A Frequency Cascading Solution of the 2D periodic Schrödinger equation

J. Colliander (University of Toronto)

Advanced School, Naples, May 2009

- 1 Introduction
- 2 Overview of Proof
- 3 Concatenated Sliders for Toy Model
- 4 Construction of Resonant Set Λ

1. Introduction

THE NLS INITIAL VALUE PROBLEM

[Joint work with **Keel, Staffilani, Takaoka and Tao**] We consider the defocusing initial value problem:

$$\begin{cases} (-i\partial_t + \Delta)u = |u|^2 u \\ u(0, x) = u_0(x), \text{ where } x \in \mathbb{T}^2. \end{cases}$$
 (NLS(\mathbb{T}^2))

Smooth solution u(x,t) exists globally and

Mass =
$$M(u) = ||u(t)||^2 = M(0)$$

Energy = $E(u) = \int (\frac{1}{2} |\nabla u(t, x)|^2 + \frac{1}{4} |u(x, t)|^4) dx = E(0)$

We want to understand the shape of $|\hat{u}(t,\xi)|$. The conservation laws impose L^2 -moment constraints on this object.

NOTION OF FREQUENCY CASCADE

DEFINITION

A frequency cascade is the phenomenon of global-in-time solutions shifting their mass toward increasingly high frequencies.

This shift is also called a forward cascade.

A way to measure the cascade is to study

$$||u(t)||_{\dot{H}^s}^2 = \int |\hat{u}(t,\xi)|^2 |\xi|^{2s} d\xi$$

and prove that it grows for large times t.

■ The cascade is incompatible with scattering and integrability.

Incompatible with Scattering & Integrability

■ Scattering: \forall global solution $u(t,x) \in H^s \exists u_0^+ \in H^s$ such that,

$$\lim_{t\to +\infty}\|u(t,x)-e^{it\Delta}u_0^+(x)\|_{H^s}=0.$$

Note: $\|e^{it\Delta}u_0^+\|_{H^s} = \|u_0^+\|_{H^s} \implies \|u(t)\|_{H^s}$ is bounded.

Complete Integrability: The 1d equation

$$(i\partial_t + \Delta)u = -|u|^2u$$

has infinitely many conservation laws. Combining them in the right way one gets that $||u(t)||_{H^s} \leq C_s$ for all times.

Past Results

Bourgain: (late 90's) For the periodic IVP $NLS(\mathbb{T}^2)$ one can prove

$$||u(t)||_{H^s}^2 \leq C_s |t|^{4s}.$$

The idea is to improve the local estimate for $t \in [-1, 1]$

$$||u(t)||_{H^s} \le C_s ||u(0)||_{H^s}$$
, for $C_s \gg 1$

$$(\implies \|u(t)\|_{H^s} \lesssim C^{|t|}$$
 upper bounds) to obtain

$$\|u(t)\|_{H^s} \le 1\|u(0)\|_{H^s} + C_s\|u(0)\|_{H^s}^{1-\delta}$$
 for $C_s \gg 1$,

for some $\delta > 0$. This iterates to give

$$||u(t)||_{H^s}\leq C_s|t|^{1/\delta}.$$

■ Improvements: Staffilani, Colliander-Delort-Kenig-Staffilani.

PAST RESULTS

Bourgain: (late 90's) Given $m, s \gg 1$ there exist $\tilde{\Delta}$ and a global solution u(x, t) to the modified wave equation

$$(\partial_{tt} - \tilde{\Delta})u = u^p$$

such that $||u(t)||_{H^s} \sim |t|^m$.

- Physics: Weak turbulence theory: Hasselmann & Zakharov. Numerics (d=1): Majda-McLaughlin-Tabak; Zakharov et. al.
- Kuksin has studied a small dispersion NLS

$$i\partial_t w + \delta \Delta w = |w|^2 w$$

with odd, periodic boundary conditions and with $0 < \delta \ll 1$. Smooth norms of relatively generic data, with unit sized L^2 norm, are shown to grow larger than a negative power of δ . These results correspond to large data solutions of the $\delta = 1$ problem $NLS_3^+(\mathbb{T}^2)$.

