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1. Cubic NLS Initial Value Problem on R2

We consider the initial value problems:{
(i∂t + ∆)u = ±|u|2u

u(0, x) = u0(x).
(NLS±3 (R2))

The + case is called defocusing; − is focusing. NLS±3 is ubiquitous
in physics. The solution has a dilation symmetry

uλ(τ, y) = λ−1u(λ−2τ, λ−1y).

which is invariant in L2(R2). This problem is L2-critical.
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Time Invariant Quantities

Mass =

∫
Rd

|u(t, x)|2dx .

Momentum = 2=
∫

R2

u(t)∇u(t)dx .

Energy = H[u(t)] =
1

2

∫
R2

|∇u(t)|2dx±1

2
|u(t)|4dx .

Mass is L2; Momentum is close to H1/2; Energy involves H1.

Dynamics on a sphere in L2; focusing/defocusing energy.

Local conservation laws express how quantity is conserved:
e.g., ∂t |u|2 = ∇ · 2=(u∇u). Frequency Localizations?
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Local-in-time theory for NLS±3 (R2)

∀ u0 ∈ L2(R2) ∃ Tlwp(u0) determined by

‖e it∆u0‖L4
tx ([0,Tlwp]×R2) <

1

100
such that

∃ unique u ∈ C ([0,Tlwp]; L
2) ∩ L4

tx([0,Tlwp]× R2) solving
NLS+

3 (R2).

∀ u0 ∈ Hs(R2), s > 0, Tlwp ∼ ‖u0‖
− 2

s
Hs and regularity persists:

u ∈ C ([0,Tlwp];H
s(R2)).

Define the maximal forward existence time T ∗(u0) by

‖u‖L4
tx ([0,T∗−δ]×R2) < ∞

for all δ > 0 but diverges to ∞ as δ ↘ 0.

∃ small data scattering threshold µ0 > 0

‖u0‖L2 < µ0 =⇒ ‖u‖L4
tx (R×R2) < 2µ0.
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Global-in-time theory?

What is the ultimate fate of the local-in-time solutions?

L2-critical Scattering Conjecture:

L2 3 u0 7−→ u solving NLS+
3 (R2) is global-in-time and

‖u‖L4
t,x

< A(u0) < ∞.

Moreover, ∃ u± ∈ L2(R2) such that

lim
t→±∞

‖e±it∆u± − u(t)‖L2(R2) = 0.

Same statement for focusing NLS−3 (R2) if ‖u0‖L2 < ‖Q‖L2 .
Remarks:

Known for small data ‖u0‖L2(R2) < µ0.

Known for large radial data [Killip-Tao-Visan 07].
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NLS±3 (R2): Present Status for General Data

regularity idea reference
s > 2

3 high/low frequency decomposition [Bourgain98]
s > 4

7 H(Iu) [CKSTT02]
s > 1

2 resonant cut of 2nd energy [CKSTT07]
s ≥ 1

2 H(Iu) & Interaction Morawetz [Fang-Grillakis05]
s > 2

5 H(Iu) & Interaction I -Morawetz [CGTz07]

s > 1
3 resonant cut & I -Morawetz [C-Roy08]

s > 0?

Morawetz-based arguments are only for defocusing case.

Focusing results assume ‖u0‖L2 < ‖Q‖L2 .

Unify theory of focusing-under-ground-state and defocusing?
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H1 Global Well-Posedness Scheme

Consider NLS±3 (R2) with finite energy data u0 ∈ H1.
Classical H1-GWP Scheme relies on three inputs:

1 LWP lifetime dependence on data norm: Tlwp ∼ ‖u0‖−2/s
Hs .

2 Energy controls data norm: ‖u(t)‖2
H1 . H[u(t)] + ‖u(t)‖2

L2 .

3 Conservation: H[u(t)] + ‖u(t)‖2
L2 ≤ C (Energy ,Mass).

Fix arbitrary time interval [0,T ]. Break [0,T ] into subintervals of
uniform size c(Energy ,Mass) + LWP iteration =⇒ GWP.

