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1. Bourgain’s High-Low Fourier Truncation

S. Kuksin’s Request: Survey Bourgain’s high-low argument.

Afterwards, we return to discuss Morawetz-type estimates.
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1. Bourgain’s High-Low Fourier Truncation

Consider the Cauchy problem for defocusing cubic NLS on R2:{
(i∂t + ∆)u = +|u|2u

u(0, x) = φ0(x).
(NLS+

3 (R2))

We describe the first result to give global well-posedness below H1.

NLS+
3 (R2) is GWP in Hs for s > 2

3 [Bourgain 98].

First use of Bilinear Strichartz estimate was in this proof.

Proof cuts solution into low and high frequency parts.
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Setting up; Decomposing Data

Fix a large target time T .

Let N = N(T ) be large to be determined.

Decompose the initial data:

φ0 = φlow + φhigh

where

φlow (x) =

∫
|ξ|<N

e ix ·ξφ̂0(ξ)dξ.

Our plan is to evolve:

φ0 = φlow + φhigh

u(t) = ulow (t) + uhigh(t).
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Setting up; Decomposing Data

Low Frequency Data Size:

Kinetic Energy:

‖∇φlow‖2
L2 =

∫
|ξ|<N

|ξ|2|φ̂0(ξ)|2dx

=

∫
|ξ|<N

|ξ|2(1−s)|ξ|2s |φ̂0(ξ)|2dx

= N2(1−s)‖φ0‖2
Hs ≤ C0N

2(1−s).

Potential Energy: ‖φlow‖L4
x
≤ ‖φlow‖

1/2
L2 ‖∇φlow‖

1/2
L2

=⇒ H[φlow ] ≤ CN2(1−s).

High Frequency Data Size:

‖φhigh‖L2 ≤ C0N
−s , ‖φhigh‖Hs ≤ C0.
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LWP of Low Frequency Evolution along NLS

The NLS Cauchy Problem for the low frequency data{
(i∂t + ∆)ulow = +|ulow |2ulow

ulow (0, x) = φlow (x)

is well-posed on [0,Tlwp] with Tlwp ∼ ‖φlow‖−2
H1 ∼ N−2(1−s).

We obtain, as a consequence of the local theory, that

‖ulow‖L4
[0,Tlwp ],x

≤ 1

100
.



LWP of High Frequency Evolution along DE

The NLS Cauchy Problem for the low frequency data{
(i∂t + ∆)uhigh = +2|ulow |2uhigh + similar + |uhigh|2uhigh

uhigh(0, x) = φhigh(x)

is also well-posed on [0,Tlwp].

Remark: The LWP lifetime of NLS evolution of ulow AND the
LWP lifetime of the DE evolution of uhigh are controlled by
‖ulow (0)‖H1 .
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Extra Smoothing of Nonlinear Duhamel Term

The high frequency evolution may be written

uhigh(t) = e it∆uhigh + w .

The local theory gives ‖w(t)‖L2 . N−s . Moreover, due to
smoothing (obtained via bilinear Strichartz), we have that

w ∈ H1, ‖w(t)‖H1 . N1−2s+. (SMOOTH!)

Let’s postpone the proof of (SMOOTH!).



Nonlinear High Frequency Term Hiding Step!

∀ t ∈ [0,Tlwp], we have

u(t) = ulow (t) + e it∆φhigh + w(t).

At time Tlwp, we define data for the progressive sheme:

u(Tlwp) = ulow (Tlwp) + w(Tlwp) + e iTlwp∆φhigh.

u(t) = u
(2)
low (t) + u

(2)
high(t)

for t > Tlwp.
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Hamiltonian Increment: φlow(0) 7−→ u
(2)
low(Tlwp)

The Hamiltonian increment due to w(Tlwp) being added to low
frequency evolution can be calcluated. Indeed, by Taylor
expansion, using the bound (SMOOTH!) and energy conservation
of ulow evolution, we have using

H[u
(2)
low (Tlwp)] = H[ulow (0)] + (H[ulow (Tlwp) + w(Tlwp)]− H[ulow (Tlwp)])

∼ N2(1−s) + N2−3s+ ∼ N2(1−s).

Moreover, we can accumulate Ns increments of size N2−3s+ before
we double the size N2(1−s) of the Hamiltonian. During the
iteration, Hamiltonian of “low frequency” pieces remains of size
. N2(1−s) so the LWP steps are of uniform size N−2(1−s). We
advance the solution on a time interval of size:

NsN−2(1−s) = N−2+3s .

For s > 2
3 , we can choose N to go past target time T .