EXPLODING SOBOLEV NORMS CONJECTURE?

- Solutions to dispersive equations on \mathbb{R}^d have bounded high Sobolev norms.
- There are solutions to nonlinear dispersive equations on \mathbb{T}^d with exploding Sobolev norms. In particular for $NLS(\mathbb{T}^2)$ there exists u(t,x) such that

$$\|u(t)\|_{H^s}^2 \to \infty$$
 as $t \to \infty$.

■ The cascade phenomena of high Sobolev norm explosion should be generic in phase space.

Main Result

We consider the defocusing initial value problem:

$$\begin{cases} (-i\partial_t + \Delta)u = |u|^2 u \\ u(0,x) = u_0(x), \text{ where } x \in \mathbb{T}^2. \end{cases}$$
 (NLS(\mathbb{T}^2))

THEOREM (C-KEEL-STAFFILANI-TAKAOKA-TAO)

Let s > 1, $K \gg 1$ and $0 < \sigma < 1$ be given. Then there exists a global smooth solution u(t,x) and T > 0 such that

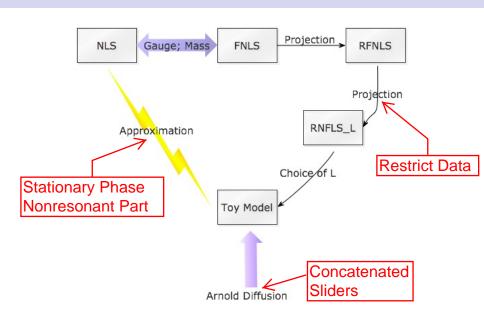
$$||u_0||_{H^s} \leq \sigma$$

and

$$\|u(t)\|_{H^s}^2 \geq K.$$

2. Overview of Proof

2. Overview of Proof



Preliminary reductions

■ Gauge Freedom:

If *u* solves NLS then $v(t,x) = e^{-i2Gt}u(t,x)$ solves

$$\begin{cases} i\partial_t v + \Delta v = (2G + |v|^2)v \\ v(0, x) = v_0(x), & x \in \mathbb{T}^2. \end{cases}$$
 (NLS_G)

■ Fourier Ansatz: Recast the dynamics in Fourier coefficients,

$$v(t,x) = \sum_{n \in \mathbb{Z}^2} a_n(t) e^{i(n \cdot x + |n|^2 t)}.$$

$$\begin{cases} i\partial_{t}a_{n} = 2Ga_{n} + \sum_{\substack{n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\ n_{1} - n_{2} + n_{3} = n \\ a_{n}(0) = \widehat{u_{0}}(n), & n \in \mathbb{Z}^{2}. \end{cases}$$

$$(\mathcal{F}NLSG)$$

Preliminary reductions

Diagonal decomposition of sum:

$$\sum_{\substack{n_1, n_2, n_3 \in \mathbb{Z}^2 \\ n_1 - n_2 + n_3 = n}} = \sum_{\substack{n_1, n_2, n_3 \in \mathbb{Z}^2 \\ n_1 - n_2 + n_3 = n}} + \sum_{\substack{n_1, n_2, n_3 \in \mathbb{Z}^2 \\ n_1 - n_2 + n_3 = n}} + \sum_{\substack{n_1 - n_2 + n_3 = n \\ n \neq n_1, n_3 \\ n = n_1}} + \sum_{\substack{n_1 - n_2 + n_3 = n \\ n_1 - n_2 + n_3 = n}} - \sum_{\substack{n_1, n_2, n_3 \in \mathbb{Z}^2 \\ n_1 - n_2 + n_3 = n \\ n = n_3}}$$