For u0 ∈ Hs with 0 < s < 1, we may have infinite energy. Classical
persistence of regularity from LWP/Duhamel only gives

sup
t∈[0,Tlwp]

‖u(t)‖Hs . 2‖u0‖Hs

and LWP iteration fails due to (possible) doubling. [Bourgain98]
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Summary

Consider the 2D IVP

{
iut + ∆u + λ|u|2u = 0

u(0) = ϕ ∈ L2(R2).
(†)

The theory on the Cauchy problem asserts a unique maximal solution

u ∈ C(] − T∗, T
∗[, L2(R2)) ∩ L4(] − T∗, T

∗[; L4(R2)),

where T∗, T ∗ > 0. Assume, for instance, T ∗ < ∞. It is shown then that

lim sup
t→T∗

sup
I⊂R2 interval

of size <(T∗−t)1/2

(∫

I

|u(x, t)|2 dx

)1/2

> c

where c > 0 is some absolute constant.

This fact (and more precise versions of it) was known if ϕ ∈ H1(R2), λ > 0 (cf.

[C]). We also show that, given M > 0, there is ε > 0 such that (†) satisfies T∗ = T ∗ = ∞
whenever

‖ϕ‖2 ≤ M,

and

sup
A∈R,τ∈CA

1
A

∫

τ

|ϕ̂| < ε,

where CA stands for the squares τ ⊂ R2 of size A and arbitrary center. This fact permits

us to generate initial data φ ∈ L2(R2) of arbitrary large ‖φ‖2-norm for which T∗ = T ∗ = ∞
in (†).

Received 18 December 1997. Revision received 28 January 1998.
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2. Abstract I -method Scheme for H s-GWP

Let Hs 3 u0 7−→ u solve NLS for t ∈ [0,Tlwp],Tlwp ∼ ‖u0‖−2/s
Hs .

Consider two ingredients (to be defined):

A smoothing operator I = IN : Hs 7−→ H1. The NLS
evolution u0 7−→ u induces a smooth reference evolution
H1 3 Iu0 7−→ Iu solving I (NLS) equation on [0,Tlwp].

A modified energy Ẽ [Iu] built using the reference evolution.

We postpone how we actually choose these objects.



First Version of the I -method: Ẽ = H[Iu]

For s < 1,N � 1 define smooth monotone m : R2
ξ → R+ s.t.

m(ξ) =

{
1 for |ξ| < N(

|ξ|
N

)s−1
for |ξ| > 2N.

The associated Fourier multiplier operator, (̂Iu)(ξ) = m(ξ)û(ξ),
satisfies I : Hs → H1. Note that, pointwise in time, we have

‖u‖Hs . ‖Iu‖H1 . N1−s‖u‖Hs .

Set Ẽ [Iu(t)] = H[Iu(t)]. Other choices of Ẽ are considered later.



AC Law Decay and Sobolev GWP index

1 Modified LWP. Initial v0 s.t. ‖∇Iv0‖L2 ∼ 1 has Tlwp ∼ 1.

2 Goal. ∀ u0 ∈ Hs , ∀ T > 0, construct u : [0,T ]× R2 → C.

3 ⇐⇒ Dilated Goal. Construct uλ : [0, λ2T ]× R2 → C.

4 Rescale Data. ‖I∇uλ
0 ‖L2 . N1−sλ−s‖u0‖Hs ∼ 1 provided we

choose λ = λ(N) ∼ N
1−s

s ⇐⇒ N1−sλ−s ∼ 1.

5 Almost Conservation Law. ‖I∇u(t)‖L2 . H[Iu(t)] and

sup
t∈[0,Tlwp]

H[Iu(t)] ≤ H[Iu(0)] + N−α.

6 Delay of Data Doubling. Iterate modified LWP Nα steps
with Tlwp ∼ 1. We obtain rescaled solution for t ∈ [0,Nα].

λ2(N)T < Nα ⇐⇒ T < Nα+ 2(s−1)
s so s >

2

2 + α
suffices.



First Version of the I -method: Ẽ = H[Iu]

A Fourier analysis established the almost conservation property of
Ẽ = H[Iu] with α = 3

2 which led to...

Theorem (CKSTT 02)

NLS+
3 (R2) is globally well-posed for data in Hs(R2) for 4

7 < s < 1.

Moreover, ‖u(t)‖Hs . 〈t〉β(s) for appropriate β(s).

Same result for NLS−3 (R2) if ‖u0‖L2 < ‖Q‖L2 . Here Q is the
ground state (unique positive solution of −Q + ∆Q = −Q3).

Fourier analysis leading to α = 3
2 in fact gives α = 2 for most

frequency interactions.



