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1. Blowup Solutions Exist



1. Blowup Solutions Exist

We consider the Cauchy problem for L2 critical focusing NLS:{
(i∂t + ∆)u = −|u|2u

u(0, x) = u0(x).
(NLS−3 (R2))

The solution has an L2-invariant dilation symmetry

uλ(τ, y) = λ−1u(λ−2τ, λ−1y).

Time invariant conserved quantities:

Mass =

∫
Rd

|u(t, x)|2dx .

Momentum = 2=
∫

R2

u(t)∇u(t)dx .

Energy = H[u(t)] =
1

2

∫
R2

|∇u(t)|2dx−1

2
|u(t)|4dx .
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NLS−3 (R2) H1-GWP Theory

Weinstein’s H1-GWP mass threshold for NLS−3 (R2):

‖u0‖L2 < ‖Q‖L2 =⇒ H1 3 u0 7−→ u,T ∗ = ∞,

based on optimal Gagliardo-Nirenberg inequality on R2

‖u‖4L4 ≤

[
2

‖Q‖2
L2

]
‖u‖2L2‖∇u‖2L2 .

Q is the ground state solution to −Q + ∆Q = −Q3.

The ground state soliton solution to NLS−3 (R2) is

u(t, x) = e itQ(x).



Pseudoconformal Symmetry

Pseudoconformal transformation:

PC[u](τ, y) = v(τ, y) =
1

|τ |d/2
e

i|y|2
4τ u

(
−1

τ
,
y

τ

)
,

PC is L2-critical NLS solution symmetry:
Suppose 0 < t1 < t2 < ∞. If

u : [t1, t2]× R2
x → C solves NLS±

1+ 4
d

(Rd)

then
PC[u] = v : [−t−1

1 ,−t−1
2 ]τ × R2

y → C
solves

i∂τv + ∆yv = ±|v |4/dv .

PC is an L2-Strichartz isometry:
If 2

q + d
r = d

2 then

‖PC[u]‖Lq
τLr

y ([−t−1
1 ,−t−1

2 ]×Rd ) = ‖u‖Lq
t L

r
x ([t1,t2]×Rd ).



Explicit Blowup Solutions

The pseudoconformal image of ground state soliton e itQ(x),

S(t, x) =
1

t
Q

(x

t

)
e−i |x|

2

4t
+ i

t ,

is an explicit blowup solution.

S has minimal mass:

‖S(−1)‖L2
x

= ‖Q‖L2 .

All mass in S is conically concentrated into a point.

Minimal mass H1 blowup solution characterization:
u0 ∈ H1, ‖u0‖L2 = ‖Q‖L2 , T ∗(u0) < ∞ implies that u = S up
to an explicit solution symmetry. [Merle]
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Many non-explicit Blowup Solutions

Suppose a : R2 → R. Form virial weight

Va =

∫
R2

a(x)|u|2(t, x)dx

and

∂tVa = Ma(t) =

∫
R2

∇a · 2=(φ∇φ)dx .

Conservation identities lead to the generalized virial identity

∂2
t Va = ∂tMa =

∫
R2

(−∆∆a)|φ|2 + 4ajk<(φjφk)− ajj |u|4dx .

Choosing a(x) = |x |2 produces the variance identity

∂2
t

∫
R2

|x |2|u(t, x)|2dx = 16H[u0].

H[u0] < 0,
∫
|x |2|u0(x)|2dx < ∞ blows up.

How do these solutions blow up?



Lemma (Subcritical Scaling Lower Bound):

If Hs 3 u0 7−→ u(t) with s > 0 solving NLS−3 (R2) for all t near T ∗

in the maximal finite (forward) interval of existence [0,T ∗) then

c

(T ∗ − t)s/2
≤ ‖Dsu(t)‖L2

x
.

Scaling invariance and LWP theory:

v(τ, y) := 1
λu(t + τ

λ2 ,
y
λ) =⇒ ‖Dsv(0)‖L2 = 1

λs ‖Dsu(t)‖L2 .