How do we prove (SMOOTH!)?

Recall Bourgain’s Bilinear Strichartz Estimate: For (dyadic) N ≤ L

‖e it∆fLe
it∆gN‖L2

t,x
≤ N

2−1
2

L
1
2

‖fL‖L2
x
‖gN‖L2

x
.

Corollary

For s ≥ 1
2

‖Ds
x (u1u2)‖L2

[0,δ],x
≤C (‖u1‖X

s,1/2+
[0,δ]

‖u2‖X
0,1/2+
[0,δ]

+ ‖u1‖X
1/2,1/2+
[0,δ]

‖u2‖X
s−1/2,1/2+
[0,δ]

).

Thus, the Bilinear Estimate allows us move half a derivative off the
high frequency part and instead onto of the low frequency part.



270 J. Bourgain

hence, by interpolation,

‖u0‖X 1
2 +, 1

2 +(I) < N
1−s

2 +
0 . (109)

Similarly, the solution v of (87) on I satisfies

‖v‖X
0, 1

2 +(I) < CN−s
0 and ‖v‖X

s, 1
2 +(I) < C. (110)

In order to estimate the nonlinear expression (103), we first observe the following bilinear

Strichartz’ type inequality (compare with (73)).

Lemma 111. Let ψ1, ψ2 ∈ L2(R2) such that

ψ1 = ∆M1ψ1 and ψ2 = ∆M2ψ2,

where we denote

∆Mψ =
∫

|ξ|∼M

ψ̂(ξ)eixξ dξ.

Then, for M1 ≤ M2, the following inequality holds:

‖(eit∆ψ1)(eit∆ψ2)‖L2(R2×R) ≤ C

(
M1

M2

)1/2

‖ψ1‖2‖ψ2‖2. (112)

Proof. Since the standard Strichartz inequality yields (112) without the
(

M1

M2

) 1
2

-factor,

we may assume M2 ' M1.

Writing

(eit∆ψ1)(eit∆ψ2) =
∫

ψ̂1(ξ1)ψ̂2(ξ2)ei[(ξ1+ξ2).x+(|ξ1|2+|ξ2|2)t] dξ1dξ2,

it follows from Parseval’s identity and Cauchy-Schwarz that

‖(eit∆ψ1)(eit∆ψ2)‖2
2 =

∫
dξdλ

∣∣∣∣

∫
ψ̂1(ξ1)ψ̂2(ξ − ξ1)δ0(|ξ1|2 + |ξ − ξ1|2 − λ) dξ1

∣∣∣∣
2

≤ ‖ψ1‖2
2‖ψ2‖2

2

[

sup
λ,|ξ|∼M2

mes(1)[ξ1| |ξ1| ∼ M1

and |ξ1|2 + |ξ − ξ1|2 = λ]

]

< C
M1

M2
.
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Treatment of a typical term in w

Using the controls we have on ulow , uhigh from the local theory
on [0,Tlwp], we want to prove for

w =

∫ t

0
e i(t−t′)∆|ulow |2uhigh(t

′)dt ′

that supt∈[0,Tlwp] ‖∇w‖L2 < N1−2S+.

By Sobolev embedding, we have

‖w‖L∞
[0,Tlwp ]

H1 ≤ ‖w‖
X

1,1/2+
[0,Tlwp ]

.

The mapping f 7−→
∫ t
0 e i(t−t′)∆ is formally

f 7−→ (i∂t + ∆)−1f which, due to time localization, is
essentially f̂ 7−→ 〈τ − |ξ|2〉f̂ . It suffices to control
‖Dx |ulow |2uhigh‖X 0,−1/2+ . Proceed by duality....
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Treatment of a typical term in w

‖w‖L∞
[0,Tlwp ]

H1 ≤ sup
‖g‖

X0,1/2−≤1
〈g ,Dx(|ulow |2uhigh)〉.

. sup
g
〈gDxulow , ulowuhigh〉+ sup

g
〈gulow ,Dx(ulowuhigh)〉

= easier + sup
g
〈D1/2

x (gulow ),D
1/2
x (ulowuhigh〉.

The corollary and the available bounds then give (SMOOTH!).



2. Generalized Virial Identities



Cauchy Problem for Lagrangian NLS

Consider the initial value problem:{
(i∂t + ∆)u = ±F ′(|u|2)u

u(0, x) = u0(x)
(NLS±F (Rd))

Remarks:

Assume F ′ ≥ 0. The + case is defocusing; − is focusing.

Generalized NLS with Lagrangian derivation.

U(1) solution symmetry: u → e iθu.



