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1. CuBic NLS INITIAL VALUE PROBLEM ON R?

We consider the initial value problems:

{(fat + A)u = +|uf?u (NLS5 (R2))

u(0, x) = up(x).

The + case is called defocusing; — is focusing. NLS;E is ubiquitous
in physics. The solution has a dilation symmetry

u)‘(T,y) = )\_1u()\_27'7 A_ly).

which is invariant in L2(R?). This problem is [2-critical.
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TIME INVARIANT QUANTITIES

Mass:/ lu(t, x)|?dx.
Rd

Momentum = 2%/ u(t)Vu(t)dx.
R2

1 1
Energy = H{u(1)] = ; /R Vu(t) Pt 5 u(2)

m Mass is L2: Momentum is close to H1/2; Energy involves HL.
= Dynamics on a sphere in L?; focusing/defocusing energy.

m Local conservation laws express how quantity is conserved:
e.g., Orlul? =V -23(uVu). Frequency Localizations?
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LOCAL-IN-TIME THEORY FOR NLS; (IR?)

m Y ug € L2(R?) 3 Tyyp(uo) determined by

Strichartz

; 1
||eltAUOHL;‘X([o,T,Wp]xR?) < —— such that

100
3 unique u € C([0, Thpl; L2) N LE([O, Thwp] x R?) solving
NLSS (R?).

_2
BV uy € H(R?),s > 0, Tiwp ~ ||uol| 4 and regularity persists:
u € C([0, Tiwpl; HS(R?)).
m Define the maximal forward existence time T*(up) by
[ullea (o, 7+—s)xr2) <

for all § > 0 but diverges to oo as § \, 0.
m 3 small data scattering threshold g > 0

|uwollz < po = HU”L‘gX(Rsz) < 2up.
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GLOBAL-IN-TIME THEORY?

What is the ultimate fate of the local-in-time solutions?

L?-critical Scattering Conjecture:
L2 5 up — u solving NLS (R?) is global-in-time and

||u||th17X < A(up) < 0.

Moreover, 3 uy € L?(R?) such that Asymptotic .
Representation

lim

m He:titAui - U(t)HL?(RZ) =0.

Same statement for focusing NLS; (R?) if ||uol;2 < || Q]| 2-
Remarks:

m Known for small data ||uol[r2(r2) < fi0-
m Known for large radial data [Killip-Tao-Visan 07].
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NLS$"(R?): PRESENT STATUS FOR GENERAL DATA

regularity idea reference

s> % high/low frequency decomposition | [Bourgain98]

s> 12 H(lu) [CKSTTOZ 1
s> % ut of 2nd energy [CKSTTO7]

s> 5 H(lu) & Interaction Morawetz | [Fang-Grillakis05]
s> 2 H(lu) & Interaction /-Morawetz | [CGTz07]

s> 1 resonant cut & /-Morawetz [C-Roy08]

s> 07

m Morawetz-based arguments are only for defocusing case.
m Focusing results assume [[up||;2 < || Q|| ;2.
m Unify theory of focusing-under-ground-state and defocusing?
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H' GLOBAL WELL-POSEDNESS SCHEME

Consider NLSF(IR?) with finite energy data up € H™.
Classical H'-GWP Scheme relies on three inputs:
B LWP lifetime dependence on data norm: Ty, ~ ||uo||H2/s.
A Energy controls data norm: [[u(t)||2, < H[u(t)] + [|u(t)||7
Conservation: H[u(t)] + ||u(t)||?. < C(Energy, Mass).
Fix arbitrary time interval [0, T]. Break [0, T] into subintervals of
uniform size c(Energy, Mass) + LWP iteration —- GWP.

For up € H* with 0 < s < 1, we may have infinite energy. Classical
persistence of regularity from LWP /Duhamel only gives

sup lu(t)llns S 2[|uollHs
tE[O,T/Wp]

and LWP iteration fails due to (possible) doubling.
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Consider the 2D IVP

iw +Au+Aufu=0
u(0) = @ € L%(R?).

The theory on the Cauchy problem asserts a unique maximal solution
uwe € — T, T*[,L3([R?) N L*(] — T, T*[; L*(R?),

snrhAava T T < N Acctivva FAar tvmatarnma T 0 a~N T+ 396 cbhatarnm +han +1h ot



2. ABSTRACT [-METHOD SCHEME FOR H°*-GWP



2. ABSTRACT [-METHOD SCHEME FOR H°*-GWP

Let H5 5 g — u solve NLS for t € [0, Tiwpl, Tiwp ~ lltoll 2.
Consider two ingredients (to be defined):

m A smoothing operator | = Iy : HS — H!. The NLS
evolution vy — u induces a smooth reference evolution
H > lug — Iu solving I(NLS) equation on [0, Ti).

m A modified energy E[/u] built using the reference evolution.