Choose λ so that ‖Dsv(0)‖L2 = 1 =⇒ λ = ‖Dsu(t)‖
1
s

L2 .

LWP =⇒ v(0) 7−→ v(t) for τ ∈ [0, 1] ⇐⇒ t + 1
λ2 < T ∗.

λ2 > 1
T∗−t =⇒ claim.



Mass Concentration Property: H1 theory

H1 Theory of Mass Concentration

H1 ∩ {radial} 3 u0 7−→ u,T ∗ < ∞ implies

lim inf
t↗T∗

∫
|x |<(T∗−t)1/2−

|u(t, x)|2dx ≥ ‖Q‖2L2 .

[Merle-Tsutsumi]

H1 blowups parabolically concentrate at least the ground
state mass. Explicit blowups S concentrate mass much faster.

Fantastic recent progress on the H1 blowup theory.
[Merle-Raphaël]

colliand
Line

colliand
Pencil



Mass Concentration Property: L2 Theory

L2 Theory of Mass Concentration

L2 3 u0 7−→ u,T ∗ < ∞ implies

lim sup
t↗T∗

sup
cubes I ,side(I )≤(T∗−t)1/2

∫
I
|u(t, x)|2dx ≥ ‖u0‖−M

L2 .

[Bourgain]

L2 blowups parabolically concentrate some mass.

For large L2 data, do there exist tiny concentrations?

Extensions in [Merle-Vega], [Carles-Keraani], [Bégout-Vargas].

Upgrading lim sup into lim inf appears challenging.



NLS−3 (R2): Conjectures/Questions

Scattering Below the Ground State Mass?

‖u0‖L2 < ‖Q‖L2 =⇒ ??? u0 7−→ u with ‖u‖L4
tx

< ∞.

Minimal Mass Blowup Characterization?

‖u0‖L2 = ‖Q‖L2 , u0 7−→ u,T ∗ < ∞ =⇒ ??? u = S ,

modulo symmetries. Intermediate step: Characterize in Hs?

Concentrated mass amounts are quantized?
Ground and excited state profiles are only asymptotic profiles?

Are there any general upper bounds? lim sup vs. lim inf ?

What are the possible “singular sets” for NLS blowups?



L2 Critical Case: Partial Results

For 0.86 ∼ 1
5(1 +

√
11) < s < 1,Hs ∩ {radial} 3 u0 7−→

u,T ∗ < ∞ =⇒

lim sup
t↗T∗

∫
|x |<(T∗−t)s/2−

|u(t, x)|2dx ≥ ‖Q‖2L2 .

Hs -blowup solutions concentrate ground state mass.
[C-Raynor-C.Sulem-Wright]

‖u0‖L2 = ‖Q‖L2 , u0 ∈ Hs , ∼ 0.86 < s < 1,T ∗ < ∞ =⇒
∃ tn ↗ T ∗ s.t. u(tn) → Q in H s̃(s) (mod symmetry sequence).
For Hs blowups with ‖u0‖L2 > ‖Q‖L2 , u(tn) ⇀ V ∈ H1 (mod
symmetry sequence). [Hmidi-Keraani] This is an Hs analog of
an H1 result of [Weinstein] which preceded the minimal H1

blowup solution characterization.

colliand
Text Box
Wider Window



L2 Critical Case: Partial Results

Spacetime norm divergence rate

‖u‖L4
tx ([0,t]×R2) & (T ∗ − t)−β

is linked with mass concentration rate

lim sup
t↗T∗

sup

cubes I ,side(I )≤(T∗−t)
1
2 +

β
2

∫
I
|u(t, x)|2dx ≥ ‖u0‖−M

L2 .