Choice of G:

$$G = -\|u_0\|_{L^2}^2$$

Preliminary reductions

Diagonal decomposition of sum:

$$\sum_{\substack{n_1, n_2, n_3 \in \mathbb{Z}^2 \\ n_1 - n_2 + n_3 = n}} = \sum_{\substack{n_1, n_2, n_3 \in \mathbb{Z}^2 \\ n_1 - n_2 + n_3 = n}} + \sum_{\substack{n_1, n_2, n_3 \in \mathbb{Z}^2 \\ n_1 - n_2 + n_3 = n}} + \sum_{\substack{n_1 - n_2 + n_3 = n \\ n \neq n_1, n_3 \\ n = n_1}} + \sum_{\substack{n_1 - n_2 + n_3 = n \\ n_1 - n_2 + n_3 = n}} - \sum_{\substack{n_1, n_2, n_3 \in \mathbb{Z}^2 \\ n_1 - n_2 + n_3 = n \\ n = n_3}}$$

Choice of G:

$$G = -\|u_0\|_{L^2}^2$$

RESONANT TRUNCATION

NLS dynamic is recast as

$$-i\partial_t a_n = -a_n |a_n|^2 + \sum_{n_1, n_2, n_3 \in \Gamma(n)} a_{n_1} \overline{a}_{n_2} a_{n_3} e^{i\omega_4 t}. \quad (\mathcal{F}NLS)$$

where $\omega_4 = |n_1|^2 - |n_2|^2 + |n_3|^2 - |n|^2$, and

$$\Gamma(n) = \{n_1, n_2, n_3 \in \mathbb{Z}^2 : n_1 - n_2 + n_3 = n, n_1 \neq n, n_3 \neq n\}.$$

$$\Gamma_{res}(n) = \{n_1, n_2, n_3 \in \Gamma(n) : \omega_4 = 0\}.$$

$$= \{ \text{Triples } (n_1, n_2, n_3) : (n_1, n_2, n_3, n) \text{ is a rectangle } \}$$

■ The resonant truncation of $\mathcal{F}NLS$ is

$$-i\partial_t b_n = -b_n |b_n|^2 + \sum_{n_1,n_2,n_3 \in \Gamma_{res}(n)} b_{n_1} \overline{b}_{n_2} b_{n_3}.$$
 (RFNLS)

FINITE DIMENSIONAL RESONANT RESTRICTION

lacksquare A set $\Lambda\subset\mathbb{Z}^2$ is closed under resonant interactions if

$$n_1, n_2, n_3 \in \Gamma_{res}(n), n_1, n_2, n_3 \in \Lambda \implies n \in \Lambda.$$

lacksquare A finite dimensional resonant restriction of $\mathcal{F}NLS$ is

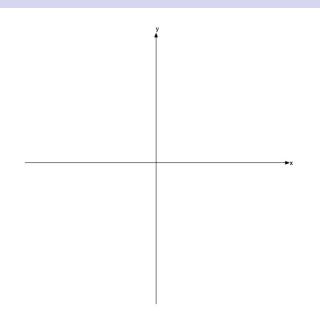
$$-i\partial_t b_n = -b_n |b_n|^2 + \sum_{n_1,n_2,n_3 \in \Gamma_{res}(n) \cap \Lambda^3} b_{n_1} \overline{b}_{n_2} b_{n_3}. \ (\mathcal{RFNLS}_{\Lambda})$$

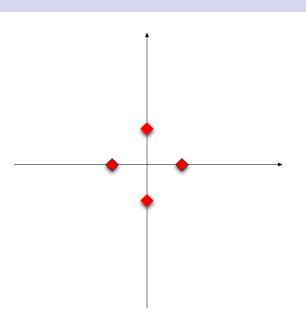
- \forall resonant-closed finite $\Lambda \subset \mathbb{Z}^2$ $R\mathcal{F}NLS_{\Lambda}$ is an ODE.
- If $\operatorname{spt}(a_n(0)) \subset \Lambda$ then $\mathcal{F}NLS$ -evolution $a_n(0) \longmapsto a_n(t)$ is nicely approximated by $R\mathcal{F}NLS_{\Lambda}$ -ODE $a_n(0) \longmapsto b_n(t)$.
- Given ϵ , s, K, build Λ so that $R\mathcal{F}NLS_{\Lambda}$ cascades.

