRAL

Recalling what we must control, using what we have obtained....

$$\frac{1}{L^{1/2}} \int\limits_{|\xi_2^1| \lesssim \mathcal{N}} \left(\int\limits_{\xi_1, \xi_2^2} \left| \widehat{f}(\xi_1) \widehat{g}(\xi_2) \right|^2 d\xi_1^1 d\xi_1^2 d\xi_2^2 \right)^{1/2} d\xi_2^1.$$

Apply Cauchy-Schwarz in ξ_2^1 and pay the penalty of $N^{1/2}$.

We gain over the trivial bilinear estimate by the factor

$$\sqrt{\frac{(\text{measure of extra support})}{|J|}} = \sqrt{\frac{N}{L}}.$$

4. The *I*-Method of Almost Conservation

4. The I-Method of Almost Conservation

Let $H^s \ni u_0 \longmapsto u$ solve *NLS* for $t \in [0, T_{lwp}], T_{lwp} \sim ||u_0||_{H^s}^{-2/s}$.

Consider two ingredients (to be defined):

- A smoothing operator $I = I_N : H^s \longmapsto H^1$. The *NLS* evolution $u_0 \longmapsto u$ induces a smooth reference evolution $H^1 \ni Iu_0 \longmapsto Iu$ solving I(NLS) equation on $[0, T_{Iwp}]$.
- A modified energy $\widetilde{E}[Iu]$ built using the reference evolution.

FIRST VERSION OF THE I-METHOD: E = H[Iu]

For $s < 1, N \gg 1$ define smooth monotone $m : \mathbb{R}^2_{\xi} \to \mathbb{R}^+$ s.t.

$$m(\xi) = egin{cases} 1 & ext{for } |\xi| < N \ \left(rac{|\xi|}{N}
ight)^{s-1} & ext{for } |\xi| > 2N. \end{cases}$$

The associated Fourier multiplier operator, $(Iu)(\xi) = m(\xi)\widehat{u}(\xi)$, satisfies $I: H^s \to H^1$. Note that, pointwise in time, we have

$$||u||_{H^s} \lesssim ||Iu||_{H^1} \lesssim N^{1-s}||u||_{H^s}.$$

Set $\widetilde{E}[Iu(t)] = H[Iu(t)]$. Other choices of \widetilde{E} are mentioned later.

AC LAW DECAY AND SOBOLEV GWP INDEX

- **I** Modified LWP. Initial v_0 s.t. $\|\nabla I v_0\|_{L^2} \sim 1$ has $T_{Iwp} \sim 1$.
- **2 Goal.** $\forall u_0 \in H^s$, $\forall T > 0$, construct $u : [0, T] \times \mathbb{R}^2 \to \mathbb{C}$.
- \Longrightarrow **Dilated Goal.** Construct $u^{\lambda}:[0,\lambda^2T]\times\mathbb{R}^2\to\mathbb{C}$.
- **Rescale Data.** $\|I\nabla u_0^{\lambda}\|_{L^2} \lesssim N^{1-s}\lambda^{-s}\|u_0\|_{H^s} \sim 1$ provided we choose $\lambda = \lambda(N) \sim N^{\frac{1-s}{s}} \iff N^{1-s}\lambda^{-s} \sim 1$.
- **5** Almost Conservation Law. $||I\nabla u(t)||_{L^2} \lesssim H[Iu(t)]$ and

$$\sup_{t\in[0,T_{lwp}]}H[\mathit{Iu}(t)]\leq H[\mathit{Iu}(0)]+\mathit{N}^{-\alpha}.$$

6 Delay of Data Doubling. Iterate modified LWP N^{α} steps with $T_{lwp} \sim 1$. We obtain rescaled solution for $t \in [0, N^{\alpha}]$.

$$\lambda^2(N)T < N^{\alpha} \iff T < N^{\alpha + \frac{2(s-1)}{s}} \text{ so } s > \frac{2}{2+\alpha} \text{ suffices.}$$

FIRST VERSION OF THE I-METHOD: E = H[Iu]

A Fourier analysis established the almost conservation property of $\widetilde{E} = H[Iu]$ with $\alpha = \frac{3}{2}$ which led to...

THEOREM (CKSTT 02)

 $NLS_3^+(\mathbb{R}^2)$ is globally well-posed for data in $H^s(\mathbb{R}^2)$ for $\frac{4}{7} < s < 1$. Moreover, $\|u(t)\|_{H^s} \lesssim \langle t \rangle^{\beta(s)}$ for appropriate $\beta(s)$.

- The smoothing property $u(t) e^{it\Delta}u_0 \in H^1$ is not obtained.
- Same result for $NLS_3^-(\mathbb{R}^2)$ if $\|u_0\|_{L^2} < \|Q\|_{L^2}$. Here Q is the ground state (unique positive solution of $-Q + \Delta Q = -Q^3$).
- Fourier analysis leading to $\alpha = \frac{3}{2}$ in fact gives $\alpha = 2$ for most frequency interactions.

Almost Conservation Law for H[Iu]

PROPOSITION

Given $s>\frac{4}{7}, N\gg 1$, and initial data $\phi_0\in C_0^\infty(\mathbb{R}^2)$ with $E(I_Nu_0)\leq 1$, then there exists a $T_{lwp}\sim 1$ so that the solution

$$u(t,x) \in C([0,T_{lwp}],H^s(\mathbb{R}^2))$$

of $NLS_3^+(\mathbb{R}^2)$ satisfies

$$E(I_N u)(t) = E(I_N u)(0) + O(N^{-\frac{3}{2}+}),$$

for all $t \in [0, T_{lwp}]$.

IDEAS IN THE PROOF OF ALMOST CONSERVATION

Standard Energy Conservation Calculation:

$$\partial_t H(u) = \Re \int_{\mathbb{R}^2} \overline{u_t}(|u|^2 u - \Delta u) dx$$
 cancellation
$$= \Re \int_{\mathbb{R}^2} \overline{u_t}(|u|^2 u - \Delta u - iu_t) dx = 0.$$

■ For the smoothed reference evolution, we imitate....

$$\partial_t H(Iu) = \Re \int_{\mathbb{R}^2} \overline{Iu_t}(|Iu|^2 Iu - \Delta Iu - iIu_t) dx$$

$$= \Re \int_{\mathbb{R}^2} \overline{Iu_t}(|Iu|^2 Iu - I(|u|^2 u)) dx \neq 0.$$

■ The increment in modified energy involves a commutator,

$$H(Iu)(t) - H(Iu)(0) = \Re \int_0^t \int_{\mathbb{D}^2} \overline{Iu_t}(|Iu|^2 Iu - I(|u|^2 u)) dx dt.$$

Littlewood-Paley, Case-by-Case, (Bi)linear Strichartz, $X_{s,b}$

Remarks

■ The almost conservation property

$$\sup_{t \in [0, T_{lwp}]} \widetilde{E}[lu(t)] \le \widetilde{E}[lu_0] + N^{-\alpha}$$

leads to GWP for

$$s>s_{\alpha}=rac{2}{2+lpha}.$$

- The *I*-method is a *subcritical method*. To prove the Scattering Conjecture at s=0 via the *I*-method would require $\alpha=+\infty$.
- The *I*-method *localizes the conserved density in frequency*. Similar ideas appear in recent critical scattering results.
- There is a multilinear corrections algorithm for defining other choices of \widetilde{E} which yield a better AC property.