[C-Roudenko]



2. Ground State Mass Concentration for H s



2. Ground State Mass Concentration for H s

Theorem (C-Raynor-Sulem-Wright 05)

For 0.86 ∼ 1
5(1 +

√
11) < s < 1,Hs ∩ {radial} 3 u0 7−→ u,T ∗ <

∞ =⇒

lim sup
t↗T∗

∫
|x |<(T∗−t)s/2−

|u(t, x)|2dx ≥ ‖Q‖2L2 .

{radial} removed by concentration compactness. [Tzirakis]
NLS−5 (R)

Higher dimension generalization NLS−
1+ 4

d

(Rd). [Visan-Zhang]



Ground State Mass Concentration for H1

Recall [Merle-Tsutsumi]. H1 ∩ {radial} 3 u0 7−→ u with T ∗ < ∞.

Rescalings (weakly) converge to asymptotic profile.

Consider {u(tn, ·)}n∈N = {un(·)}n∈N along tn ↗ T ∗. Form

vn(·) = λ−1
n un(λ

−1
n (·))

with λn = ‖∇un‖L2 & (T ∗ − tn)
−1/2 so that ‖∇vn‖L2 = 1.

Thus, ∃ v ∈ H1 such that vn ⇀ v in H1 along subsequence.

Compactness and energy of rescaled asymptotic object.

Radial & Rellich Compactness =⇒ vn → v strongly in L4.
|E [vn]| = λ−2

n |E [u(tn)]| → 0 =⇒ E [v ] ≤ 0.

E [v ] ≤ 0 =⇒ ‖v‖L2 ≥ ‖Q‖L2; undo scaling.
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Ground State Mass Concentration for H s

We imitate the [Merle-Tsutsumi] result using modified energy.

Blowup Parameter:

λ(t) = ‖u(t)‖Hs ; Λ(t) = sup
τ∈[0,t]

λ(τ).

Modified Blowup Parameter:

σ(t) = ‖I 〈∇〉u(t)‖L2 ; Σ(t) = sup
τ∈[0,t]

σ(τ).

Recall,
‖f ‖Hs ≤ ‖I 〈∇〉f ‖L2 ≤ N1−s‖f ‖Hs .

Thus, E [v ] ≤ 0 =⇒ ‖v‖L2 ≥ ‖Q‖L2 .



Ground State Mass Concentration for H s

Lemma ( Modified Kinetic � Modified Total Energy)

∀ s > 0.86 if Hs 3 u0 7−→ u on maximal [0,T ∗) then
∀T < T ∗ ∃ N = N(T ) such that

|E [IN(T )u(T )]| ≤ C0Λ(T )p(s)

with p(s) < 2 and C0 = C0(s,T
∗, ‖u0‖Hs ).

Modified Kinetic Energy � Modified Total Energy.

N(T ) = CΛ(T )
p(s)

2(1−s) .

Proof based on almost conservation; multilinear analysis.



Ground State Mass Concentration for H s

1 Rescale by modified kinetic energy.
Choose any maximizing sequence tn ↗ T ∗ satisfying
‖u(tn)‖Hs = Λ(tn). Define vn(y) = σ−1

n IN(tn)u(tn, σ
−1
n y)

where N(tn) is as in the Lemma.

2 Weak convergence and L4 compactness.
Rescaling =⇒ ‖∇vn‖H1 → 1 so ∃ v ∈ H1 s.t. vn ⇀ v along
subsequence. Radial & Rellich =⇒ vn → v strongly L4.

3 Energy of asymptotic object.
|E [vn]| = σ−2

n |E [INun]| ≤ σ−2
n Λp(s)(tn) ≤ (Λ(tn))

p(s)−2 → 0.

4 Undo the rescaling.
Unravelling scaling using lower bound σn & (T ∗ − tn)

−s/2

completes proof.
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3. Concentration & Strichartz Explosion



3. Concentration & Strichartz Explosion

Idea!

Ground state soliton u(t, x) = e itQ(x) satisfies

‖u‖L4([j ,j+1]t×R2
x )

= η = O(1), ∀ j ∈ N.