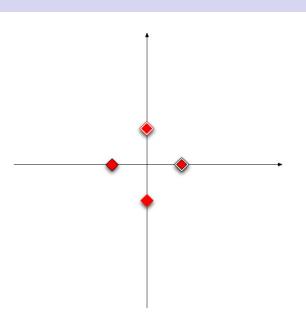
Imagine we build a resonant $\Lambda \subset \mathbb{Z}^2$ such that...

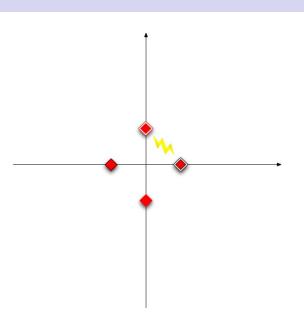
Imagine a resonant-closed $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_M$ with properties. Define a nuclear family to be a rectangle (n_1, n_2, n_3, n_4) where the frequencies n_1, n_3 (the 'parents') live in generation Λ_j and n_2, n_4 ('children') live in generation Λ_{j+1} .

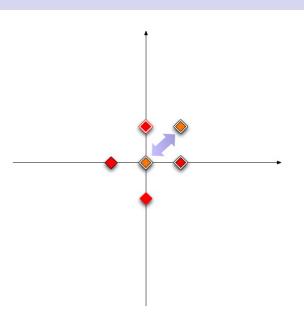
- \forall $1 \leq j < M$ and \forall $n_1 \in \Lambda_j \exists$ unique nuclear family such that $n_1, n_3 \in \Lambda_j$ are parents and $n_2, n_4 \in \Lambda_{j+1}$ are children.
- \forall 1 ≤ j < M and \forall $n_2 \in \Lambda_{j+1} \exists$ unique nuclear family such that $n_2, n_4 \in \Lambda_{j+1}$ are children and $n_1, n_3 \in \Lambda_j$ are parents.
- The sibling of a frequency is never its spouse.
- lacksquare Besides nuclear families, Λ contains no other rectangles.
- The function $n \longmapsto a_n(0)$ is constant on each generation Λ_j .