We postpone how we actually choose these objects.



FIRST VERSION OF THE /-METHOD: E = H[lu]

For s <1, N > 1 define smooth monotone m : Rg — RT s.t.

1 for [£] < N
m($) = {('ﬁ,)s_l for €] > 2N,

—

The associated Fourier multiplier operator, (/u)(§) = m(&)u(§),
satisfies /| : HS — H. Note that, pointwise in time, we have

lullme < Mull i S N2l e

Set E[lu(t)] = H[lu(t)]. Other choices of E are considered later.



AC Law DEcAY AND SOBOLEV GWP INDEX

Modified LWP. Initial vy s.t. ||V/vl[;2 ~ 1 has Ty, ~ 1.

Goal. ¥V ug € H°, ¥ T > 0, construct v : [0, T] x R2 - C.

<= Dilated Goal. Construct v : [0,\*T] x R? — C.

Rescale Data. ||/Vu)||2 < NYSA75||ug s ~ 1 provided we
choose A = A(N) ~ N'5° <= N5\~ ~ 1.

Almost Conservation Law. |[/Vu(t)|;2 < H[lu(t)] and

sup  H[lu(t)] < H[lu(0)] + N~
t€[0, Tiwp)

Delay of Data Doubling. Iterate modified LWP N steps
with T, ~ 1. We obtain rescaled solution for t € [0, N*].

2(s—1)

2
M(NT <N <= T <N 5 sos> 5 suffices.




FIRST VERSION OF THE /-METHOD: E = H[lu]

A Fourier analysis established the almost conservation property of
E = H[lu] with o = 3 which led to...

TueorREM (CKSTT 02)
NLSS (R?) is globally well-posed for data in H*(R?) for 3 <'s < 1.

Moreover, ||u(t)||s < (t)20) for appropriate 3(s).

m Same result for NLS; (R?) if |lug 2 < || Q]| 2. Here Q is the
ground state (unique positive solution of —Q + AQ = —Q3).

m Fourier analysis leading to oo = % in fact gives o = 2 for most
frequency interactions.



ALMOST CONSERVATION LAW FOR H[/u]

PROPOSITION
Given's > 2 N > 1, and initial data ¢o € C§°(IR?) with
E(Iyug) < 1, then there exists a Ty, ~ 1 so that the solution

U(LX) S C([07 lep]v HS(Rz))
of NLS;F(Rz) satisfies
E(Ivu)(t) = E(Iyu)(0) + O(N—3%),

for all t € [0, Thyp).
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IDEAS IN THE PROOF OF ALMOST CONSERVATION

m Standard Energy Conservation Calculation:
OtH(u) = ER/ T (Jul?u — Au)dx
R2
= 5}%/ Te(|uu — Au — iug)dx = 0.
R2
m For the smoothed reference evolution, we imitate....
OtH(Iu) = zre/ Tue([lu)?lu — Alu — luy)dx
R2 vV
- §R/ Tar(|luPlu — 1(uPu))dx 0.
R2

m The increment in modified energy involves a commutator,

H(lu)(t) — 3%/ / Tue(|1u)® lu — 1(Ju|?u))dxdt.

m Littlewood-Paley, Case-by-Case, (Bi)linear Strichartz, X_,
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REMARKS

m The almost conservation property

sup  E[lu(t)] < Ellug] + N~
tG[O,T/Wp]

leads to GWP for

$> S, =

2+’
m The /-method is a subcritical method. To prove the Scattering
Conjecture at s = 0 via the /-method would require o = 4.

m The /-method localizes the conserved density in frequency.
Similar ideas appear in recent critical scattering results.

m There is a multilinear corrections algorithm for defining new
choices of E which should have a better AC property.
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FocusiNnGg CASE BELOW THE GROUND STATE MASS

Modified LWP lifetime is controlled by ||/Vug]|,2.
The GWP scheme progresses if ||[/Vu(t)|[7, < H[lu(t)].
Weinstein's optimal Gagliardo-Nirenberg Inequality:

WL Vwl.

wlla < |
‘ HQH2

I has symbol m satisfying |[m| <1 so ||/f||;2 <||f||;2. Thus,

luolle < [IQll2 = [Huoll 2 < 1Q[ -

The required control then follows:

lwollz < 1Rl 2 = 11Vu(t)[f2 S Hlu(t)].
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3. MULTILINEAR CORRECTION TERMS

(Inspired by [Coifman-Meyer]; following [CKSTT:KdV])
For k € N, define the convolution hypersurface

Seo={(&, &) € R &+ ...+ & =0} C (RD)X

For M : ¥y — C and u1,..., ug nice, define k-linear functional

AAMm,wwy:q%/MQVWQMQﬁ”@@)
pays

For k € 2N abbreviate A (M; u) = Ae(M; u, 4, . .., T).