L4-isometry & explicit S = PC[e itQ] ∼ |τ |−1Q(τ−1y)e i ...,

‖S‖L4([− 1
j
,− 1

j+1
]τ×R2

y ) = η, ∀ j ∈ N.

Thus, ‖S‖L4([−1,t]×R2) ∼ 1
|t| ; Mass concentrated in |y | . |t|.

Contrast with [Merle-Tsutsumi], [Bourgain] Concentration:
‖u‖L4([−1,t]×R2) ↗∞ =⇒ Mass concentrated in |y | . |t|1/2.

Observation?
Strichartz explosion rate = f (concentration window size).



Heuristic: Window size & L4 Explosion

When ‖u‖L4([tn,tn+1]×R2) ∼ η [Bourgain] shows parabolic

concentration: ∃ t∗n ∈ [tn, tn+1] and x0 ∈ R2 where∫
|x−x0|.|tn+1−tn|1/2

|u(t, x)|2dx & ‖u0‖−M
L2 .

In [C-Roudenko], we observe (overstated!):

‖u‖L4
[0,T∗−t]×R2

:= f (T ∗ − t) ↗∞ as t ↗ T ∗

m

sup
x0∈R2

∫
|x−x0|.[−∂t f (T∗−t)]−1/2

|u(t, x)|2dx & ‖u0‖−M
L2

Why? By first order Taylor approximation, we have
η ∼ f (T ∗ − tn+1)− f (T ∗ − tn) ∼ [−∂t f (T ∗ − tn)](tn+1 − tn).



Ideas in Bourgain’s Proof

Decompose [0,T ∗) into
⋃

[tn, tn+1) on which

‖u‖L4([tn,tn+1]×R2) = η ∼
1

100
.

For t ∈ [tn, tn+1), we have u ∼ e i(t−tn)∆u(tn).

Strichartz Refinements and the conditions

‖f ‖L2 < ‖u0‖L2 ; ‖e it∆f ‖L4 > η

spawn a spacetime tube decomposition of e it∆f .

∃ concentration time t∗n ∈ [tn, tn+1) ∀ n.
Thus, proof is more refined than the lim sup claim.

Taylor expansion connects (tn+1 − tn) with T ∗ − tn.



Squares Lemma

Lemma (Bourgain)

∀ ε > 0 and ∀ f ∈ L2(R2) ∃ {f̂r}1≤r≤R(ε) such that

spt f̂r ⊂ τr ⊂ R2 with τr a square of side Ar centered at ξr

|f̂r | ≤ 1
Ar

‖f̂r‖L2 ≥ δ(ε) > 0

and

‖e it∆f −
R(ε)∑
r=1

e it∆fr‖L4
t,x
≤ ε.

The linear Schrödinger evolution of any L2 function is
approximated by the evolution of a function with Fourier support
on a system of squares and bounded Fourier transform.
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Squares Lemma



Tubes Lemma

Lemma (Bourgain)

Consider a function g satisfying: (Think of g as one of the fr .)

spt ĝ ⊂ τ ⊂ R2 with τ a square of side A centered at ξ0

|ĝ | ≤ 1
A .

∀ ε > 0 ∃ spacetime tubes {Qs}1≤s≤S(ε) of form

Qs = {(t, x) ∈ R3 : x − 2tξ0 ∈ τs , t ∈ Js}
τs is a (dual sized to τ) cube of side 1

A , |Js | = 1
A2

and  ∫
R3\∪sQs

|e it∆g |4dxdt


1/4

< ε.

There is just dust outside the tubes!



Tubes Lemma



Tubes Lemma with Time Slices
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Strichartz Explosion =⇒ Tight Window

Theorem (C-Roudenko)

Suppose T ∗ < ∞ and ‖u‖
L

2(d+2)
d ([0,t]×Rd )

& (T ∗ − t)−β. Then

lim sup
t↗T∗

sup
cubes J ∈ Rd :

l(J) < (T ∗ − t)
1
2
+β

2

∫
J
|u(t, x)|2 dx ≥ ‖u0‖−c(d)

L2 .