Time Invariant Quantities

The following quantities do not change with time:

Mass =

∫
Rd

|u(t, x)|2dx .

Momentum = 2=
∫

R2

u(t)∇u(t)dx .

Energy = H[u(t)] =
1

2

∫
R2

|∇u(t)|2dx±F (|u(t)|2)dx .

=⇒ a priori conservation controls (defocusing case):

‖u‖L∞t L2
x
≤ ‖u0‖L2

‖∇u‖L∞t L2
x
≤ E [u0].

These are very useful bounds but do not give any decay in time.



Local Conservation Laws

We consider an even more general NLS equation.

Suppose φ : [0,T ]× Rd → C solves generalized NLS

(i∂t + ∆)φ = N (GNLS(Rd))

for N = N (t, x , φ) : [0,T ]× Rd × C → C. Assume φ is nice.

Not necessarily Lagrangian; No U(1) symmetry.

Express mass & momentum (non)conservation for GNLS .

Write ∂xj φ = ∂jφ = φj .



Local mass/momentum (non)conservation

mass density: T00 = |φ|2

momentum density/mass current:
T0j = Tj0 = 2=(φφj)

(linear part of the) momentum current:
Ljk = Lkj = −∂j∂k |φ|2 + 4<(φjφk)

mass bracket: {f , g}m = =(f g)

momentum bracket: {f , g}j
p = <(f ∂jg − g∂j f )

Local mass (non)conservation identity:

∂tT00 + ∂jT0j = 2{N , φ}m

Local momentum (non)conservation identity:

∂tT0j + ∂kLkj = 2{N , φ}j
p



Local mass/momentum (non)conservation

Consider N = F ′(|φ|2)φ for polynomial F : R+ → R.

We calculate the mass bracket

{F ′(|φ|2)φ, φ}m = =(F ′(|φ|2)φφ) = 0.

Thus mass is conserved for these nonlinearities.

We calculate the momentum bracket

{F ′(|φ|2)φ, φ}j
p = −∂jG (|φ|2)

where G (z) = zF ′(z)− F (z) ∼ F (z).
Thus the momentum bracket contributes a divergence and
momentum is conserved for these nonlinearities.



Generalized Virial Identity

Let a : Rd → R (virial weight). Form the virial potential

Va(t) =

∫
Rd

a(x)|φ(t, x)|2dx .

Form the Morawetz action

Ma(t) =

∫
Rd

∇a · 2=(φ∇φ)dx .

Conservation identities lead to the generalized virial identities

∂tVa = Ma +

∫
Rd

a(x){N , φ}m(t, x)dx ,

∂tMa =

∫
Rd

(−∆∆a)|φ|2 + 4ajk<(φjφk) + 2aj{N , φ}j
pdx .



Remarks on Virial Identities

The virial potential is a weighted average of the mass density
against the virial weight a.

The Morawetz action is a contraction of the momentum
density against ∇a. Vector fields not arising as gradients
could also be considered.

Useful estimates emerge from monotonicity and boundedness
of terms in the virial identities.

Monotone quantities provide dynamical insights.

Idea of Morawetz Estimates: Cleverly choose the weight
function a so that ∂tMa ≥ 0 but Ma ≤ C (φ0) to obtain
spacetime control on φ. This strategy imposes various
constraints on a which suggest choosing a(x) = |x |.



Variance Identity

[Glassey], [Vlasov-Petrischev-Talanov]

Consider GNLS with N = ±|u|4/du. This is the L2 critical
focusing equation NLS±

1+ 4
d

(Rd).

Choose a(x) = |x |2. Calculations reveal that

∂2
t

∫
Rd

|x |2|u(t, x)|2dx = 16H[u(t)].

In the focusing case, we can consider initial data u0 with
H[u0] < 0 and finite variance. Such data must blow up in
finite time.



2. A Priori Spacetime Estimates



[Lin-Strauss] Morawetz identity

Consider (i∂t + ∆)φ = F ′(|φ|2)φ with F ′ ≥ 0 and x ∈ R3. Choose
a(x) = |x |. Observe that a is weakly convex, ∇a = x

|x | is bounded,
and −∆∆a = 4πδ0. From monotonicity ∂tMa ≥ 0 and the bound
|Ma| ≤

√
H[u0] emerges the Lin-Strauss Morawetz identity

Ma(T )−Ma(0) =

T∫
0

∫
R3

4πδ0(x)|φ(t, x)|2 + (≥ 0) + 4
G (|φ|2)
|x |

dxdt.

This implies the spacetime control estimate (centered at x = 0)

(H[u0])
1/2‖u0‖L2 &

T∫
0

∫
R3

G (|φ|2)
|x |

dxdt.