Ak(M; u) invariant under interchange of even/odd arguments,

M(&1,6, . &k, &k) — M(&2, &1, - -k, Eket)-

We can define a symmetrization rule via group orbit.



EXAMPLES

/ yTTidx = / ( / X9V der) . / X6 (£,)dea) dx

X

_ / { / eix-(§1+£z+€3+f4)dX] a(gl)ﬁ(@)ﬁ(gg,)ﬁ(&)dgl 77777 4

- [a@)i@nEE) - Asio)

P

No(—1 - &5 u) = || V|| 7o
Thus, H[u] = Aa(—&1 - &5 u) £ Aa(35 u).



TIME DEPENDENCE OF MULTILINEAR FORMS

Suppose u nicely solves NLS; (R?); M is time independent,
symmetric. Calculations produce the time differentiation formula

OtN(M; u(t)) = Ne(iMay; u(t)) — Ao (ikX (M); u(t))
= Me(iMevi; u(t)) = Mg 2([I-X (M)]sym; u(t))-

Here

ar(ér, . &) = —laP + &P — ... — &1 + &I

(so ag =0 on X») and

X(M) (&1, Ekg2) = M(&123, 84, - - - Ekt2)-

We use the notation &, = &5 4 &p, Eape 1= &a + &b + &¢, etc.



EXERCISE: CONSERVATION OF ENERGY

Verify, using the time differentiation formula,

OtN\k(M; u(t)) = Ne(iMay; u(t)) — N2 (TkX (M); u(t))
= Me(iMevi; u(t)) = Mg 2([I-X (M)]sym; u(t))-

that the Hamiltonian
1
Hlu] = Ao(—&1 - &5 u) £ /\4(5; u)

is conserved.
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AC QUANTITIES VIA MULTILINEAR CORRECTIONS

m Abbreviate m(&;) as m;. Define o7 s.t. ||IVu||2, = Ay(o2; u) :

02(£1,62) = —%§1m1 “omyp = %\51’2'"%

m With 64 (symmetric, time independent) to be determined, set

E = /\2(0‘2; u) + /\4(54; U).
m Using the time differentiation formula, we calculate
8tE = /\4({1-('3'4(354 - IQ[X(O’Q)]Sym}; u) - /\6([/4X(5'4)]5ym; U).

We'd like to to cancel away the A4 contribution.
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SMALL DIVISOR PROBLEM

Resonant interactions obstruct the natural choice:

5o =7 2X(2)loym. impossible!
104
On T4, we can reexpress agq = —|&1[2 + [&]? — |€3]2 + [&a]? as

ag = —2812 - §14 = —2[612][14] cOs £(&12, £14),

and

X (o2)lom =

1
J(mil&n? + m3lef® — ma|&s | + mil&al?).

When all the m; =1 (so max; || < N), G4 is well-defined.
However, a4 can also vanish when &1, and &34 are orthogonal.
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REMARK: INTEGRABLE SYSTEMS CONNECTION?

For NLS; (R), the resonant obstruction disappears. Thus,
E' = Ao(02) 4 Aa(54);
O:E* = —Ng([i4X(54)]sym)-
We can then define, with &g to be determined,
E? = E' + No(56);

O.E? = Ne({iGecvs — [i4X(54)|sym}) + Ne([16X(F6)]sym)-

Let's define o
. _ [14X(5a)]sym
o — ————— .
i



REMARK: INTEGRABLE SYSTEMS CONNECTION?

Thus, we formally obtain a continued-fraction-like algorithm.

[iax (2X2lln )] .

06 = f ’
10
ax ((2X(@2)lym
MEE =B
Gg = o ymo

Each step gains two derivatives but costs two more factors.
This is a big gain!

Conjecture: The multipliers G¢, 73, . . . are well defined and lead
to better AC properties. Same for other integrable systems?
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4. RESONANT DECOMPOSITION

We return to NLS (R?).
Since the natural choice is not well-defined, we choose

oom X

104

where the non-resonant set Q,, C 24 such that
Qpnr = { max [§] < N} U {]cos £(&12,&14)| = 0o}
1<j<4

Eventually, we choose 6y to balance the 4-linear and 6-linear
contributions to the modified energy increment. We have

8tE = /\4({[&40&4 - iz[X(U2)]5ym}; U) - /\6([i4x(&4)]5ym; U).

The 4-linear contribution is constrained to the resonant set Q,.