Furthermore, ∀ t ∈ (0,T ∗) ∃ a cube τ(t) ⊆ Rd
ξ of size

l(τ(t)) & (T ∗ − t)−( 1
2
+β

2
) such that

lim sup
t↗T∗

sup
cubes J ∈ Rd :

l(J) < (T ∗ − t)
1
2
+β

2

∫
J
|Pτ(t)u(t, x)|2 dx ≥ ‖u0‖−c(d)

L2 .
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Thickened Time Interval of Concentration

Lemma (Frequency localized waves persist)

Let f ∈ L2
x(Rd) and spt f̂ ⊂ [0, 1]d and suppose∫

[0,1]d
|f (x)|2 dx ≥ c1 > 0.

Then for |t| < c(c1, ‖f ‖L2) concentration persists∫
[0,1]d

|e it∆f (x)|2 dx ≥ c1

2
.

Frequency localization in conclusion shows concentration
persists for t in an interval containing t∗n of size (T ∗ − t)1+β.

Thickened concentration interval may not cover [tn, tn+1].



Tight Window =⇒ Strichartz Explosion

Let F (t) = ‖u‖4L4([0,t]×R2) and PL(t) = P{|ξ|≤L(t)}.

Lemma (Pointwise Derivative Lower Bound)

Suppose ∃ α ≥ 1
2 , ε > 0 such that

lim sup
t↗T∗

sup
cubes J ⊂ Rd :

l(J) < (T ∗ − t)α

∫
J
|PL(t)u(t, x)|2 dx ≥ ε.

Then ∃ tn ↗ T ∗ such that

F ′(tn) & (T ∗ − tn)
−2α.

On thickened concentration time intervals, we integrate the
derivative lower bound to get a Strichartz lower bound.



Cautious Remark Concerning lim inf

Consider NLS−3 (R2) posed at time t = −ε with data

φε(x) = e iε−1|x |2e iε−1
Q(x).

Dilated explicit solution which blows up at t = 0 = T ∗!

The parabolic scale related to distance to blowup time is
√

ε.
For τ a cube of side

√
ε, observe that φε is non-concentrated∫

τ
|φε|2dx . ε.

Consider data (1− δ)φε....

Phase oscillations violently influence L2 blowup behavior.



4. Rough Blowup Solutions of NLS−3 (R2)



Known Maximal-in-Time Solution Scenarios

1 Soliton solutions exist: u(t, x) = e itR(x)

Q(x) ground state; also excited states.
non-scattering; Strichartz S0 norms diverge global-in-time.
a priori H1 control if ‖u0‖L2 < ‖Q‖L2 . [Weinstein]

2 {radial}∩L2 3 u0 7−→ u scatters if ‖u0‖L2 < ‖Q‖L2 . [KTV]

3 PC transformation + solitons =⇒ explicit (fast) 1
t -blowups.

PC is a Stricharz S0 isometry.
∃ other 1

t -blowups [Bourgain-Wang; Krieger-Schlag].
Stability?

4 Virial Blowup Solutions

Obstructive argument
Qualitative properties?



Many non-explicit Blowup Solutions

Suppose a : R2 → R. Form virial weight

Va =

∫
R2

a(x)|u|2(t, x)dx

and

∂tVa = Ma(t) =

∫
R2

∇a · 2=(φ∇φ)dx .

Conservation identities lead to the generalized virial identity

∂2
t Va = ∂tMa =

∫
R2

(−∆∆a)|φ|2 + 4ajk<(φjφk)− ajj |u|4dx .

Choosing a(x) = |x |2 produces the variance identity

∂2
t

∫
R2

|x |2|u(t, x)|2dx = 16H[u0].

H[u0] < 0,
∫
|x |2|u0(x)|2dx < ∞ blows up.

How do these solutions blow up?
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NLS Blowup Dynamic?