Almost Conservation Law for H[Iu]

Proposition

Given s > 4
7 ,N � 1, and initial data φ0 ∈ C∞

0 (R2) with
E (INu0) ≤ 1, then there exists a Tlwp ∼ 1 so that the solution

u(t, x) ∈ C ([0,Tlwp],H
s(R2))

of NLS+
3 (R2) satisfies

E (INu)(t) = E (INu)(0) + O(N− 3
2
+),

for all t ∈ [0,Tlwp].
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Ideas in the Proof of Almost Conservation

Standard Energy Conservation Calculation:

∂tH(u) = <
∫

R2

ut(|u|2u −∆u)dx

= <
∫

R2

ut(|u|2u −∆u − iut)dx = 0.

For the smoothed reference evolution, we imitate....

∂tH(Iu) = <
∫

R2

Iut(|Iu|2Iu −∆Iu − Iut)dx

= <
∫

R2

Iut(|Iu|2Iu − I (|u|2u))dx 6= 0.

The increment in modified energy involves a commutator,

H(Iu)(t)− H(Iu)(0) = <
∫ t

0

∫
R2

Iut(|Iu|2Iu − I (|u|2u))dxdt.

Littlewood-Paley, Case-by-Case, (Bi)linear Strichartz, X
s,b

....
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Remarks

The almost conservation property

sup
t∈[0,Tlwp]

Ẽ [Iu(t)] ≤ Ẽ [Iu0] + N−α

leads to GWP for

s > sα =
2

2 + α
.

The I -method is a subcritical method. To prove the Scattering
Conjecture at s = 0 via the I -method would require α = +∞.

The I -method localizes the conserved density in frequency.
Similar ideas appear in recent critical scattering results.

There is a multilinear corrections algorithm for defining new
choices of Ẽ which should have a better AC property.
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Focusing Case Below the Ground State Mass

Modified LWP lifetime is controlled by ‖I∇u0‖L2 .

The GWP scheme progresses if ‖I∇u(t)‖2
L2 . H[Iu(t)].

Weinstein’s optimal Gagliardo-Nirenberg Inequality:

‖w‖4
L4 ≤

2

‖Q‖2
L2

‖w‖2
L2‖∇w‖2

L2 .

I has symbol m satisfying |m| ≤ 1 so ‖If ‖L2 ≤ ‖f ‖L2 . Thus,

‖u0‖L2 < ‖Q‖L2 =⇒ ‖Iu0‖L2 < ‖Q‖L2 .

The required control then follows:

‖u0‖L2 < ‖Q‖L2 =⇒ ‖I∇u(t)‖2
L2 . H[Iu(t)].
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3. Multilinear Correction Terms



3. Multilinear Correction Terms

(Inspired by [Coifman-Meyer]; following [CKSTT:KdV])

1 For k ∈ N, define the convolution hypersurface

Σk := {(ξ1, . . . , ξk) ∈ (R2)k : ξ1 + . . . + ξk = 0} ⊂ (R2)k .

2 For M : Σk → C and u1, . . . , uk nice, define k-linear functional

Λk(M; u1, . . . , uk) := ck <
∫
Σk

M(ξ1, . . . , ξk)û1(ξ1) . . . ûk(ξk).

3 For k ∈ 2N abbreviate Λk(M; u) = Λk(M; u, u, . . . , u).

4 Λk(M; u) invariant under interchange of even/odd arguments,

M(ξ1, ξ2, . . . , ξk−1, ξk) 7→ M(ξ2, ξ1, . . . , ξk , ξk−1).

5 We can define a symmetrization rule via group orbit.



Examples

∫
x

uuuudx =

∫
(

∫
e ix ·ξ1 û(ξ1)dξ1) . . . (

∫
e ix ·ξ4 û(ξ4)dξ4)dx

=

∫
ξ1,...,ξ4

∫
x

e ix ·(ξ1+ξ2+ξ3+ξ4)dx

 û(ξ1)û(ξ2)û(ξ3)û(ξ4)dξ1,...,4

=

∫
Σ4

û(ξ1)û(ξ2)û(ξ3)û(ξ4) = Λ4(1; u).

Λ2(−ξ1 · ξ2; u) = ‖∇u‖2
L2 .

Thus, H[u] = Λ2(−ξ1 · ξ2; u)± Λ4(
1
2 ; u).