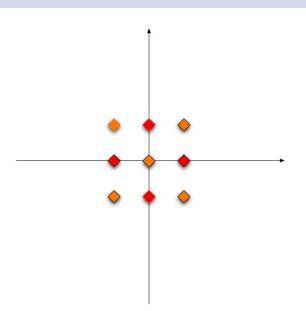


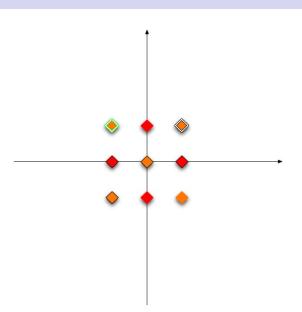


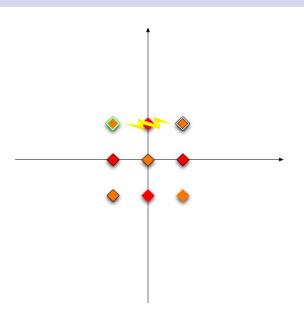


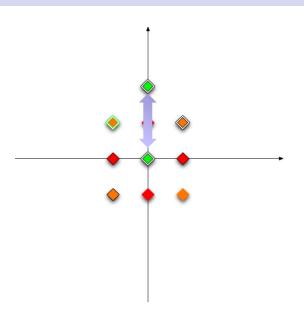


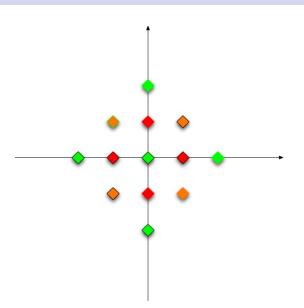


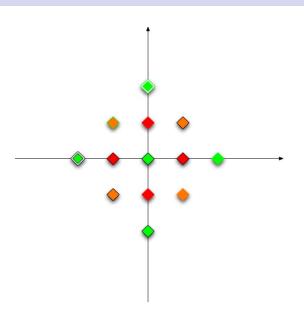


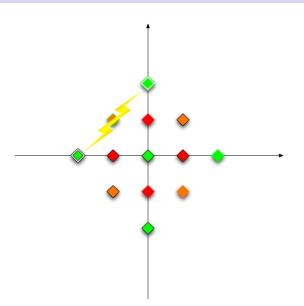


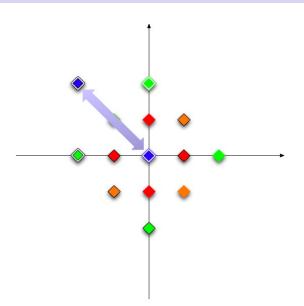


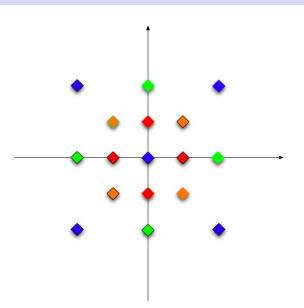


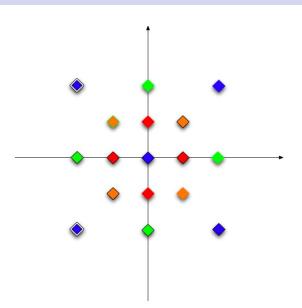


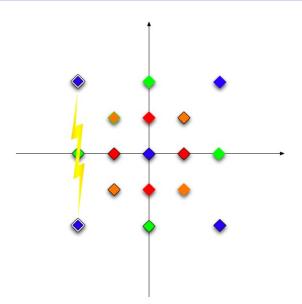












THE TOY MODEL ODE

Assume we can construct such a $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_M$. The properties imply $R\mathcal{F}NLS_{\Lambda}$ simplifies to the toy model ODE

$$\partial_t b_j(t) = -i|b_j(t)|^2 b_j(t) + 2i\overline{b}_j(t)[b_{j-1}(t)^2 + b_{j+1}(t)^2].$$

$$L^2 \sim \sum_j |b_j(t)|^2 = \sum_j |b_j(0)|^2$$

$$H^s \sim \sum_i |b_j(t)|^2 (\sum_{n \in \Lambda_i} |n|^{2s}).$$

We also want Λ to satisfy Wide Diaspora Property

$$\sum_{n\in\Lambda_M}|n|^{2s}\gg\sum_{n\in\Lambda_1}|n|^{2s}.$$

Conservation laws for the *ODE* system

where

$$egin{aligned} \textit{Mass} &= \sum_j |b_j(t)|^2 = C_0 \ &\textit{Momentum} = \sum_j |b_j(t)|^2 \sum_{n \in \Lambda_j} n = C_1, \ &\textit{Energy} = K + P = C_2, \ &\textit{Independent of } j \end{aligned}$$
 $K = \sum_j |b_j(t)|^2 \sum_{n \in \Lambda_j} |n|^2, \ P = rac{1}{2} \sum_j |b_j(t)|^4 + \sum_j |b_j(t)|^2 |b_{j+1}(t)|^2. \end{aligned}$

Conservation laws for ODE do not involve Fourier moments!

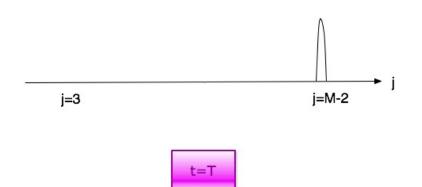
3. Concatenated Sliders for Toy Model ODE

Using dynamical systems methods, we construct a Toy Model ODE evolution such that:

t=0

3. Concatenated Sliders for Toy Model ODE

Using dynamical systems methods, we construct a Toy Model ODE evolution such that:



A travelling wave through the generations.