Question: What are the dynamical properties of NLS−3 (R2)
blowup solutions?

maximality criteria; critical norm behavior
asymptotic compactness; profile decompositions
conservation structure; virial ideas; parameter modulation



log log blowup regime

Numerical/Persuasive arguments [LPSS] led to:

Prediction of blowups with log log speed:

‖u(t)‖H1 ∼
√

log | log(T ∗ − t)|
T ∗ − t

� 1√
T ∗ − t

.

Prediction that such blowups are generic/stable/observed.
Identification of certain mechanisms forecasting log log.

NLS−5 (R1) has log log blowup solutions. [Perelman]

Detailed Description of log log regime in series by [MR].



Qualitative Aspects of log log regime

Robust, open set in H1.

Asymptotically nonlinear with subtle interaction.

Delicate phenomona in critical space (L2 instability?).

Conjectured quantization properties?

Boundary of log log regime in phase space?
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Theorem (Merle-Raphaël): log log Regime

Consider any initial data u0 ∈ H1 such that

Small Excess Mass: ‖Q‖L2 < ‖u0‖L2 < ‖Q‖L2 + α∗.

Negative Total Energy: H[u0] < 0.

The associated solution u0 7−→ u explodes with T ∗ < ∞ and

∃ (λ(t), x(t), γ(t) ∈ R∗
+ × R2 × R) and u∗ ∈ L2 s.t.

u(t)− 1

λ(t)
Q

(
x − x(t)

λ(t)

)
e iγ(t) → u∗ in L2.

x(t) → x(T ∗) in R2 as t ↗ T ∗.

Sharp log log speed law holds:

λ(t)

√
log | log(T ∗ − t)|

T ∗ − t
→
√

2π as t ↗ T ∗.

u∗ /∈ Hs for s > 0; u∗ /∈ Lp for p > 2. (Rough residual)



Theorem (Raphaël): H1 Stability of log log

Fact: PC + log log for E < 0 =⇒ ∃ log log with E > 0.

H1-Stability Theorem: The set of data with u0 ∈ H1 with
small excess mass blowing up in log log regime is open in H1.

Develops bootstrap approach to constructing log log.

Further applications of Raphaël’s bootstrap/stability:

Domains: [Planchon-R:Ω]
Singular S1 ⊂ R2: [R:Ring]
Singular Sd−1 ⊂ Rd : [R-Szeftel:Codimension One Spheres]
Singular Td−2 ⊂ R3: [Zwiers: Codimension Two Tori]
Higher Codimensional Singular Sets?
Rough Blowups
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Theorem (C-Raphaël): H s Stability of log log

Let u0 ∈ H1 evolve into the log log regime.

∀ s > 0 ∃ ε = ε(s, u0) > 0 such that ∀ v0 ∈ Hs(R2)

‖u0 − v0‖Hs < ε,

NLS−3 (R2) solution v0 7−→ v blows up in log log regime.

Thus, the H1 log log blowup solutions constructed by [MR] are
contained in an open superset of log log blowups in Hs , ∀ s > 0.



Remarks about the H s stability of log log

The theorem implies existence of rough blowup solutions.

Proof does not apply to perturbations of Hs log log blowups.

The condition s > 0 is expected to be optimal.
Small L2 (but huge Hs) perturbation destroys rough residual
mass (u∗ /∈ Hs , ∀ s > 0) leading to fast 1

t -blowup?

Strategy of proof

Isolate roles of energy conservation in [MR] analysis.
Relax to almost conserved modified energy via I -method.
Big Bootstrap.

Other Applications of Dynamical Rescaled I -method?
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Aspects of the [MR] Analysis

Geometrical description of log log blowup solutions.

Various profiles Q,Qb, Q̃b, Q̃b(t) + ζb(t). (Obscure Notation)
Modulation parameters related to solution symmetries.
Three zones: blowup core, radiation, distant/decoupled.