[Morawetz] Reward & Anchor. [Ginibre-Velo] H1-Scattering.
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[Bourgain] & [Grillakis] truncation

Let χBR
denote a smooth cutoff adapted to BR = {|x | < R}.

Choose cutoff virial weight a(x) = χBR
(x)|x |. and calculate

Ma

∣∣∣T
0
≥

T∫
0

∫
R3

4πδ0(x)|φ(t, x)|2 + 4

T∫
0

∫
|x |<R/2

G (|φ|2)
|x |

dxdt

|Ma

∣∣∣T
0
| ≤ R−1TH[u0] + RH[u0] =⇒ choose R ∼ T 1/2 =⇒

T∫
0

∫
|x |<T 1/2

G (|φ|2)
|x |

dx . T 1/2‖∇u‖2
L∞

[0,T ]
L2

x
.

[Bourgain][Grillakis]: Energy critical bubbles sparse along time axis.



Averaging over [Lin-Strauss] center?

Translation invariance? Weight |x |−1 difficult in proofs.

Recenter [L-S] at fixed y ∈ Rd . Set a(x) = |x − y |.
Recentered Morawetz action can be expressed

My [u](t) =

∫
Rd

(x − y)

|x − y |
2=(u∇u)(t, x)dx .

Monotonicity ∂tMy [u] ≥ 0: mass is repelled from any y ∈ Rd .

Can we average with respect to center y and obtain new
translation invariant spacetime control?

Yes, if we average against the natural density |u(t, y)|2.



Interaction Morawetz via Averaging

Define the Morawetz interaction potential

M[u](t) =

∫
Rd

y

|u(t, y)|2My [u](t)dy .

It is bounded:
∣∣∣M[u](t)

∣∣∣ . ‖u(t)‖3
L2

x
‖∇u(t)‖L2

x
. We calculate

∂tM[u] =

∫
Rd

y

|u(t, y)|2{∂tMy [u]}+ {∂t |u(y)|2}My [u]dy .

Local conservation & [L-S] =⇒ monotonicity:
∃ I , II , III , IV such that I , III ≥ 0 and II + IV ≥ 0 and
∂tM[u] = I + II + III + IV . Integrating in time gives∫ T

0

∫
R3

|u(t, x)|4dxdt . ‖u(t)‖3
L∞T L2

x
‖∇u(t)‖L∞T L2

x
.



2-particle interaction Morawetz

(Hassell 04)

Suppose φ1, φ2 are two solutions of (i∂t + ∆)φ = F ′(|φ|2)φ
with F ′ ≥ 0 and x ∈ R3. The “2-particle” wave function

Ψ(t, x1, x2) = φ1(t, x1)φ2(t, x2)

satisfies an NLS-type equation on R1+6

(i∂t + ∆1 + ∆2)Ψ = [F ′(|φ1|2) + F ′(|φ2|2)]Ψ.

Note that [F ′(|φ1|2) + F ′(|φ2|2)] ≥ 0 so defocusing.

Reparametrize R6 using center-of-mass coordinates (x , y)
with x = 1

2(x1 + x2) ∈ R3. Note that y = 0 corresponds to
the diagonal x1 = x2 = x . Apply the generalized virial identity
with the choice a(x1, x2) = |y |. Dismissing terms with
favorable signs, one obtains...



2-particle interaction Morawetz

‖∇u‖L∞
[0,T ]

L2
x
‖u0‖3

L2 ≥
∫ T

0

∫
R6

(−∆6∆6|y |)|Ψ(x1, x2)|2dx1dx2dt

≥ c

∫ T

0

∫
R6

δ{y=0}(x1, x2)|φ1(x1)φ2(x2)|2dx1dx2dt

≥ c

∫ T

0

∫
R3

|φ1(t, x)φ2(t, x)|2dxdt.

Specializing to φ1 = φ2 gives the 2-particle Morawetz estimate∫ T

0

∫
R3

|φ(t, x)|4dxdt ≤ C‖∇u‖L∞
[0,T ]

L2
x
‖u0‖3

L2
x

valid uniformly for all defocusing NLS equations on R3.



”The” 2-particle Morawetz Estimate

Efforts to extend the L4(Rt × R3
x) interaction Morawetz to the R2

x

setting led to...

Theorem (C-Grillakis-Tzirakis & Planchon-Vega)

Finite energy solutions of any defocusing NLS+(Rd) satisfy

‖D
3−d

2 |u|2‖2
L2

t,x
. ‖u0‖3

L2
x
‖∇u‖L∞t L2

x
.