Properties of the Toy Model *ODE*

Solution of the Toy Model is a vector flow $t \to b(t) \in \mathbb{C}^M$ $b(t) = (b_1(t), \dots, b_M(t)) \in \mathbb{C}^M; b_i = 0 \ \forall \ i < 0, i > M+1.$

- Local Well-Posedness; Let S(t) denote associated flowmap.
- Mass Conservation: $|b(t)|^2 = |b(0)|^2 \implies$
 - Toy Model ODE is Globally Well-Posed.
 - Invariance of the sphere: $\Sigma = \{x \in \mathbb{C}^M : |x|^2 = 1\}$

$$S(t)\Sigma = \Sigma$$
.

Properties of the Toy Model *ODE*

Support Conservation:

$$\begin{aligned} \partial_t |b_j|^2 &= 2 Re(\overline{b_j} \partial_t b_j) \\ &= 4 Re(i \overline{b_j}^2 [b_{j-1}^2 + b_{j+1}^2]) \\ &\leq 4 |b_j|^2. \end{aligned}$$

Thus, if $b_j(0) = 0$ then $b_j(t) = 0$ for all t.

Invariance of coordinate tori:

$$\mathbb{T}_{j} = \{(b_{1}, \ldots, b_{M} \in \Sigma) : |b_{j}| = 1, b_{k} = 0 \,\,\forall \,\, k \neq j\}$$

Mass Conservation $\implies S(T)\mathbb{T}_j = \mathbb{T}_j$. Dynamics on the invariant tori is easy:

$$b_i(t) = e^{-i(t+\theta)}$$
; $b_k(t) = 0 \ \forall \ k \neq j$.

EXPLICIT SLIDER SOLUTIONS

Consider M = 2. Then *ODE* is of the form

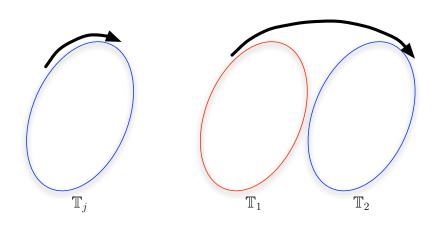
$$\partial_t b_1 = -i|b_1|^2 b_1 + 2i\overline{b_1}b_2^2 \partial_t b_2 = -i|b_2|^2 b_2 + 2i\overline{b_2}b_2^2.$$

Let $\omega = e^{2i\pi/3}$ (cube root of unity). This ODE has explicit solution

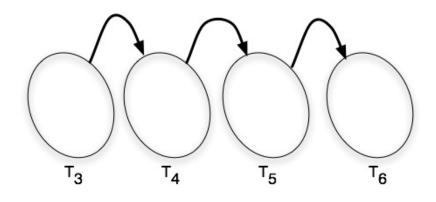
$$b_1(t) = rac{e^{-it}}{\sqrt{1 + e^{2\sqrt{3}t}}}\omega \ , b_2(t) = rac{e^{-it}}{\sqrt{1 + e^{-2\sqrt{3}t}}}\omega^2.$$

- As $t \to -\infty$, $(b_1(t), b_2(t)) \to (e^{-it}\omega, 0) \in \mathbb{T}_1$.
- $\blacksquare \text{ As } t \to +\infty, (b_1(t), b_2(t)) \to (0, e^{-it}\omega^2) \in \mathbb{T}_2.$

TWO EXPLICIT SOLUTION FAMILIES



CONCATENATED SLIDERS: IDEA OF PROOF



THE PERFECT SHOT?

Off the expressway, over the river, off the billboard, through the window, nothin but net. —Michael Jordan

DIFFUSION FOR TOY MODEL STATEMENT

THEOREM

Let $M \ge 6$. Given $\epsilon > 0$ there exist x_3 within ϵ of \mathbb{T}_3 and x_{M-2} within ϵ of \mathbb{T}_{M-2} and a time t such that

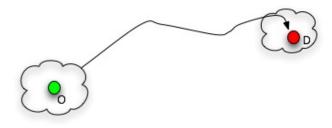
$$S(t)x_3=x_{M-2}.$$

Remark

 $S(t)x_3$ is a solution of total mass 1 arbitrarily concentrated at mode j=3 at some time t_0 and then arbitrarily concentrated at mode j=M-2 at later time t.