Virial/Coercivity constraints; Orthogonality conditions.

A key role played by Energy conservation.



Geometrical Description

Near T ∗, log log blowups satisfy geometrical ansatz

u(t, x) =
1

λ(t)
(Qb(t) + ε)

(
x − x(t)

λ(t)

)
e iγ(t).

Parameters (λ(t), x(t), γ(t), b(t)) solve ODEs forced by F (ε).

ODEs emerge from geometrical ansatz, taking inner products
with equation, imposing orthogonality conditions.
(These choices change across the [MR] works.)



Energy Conservation in [MR] analysis

Control of ε: ∫
|∇ε|2dx . e−

C
b + λ2|E (u)|.

Energy conservation and λ ↘ 0 =⇒∫
|∇ε|2dx . e−

C
b + λ2|E (u)|.

We can maintain same conclusion if |E (u)| � 1
λ2 .

(Observation in [CRSW]; Led to [C-Raphaël] collaboration)
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5. Singular Ring Solutions of Cubic NLS on R3

This section describes work of I. Zwiers (Toronto Ph.D Student).



5. Singular Ring Solutions of Cubic NLS on R3

This section describes work of I. Zwiers (Toronto Ph.D Student).

Consider the cubic focusing NLS initial value problem on R3:{
(i∂t + ∆)u = −|u|2u

u(0, x) = u0(x).
(NLS−3 (R3))

Inspired by work of P. Raphaël, consider cylindrical coordinates

x = (r , θ, z) ∈ R+ × [0, 2π)× R

and seek a cylindrically symmetric solution (independent of θ). A
solution like this is a function of (r , z) ∈ R+ × R satisfying

(i∂t + ∂2
r + ∂2

z )u = −|u|2u + error.

This equation resembles NLS−3 (R2
z,x) with stable log log blowups.
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Numerical Collapse to Circle [Gavish-Fibich]

Figure 1: Iso-amplitude plot of the amplitude of the solution of the three-dimensional cubic
NLS with initial condition ψ0 = 20e−(x2+y2)2−z2

. A: Initial condition. B: NGO prediction
at t = 0.02. C: NLS solution at t = 0.0099.
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Theorem(I. Zwiers) Singular Ring for NLS−3 (R3)

∃ cylindrically symmetric initial data u0 7−→ u(t) along NLS−3 (R3)
for t ∈ [0,T ∗) (forward maximal, finite) and, as t ↗ T ∗ :

∃ (λ(t), ρ(t), ζ(t), γ(t)) ∈ R+ × R+ × R× R/2πZ such that

u(t, x)− 1

λ(t)
Q

(
[r , z ]− [ρ(t), ζ(t)]

λ(t)

)
e iγ(t) → u∗ in L2(R3)

Sharp log log speed law holds:

λ(t)

√
log | log(T ∗ − t)|

T ∗ − t
→
√

2π

Singularity point converges [ρ(t), ζ(t)] → [r0, z0] ∼ (1, 0)

Regularity persists outside singularity: ∀ R > 0,

u∗ ∈ H1(|[[ρ(t), ζ(t)]− [r0, z0]| > R).



Remarks on Zwiers’ Theorem

Exploits L2(R2)-critical log log machinery of [Merle-Raphaël].

Inspired by singular circle solution of NLS−5 (R) of [Raphaël].

Solutions of NLS5(RN) singular on SN−1 were constructed by
[Raphaël-Szeftel].
Regularity persistence result of [Z] built on ideas from [RS].

Zwiers singular ring solution provides another example of
“Type II” singularity in the energy supercritical regime.

Scaling Heuristics (based on mass concentration) suggest
these solutions saturate dimension upper bounds on possible
singular sets:

dimH({x : (T ∗, x)is singular) ≤ 2sc = 2(
d

2
− 2

p − 1
)?

Connect this with partial regularity results of Scheffer,
Cafarelli-Kohn-Nirenberg on Navier-Stokes?
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