Time Dependence of Multilinear Forms

Suppose u nicely solves NLS+
3 (R2); M is time independent,

symmetric. Calculations produce the time differentiation formula

∂tΛk(M; u(t)) = Λk(iMαk ; u(t))− Λk+2(ikX (M); u(t))

= Λk(iMαk ; u(t))− Λk+2([ikX (M)]sym; u(t)).

Here

αk(ξ1, . . . , ξk) := −|ξ1|2 + |ξ2|2 − . . .− |ξk−1|2 + |ξk |2

(so α2 = 0 on Σ2) and

X (M)(ξ1, . . . , ξk+2) := M(ξ123, ξ4, . . . , ξk+2).

We use the notation ξab := ξa + ξb, ξabc := ξa + ξb + ξc , etc.



Exercise: Conservation of Energy

Verify, using the time differentiation formula,

∂tΛk(M; u(t)) = Λk(iMαk ; u(t))− Λk+2(ikX (M); u(t))

= Λk(iMαk ; u(t))− Λk+2([ikX (M)]sym; u(t)).

that the Hamiltonian

H[u] = Λ2(−ξ1 · ξ2; u)± Λ4(
1

2
; u)

is conserved.
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AC Quantities via Multilinear Corrections

Abbreviate m(ξj) as mj . Define σ2 s.t. ‖I∇u‖2
L2 = Λ2(σ2; u) :

σ2(ξ1, ξ2) := −1

2
ξ1m1 · ξ2m2 =

1

2
|ξ1|2m2

1

With σ̃4 (symmetric, time independent) to be determined, set

Ẽ := Λ2(σ2; u) + Λ4(σ̃4; u).

Using the time differentiation formula, we calculate

∂t Ẽ = Λ4({i σ̃4α4 − i2[X (σ2)]sym}; u)− Λ6([i4X (σ̃4)]sym; u).

We’d like to define σ̃4 to cancel away the Λ4 contribution.
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Small Divisor Problem

Resonant interactions obstruct the natural choice:

σ̃4 =? [2iX (σ2)]sym
iα4

.

On Σ4, we can reexpress α4 = −|ξ1|2 + |ξ2|2 − |ξ3|2 + |ξ4|2 as

α4 = −2ξ12 · ξ14 = −2|ξ12||ξ14| cos ∠(ξ12, ξ14),

and

[2iX (σ2)]sym =
1

4
(−m2

1|ξ1|2 + m2
2|ξ2|2 −m2

3|ξ3|2 + m2
4|ξ4|2).

When all the mj = 1 (so maxj |ξj | < N), σ̃4 is well-defined.
However, α4 can also vanish when ξ12 and ξ14 are orthogonal.
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Remark: Integrable Systems Connection?

For NLS+
3 (R), the resonant obstruction disappears. Thus,

Ẽ 1 = Λ2(σ2) + Λ4(σ̃4);

∂t Ẽ
1 = −Λ6([i4X (σ̃4)]sym).

We can then define, with σ̃6 to be determined,

Ẽ 2 = Ẽ 1 + Λ6(σ̃6);

∂t Ẽ
2 = Λ6({i σ̃6α6 − [i4X (σ̃4)]sym}) + Λ8([i6X (σ̃6)]sym).

Let’s define

σ̃6 =
[i4X (σ̃4)]sym

iα6
.



Remark: Integrable Systems Connection?

Thus, we formally obtain a continued-fraction-like algorithm.

σ̃6 =

[
i4X

(
[2iX (σ2)]sym

iα4

)]
sym

iα6
,

σ̃8 =

[
i6X

(h
i4X

“
[2iX (σ2)]sym

iα4

”i
sym

iα6

)]
sym

iα8
, . . . .

Each step gains two derivatives but costs two more factors.
This is a big gain!

Conjecture: The multipliers σ̃6, σ̃8, . . . are well defined and lead
to better AC properties. Same for other integrable systems?
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4. Resonant Decomposition



4. Resonant Decomposition

We return to NLS+
3 (R2).

Since the natural choice is not well-defined, we choose

σ̃4 :=
[2iX (σ2)]sym

iα4
χΩnr

where the non-resonant set Ωnr ⊂ Σ4 such that

Ωnr := { max
1≤j≤4

|ξj | ≤ N} ∪ {| cos ∠(ξ12, ξ14)| ≥ θ0}.