TARGETS AND COVERING

Let O, D denote points in our phase space Σ . Can we flow along S(t) from *nearby* the origin point 0 to *nearby* the destination point D? More generally, suppose O and D are subsets of Σ .



The notion of a **target** quantifies this question.

TARGETS

- Let \mathcal{M} denote a subset of Σ . Let d be a (pseudo)metric on Σ . Let R > 0 be a radius.
- The Target $(\mathcal{M}, d, R) := \{x \in \Sigma : d(x, \mathcal{M}) < R\}.$
- Given $x, y \in \Sigma$. We say x hits y if y = S(t)x for some $t \ge 0$.

Covering

Given an initial target (M_1, d_1, R_1) and a final target (M_2, d_2, R_2) . We say (M_1, d_1, R_1) can cover (M_2, d_2, R_2) and write

$$(M_1,d_1,R_1) \implies (M_2,d_2,R_2)$$

if:

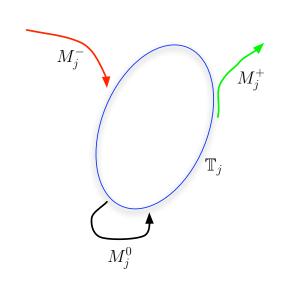
 $\forall \ x_2 \in M_2 \ \exists \ x_1 \in M_1 \ \text{such that} \ \forall \ y_1 \in \Sigma \ \text{with} \ d_1(x_1,y_1) < R_1 \ \exists \ y_2 \in \Sigma \ \text{with} \ d(x_2,y_2) < R_2 \ \text{such that} \ y_1 \ \text{hits} \ y_2.$

- The flowout of (M_1, d_1, R_1) is **surjective** onto (M_2, d_2, R_2) .
- Covering also includes a notion of stability.

STRATEGY OF PROOF

- Transitivity of Covering: If $(M_1, d_1, r_1) \implies (M_2, d_2, r_2)$ and $(M_2, d_2, r_2) \implies (M_3, d_3, r_3)$ then $(M_1, d_1, r_1) \implies (M_3, d_3, r_3)$.
- $\forall j \in 3, ..., M-2$ we define 3 targets close to \mathbb{T}_j :
 - Incoming Target (M_i^-, d_i^-, R_i^-)
 - Ricochet Target (M_i^0, d_i^0, R_i^0)
 - Outgoing Target (M_i^+, d_i^+, R_i^+)
- $\forall j = 3, ..., M-2$ with appropriate $d_j^{-,0,+}, R_j^{-,0,+}$, prove:
 - $(M_j^-, d_j^-, R_j^-) \implies (M_j^0, d_j^0, R_j^0)$
 - $(M_j^0, d_j^0, R_j^0) \implies (M_j^+, d_j^+, R_j^+)$
 - $(M_j^+, d_j^+, R_j^+) \implies (M_{j+1}^-, d_{j+1}^-, R_{j+1}^-)$

Targets Around T_j



4. Construction of Resonant Set Λ

4. Construction of Resonant Set Λ

The task is to construct a finite set $\Lambda \subset \mathbb{Z}^2$ satisfying the properties that led to the Toy Model ODE. We do this in two steps:

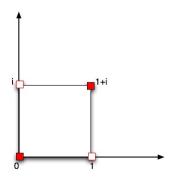
- **I** Build combinatorial model of Λ called $\Sigma \subset \mathbb{C}^{M-1}$.
- **2** Build a map $f: \mathbb{C}^{M-1} \to \mathbb{R}^2$ which gives

$$f(\Sigma) = \Lambda \subset \mathbb{Z}^2$$

satisfying the properties.