Independently & simultaneously by [Planchon-Vega].

Gives simple proof of H1-scattering in mass supercritical case.
[Nakanishi]

Simplified proof extends to Hs for certain s < 1.



4-particle Morawetz Estimate

(Hassel-Tao) [C-Holmer-Visan-Zhang]

R4 = {x = (x1, x2, x3, x4) : xi ∈ R; i = 1, 2, 3, 4}
x = center of mass = 1

4(x1 + x2 + x3 + x4).
Define y = (x1 − x , x2 − x , x3 − x , x4 − x).
R4 3 x = (x1, x2, x3, x4) ⇐⇒ (x , y) ∈ R× R3

The 4-particle wave function

Ψ(t, x) =
4∏

i=1

φ1(t, xi )

satisfies a defocusing NLS equation on R1+4.

Choice of virial weight a(x) = |y | spawns∫ T

0

∫
R
|u|8dxdt . ‖u‖7

L∞T L2
x
‖∇u‖L∞T L2

x
.

How does this estimate generalize to other dimensions?
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3. I -Method with Morawetz Bootstrap

Application: Subcritical scattering for certain NLS+
p (Rd).

[CKSTT], [CHVZ], [Fang-Grillakis], [C-Grillakis-Tzirakis]

2-particle Morawetz is an Ḣ1/4-critical input.
4-particle Morawetz is an Ḣ1/8-critical input.

Scaling invariant Hs for NLS+
p (Rd) : sc = d

2 −
2

p−1

When 1/4 < sc < 1 ∃ s∗ ∈ (sc , 1) and ∀ s ≥ s∗ the
Hs -solutions of NLS+

p (Rd) scatter.

We obtain scattering for certain energy subcritcal (sc < 1)
NLS for infinite energy data of subcritical regularity (sc < s∗).

The critical scattering conjecture corresponds to sc = s∗.
This is known (for general data) only for sc = 1.



I -Method with Morawetz Bootstrap

Consider NLS+
2k+1(R) (nonlinearity +|u|2ku) for k = 3, 4, . . . .

Note that sc = 1
2 −

1
k .

Define

sk =
8k − 16

9k − 14
< 1.

Theorem (C-Holmer-Visan-Zhang)

∀ s > sk , Hs(R) 3 u0 7−→ u solving NLS+
2k+1(R) is global in time

and scatters: ∃ u± ∈ Hs(R) such that

lim
t→±∞

‖u(t)− e it∆u±‖Hs(R) = 0.

Proof treats a family of equations; Wish that sk → 1/2 as k →∞.



Finite Energy Scattering

The 4-particle L8(Rt × Rx) estimate may be reexpressed:∫ T

0

∫
R
|u|8dxdt . ‖u‖6

L∞T L2
x
‖u‖

L∞T Ḣ
1/2
x

,

=⇒ ‖u‖L8
t,x

. ‖u‖L∞t H1
x

=⇒ H1-scattering using some

interpolation.



LWP: Data size versus Spacetime slabs

Recall that, based on a Hölder-in-time step, subcritical
local-in-time theory gives

Tlwp ∼ ‖u0‖
− 2

s−sc
Hs .

Bootstrap toward scattering: Hölder-in-time is forbidden.



I -Method & Morawetz: Bootstrap Heuristic

Suppose we have almost conservation of modified energy.

1 RHS of 4-particle . almost conserved modified energy

2 =⇒ L8
t,x controlled on long time interval t ∈ [0,T ]

3 =⇒ spacetime slab decomposition:
[0,T ]× R = ∪J

j=1[tj , tj+1)× R such that

‖u‖L8([tj ,tj+1)×R) = η ∼
1

100

4 =⇒ almost conserved modified energy on [tj , tj+1]

5 =⇒ RHS of 4-particle.... bootstrap loop!



Almost Conservation Used In Bootstrap

Lemma (Almost Conservation on Slab)

Let Hs 3 u0 → u solve NLS+
2k+1(R

d) with s > sk . Suppose we
have a spacetime slab [t−, t+] on which

‖u‖L8([t−,t+]×R) . η

and ∃ t0 ∈ [t−, t+] such that H[INu(t0)] ≤ 1. Then for large N we
have almost conservation:

sup
t∈[t−,t+]

H[INu(t)] = H[INu(t0)] + O(N−1+).

Rescaling and continuity arguments glue it all together.


	Bourgain's High-Low Fourier Truncation
	Generalized Virial Identities
	A Priori Spacetime Estimates
	I-Method with Morawetz Bootstrap