IMPROVED ALMOST CONSERVATION PROPERTY

If luoll 22y < A; E(luo) < 1; u is a nice solution of NLSS (R?) on
a time interval [0, to], then if to = to(A) is small enough,

f Na([—2iX(02)]sym + iGacua; u(t)) dt'

29/\6([40((&4)]5}/"7; U(t)) dt

< C(A)N2F + Y2 N-3/2+ 4 g5 1N-3+].

The choice 6 = N1 produces the AC property with a = 2.

NA{-2} AC law!



colliand
Highlight

colliand
Text Box
N^{-2} AC law!


OVERVIEW AND DELICATE CASE OF PROOF

m The 4-linear contribution has multiplier

([_2iX(U2)]Sym + I'5'4054)(§) = [_2iX(U2)]SmeQr

where the resonant set Q, = QS C ¥,

Q= {max(|&1], [€2], €3] |€a]) > N; | cos £(&12,€14)| < Oo}-

m We wish to bound the associated energy incremement

lep .
| Ml-2X(@2)lomua, ).
0

m The 4 factors u are dyadically decomposed. The integral is
studied case-by-case based on dyadic frequency sizes.

m On X4, the two largest frequencies are comparable.



OVERVIEW AND DELICATE CASE OF PROOF

m Let [§] ~ N; € 22, Symmetry properties and the Q,
constraint allow to assume

Ni~ N2 2 NNy 2 N3 2 Ny 21

m For most cases, suffices to use (enhanced) [CKSTT 02] and

V (€1,62,83,84) € 24,

|[2iX (02)]sym| S min(my, m2, ms, ma)?|€12][é14-

This follows from the mean value theorem.



OVERVIEW AND DELICATE CASE OF PROOF

The most delicate case occurs in €2, and when

NlNN2>>N,N3>>N421.

-— )
xi_2 xi_1




A REMARK ON NORMAL FORMS AND
THE “I-METHOD” FOR PERIODIC NLS

By

JEAN BOURGAIN

0 Introduction

In this paper, we explore the combination of two ideas in establishing global
wellposedness results (GWP) for Hamiltonian PDE’s with rough data. The first
is a “normal forms” reduction by symplectic transformations that in some sense
reduces the nonlinearity to its “essential” part. This construction was exploited in
[Bol] in the slightly different context of estimating the growth in time of higher

Vo G P Y « IS AU (A o« o) (. (- RS P b I B ¥ 3 SRS A 4 > 3



126 J. BOURGAIN

different from) that to establish LWP results in H*(T), s > 0 (the key ingredient is
again Strichartz’ inequality). For self containedness sake, this analysis is repeated
here in §7 (Appendix).

In principle, once the appropriate normal form is obtained, the estimates are
direct and purely spatial. The main point is that now the remaining monomials
in the nonlinearity satisfy certain| specific frequency configurations,| which allow
us to improve on the I-method approach. This is exactly how we proceed to
establish GWP in H?,s > . To go beyond this, we rely on a refined bilinear
(or trilinear) Strichartz inequality with different frequency ranges for the factors;
see §4. We only prove a qualitative statement, and it would be worth extracting a
precise formulation. The actual proof of GWP for s <  proceeds in two stages.
We first carry out the preceding analysis, upgraded with the improved Strichartz
inequality, for a truncated equation |n| < N; (§5). The full equation is then treated
perturbatively in §6 along a scheme similar to that in [Bo4] but replacing the usual
Hamiltonian by the almost conserved quantities studied in §5. Possibly, this part
of the analysis could be avoided by modifying the framework of §5 to avoid the
need of restricting Fourier modes. Rather than trying this, we return in §6 to space-
time estimates, following a scheme that, while perhaps not technically obvious, is
conceptually rather familiar (cf. [Bo4], [St]).
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OVERVIEW AND DELICATE CASE OF PROOF

Angle constraint in €, gives better estimates based on two effects:
m Cancellation with [X(02)]sym.
m Angular refinement of Bilinear Strichartz.

We use a refinement exploiting spherical symmetry of m.
LEMMA

Let Ny, ..., Ny be in the delicate case with (£1,£2,&3,8a) € Q,.
Then

[X(02)]sym| S m(N1)> Ny Nsbo + m(N3)>N3.



ANGULAR REFINEMENT OF BILINEAR STRICHARTZ

LEMMA (ANGLE REFINED BILINEAR STRICHARTZ)

Let 0 < Ny < N and 0 < 6 < &. Then for any vi, v, € X%1/2+
with spatial frequencies N1, N, respectively, the spacetime function

F(t, x) ;:// el (t(m+m)+x-(6462))
R2 JRR2

X X{] cos £(¢1,62)| <0} V1 (71, €1) V2 (72, §2) d€1dEr

obeys the bound

IFllz, S 62 [Ivallxonros lIvallxoas

|as in P. Gérard's Lectures|
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