Construction of Combinatorial Model Σ

■ Standard Unit Square: $S = \{0, 1, 1+i, i\} \subset C, S = S_1 \cup S_2$ where $S_1 = \{1, i\}$ and $S_2 = \{0, 1+i\}$



 $\blacksquare \mathbb{Z}^2 \equiv \mathbb{Z}[i]; (n_1, n_2) \equiv n_1 + in_2$

CONSTRUCTION OF COMBINATORIAL MODEL Σ

We define

$$\Sigma_j = \{(z_1, z_2, \dots, z_{M-1}) : z_1, \dots, z_{j-1} \in S_2, z_j, \dots, z_{M-1} \in S_1\}$$

with the properties

- $\Sigma_i = S_2^{j-1} \times S_1^{M-j} \subset \mathbb{C}^{M-1}$
- $|\Sigma_i| = 2^{M-1}$
- Next, we define

$$\Sigma = \Sigma_1 \cup \cdots \cup \Sigma_M$$
.

- $|\Sigma| = M2^{M-1}$.
- lacksquare Σ_j is called a generation.

COMBINATORIAL NUCLEAR FAMILY

■ Consider the set $F = \{F_0, F_1, F_{1+i}, F_i\} \subset \Sigma$ defined by

$$F_w = (z_1, \ldots, z_{j-1}, w, z_{j+1}, \ldots, z_n)$$

with $z_1, \ldots, z_{j-1} \in S_2$ and $z_{j+1}, \ldots, z_n \in S_2$ and $w \in S$.

- The elements $F_0, F_{1+i} \in \Sigma_{j+1}$ are called *children*.
- The elements F_1 , F_i are called *parents*.
- The four element set F is called a combinatorial nuclear family connecting the generations Σ_i and Σ_{i+1} .
- $\forall j \exists 2^{M-2}$ combinatorial nuclear families connecting generations Σ_j and Σ_{j+1} .
- The set Σ satisfies
 - Existence and uniqueness of spouse and children (of sibling and parents).
 - Sibling is never also a spouse.

CONSTRUCTION OF THE PLACEMENT FUNCTION

We need to map $\Sigma \subset \mathbb{C}^{M-1}$ into the frequency lattice \mathbb{Z}^2 .

- We first define $f_1: \Sigma_1 \to \mathbb{C}$.
- \forall $1 \leq j \leq M$ and each combinatorial nuclear family F connecting generations Σ_j and Σ_{j+1} , we associate an angle $\theta(F) \in \mathbb{R}/2\pi\mathbb{Z}$.
- Given f_1 and the angles of all the families, we define placement functions $f_j: \Sigma_j \to \mathbb{C}$ recursively by the rule: Suppose $f_j: \Sigma_j \to \mathbb{C}$ has been defined. We define $f_{i+1}: \Sigma_{i+1} \to \mathbb{C}$:

$$f_{j+1}(F_{1+i}) = \frac{1 + e^{i\theta(F)}}{2} f_j(F_1) + \frac{1 - e^{i\theta(F)}}{2} f_j(F_i)$$

$$f_{j+1}(F_0) = \frac{1 + e^{i\theta(F)}}{2} f_j(F_1) - \frac{1 - e^{i\theta(F)}}{2} f_j(F_i)$$

for all combinatorial nuclear families connecting Σ_j to Σ_{j+1} .

THEOREM: GOOD PLACEMENT FUNCTION

Let $M \geq 2$, s > 1, and let N be a sufficiently large integer (depending on M). \exists an initial placement function $f_1 : \Sigma_1 \to \mathbb{C}$ and choices of angles $\theta(F)$ for each nuclear family F (and thus an associated complete placement function $f : \Sigma \to \mathbb{C}$) with the following properties:

- (Non-degeneracy) The function f is injective.
- (Integrality) We have $f(\Sigma) \subset \mathbb{Z}[i]$.
- (Magnitude) We have $C(M)^{-1}N \le |f(x)| \le C(M)N$ for all $x \in \Sigma$.
- **Closure/Faithfulness)** If x_1, x_2, x_3 are distinct elements of Σ are such that $f(x_1), f(x_2), f(x_3)$ form a right-angled triangle, then x_1, x_2, x_3 belong to a combinatorial nuclear family.
- (Wide Diaspora/Norm Explosion) We have

$$\sum_{n \in f(\Sigma_M)} |n|^{2s} > \frac{1}{2} 2^{(s-1)(M-1)} \sum_{n \in f(\Sigma_1)} |n|^{2s}.$$