Eventually, we choose θ0 to balance the 4-linear and 6-linear
contributions to the modified energy increment. We have

∂t Ẽ = Λ4({i σ̃4α4 − i2[X (σ2)]sym}; u)− Λ6([i4X (σ̃4)]sym; u).

The 4-linear contribution is constrained to the resonant set ΩC
nr .



Improved Almost Conservation Property

Lemma

If ‖u0‖L2
x (R2) ≤ A; E (Iu0) ≤ 1; u is a nice solution of NLS+

3 (R2) on
a time interval [0, t0], then if t0 = t0(A) is small enough,∣∣∣∣ t0∫

0

Λ4([−2iX (σ2)]sym + i σ̃4α4; u(t)) dt

∣∣∣∣
+

∣∣∣∣ t0∫
0

Λ6([4iX (σ̃4)]sym; u(t)) dt

∣∣∣∣
. C (A)[N−2+ + θ

1/2
0 N−3/2+ + θ−1

0 N−3+].

The choice θ0 = N−1 produces the AC property with α = 2.
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Overview and Delicate Case of Proof

The 4-linear contribution has multiplier

([−2iX (σ2)]sym + i σ̃4α4)(ξ) = [−2iX (σ2)]symχΩr

where the resonant set Ωr = ΩC
nr ⊂ Σ4,

Ωr := {max(|ξ1|, |ξ2|, |ξ3|, |ξ4|) > N; | cos ∠(ξ12, ξ14)| < θ0}.

We wish to bound the associated energy incremement∫ Tlwp

0
Λ4([−2iX (σ2)]symχΩr ; u)dt.

The 4 factors u are dyadically decomposed. The integral is
studied case-by-case based on dyadic frequency sizes.

On Σ4, the two largest frequencies are comparable.



Overview and Delicate Case of Proof

Let |ξj | ∼ Nj ∈ 2Z. Symmetry properties and the Ωr

constraint allow to assume

N1 ∼ N2 & N,N2 & N3 & N4 & 1.

For most cases, suffices to use (enhanced) [CKSTT 02] and

Lemma

∀ (ξ1, ξ2, ξ3, ξ4) ∈ Σ4,

|[2iX (σ2)]sym| . min(m1,m2,m3,m4)
2|ξ12||ξ14|.

This follows from the mean value theorem.



Overview and Delicate Case of Proof

The most delicate case occurs in Ωr and when

N1 ∼ N2 � N,N3 � N4 & 1.

xi_1xi_2

xi_4xi_3
O



A R E M A R K  O N  N O R M A L  F O R M S  A N D  

T H E  " / - M E T H O D "  F O R  P E R I O D I C  N L S  

By 

JEAN BOURGAIN 

0 I n t r o d u c t i o n  

In this paper, we explore the combination of two ideas in establishing global 

wellposedness results (GWP) for Hamiltonian PDE's with rough data. The first 

is a "normal forms" reduction by symplectic transformations that in some sense 

reduces the nonlinearity to its "essential" part. This construction was exploited in 

[Bol] in the slightly different context of estimating the growth in time of higher 

Sobolev norms of smooth solutions. The second idea is the so-called "I-method" 

introduced by T. Tao and collaborators (see, for instance, [C-K-S-T-T] and related 

papers) based on the almost conservation of certain modified Hamiltonians, which 

has turned out to be an effective way in getting GWP results below the energy 

threshold. 

Our model case here is that of the 1D periodic defocusing quintic NLS 

(0.1) iut + u x x  - ulul 4 = 0, 

known to be LWP in H'(T) for all s > 0 and globally for s > 1 (see [Bo2]). In this 

paper, we establish GWP first for all s >  89 and then for s > s., for some s. <  89 

One interest of this last result is to give a direct approach in establishing a uniquely 

defined flow on the support of the Gibbs measures 

(0.2) d# = e -~H(r H d2r 

This result was obtained already in [Bo5], but relying significantly more on proba- 

bilistic considerations to extend the LWP to GWP on a set of data of full #-measure. 

Some comments: The idea of the "normal forms reduction" in [Bol] is to re- 

move the strongly non-resonant part of the Hamiltonian. Justifying the symplectic 

transformations (the symplectic space is e~(Z))and bounds on the resulting Hamil- 

tonians is nontrivial. It relies on an analysis closely related to (although slightly 
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126 J. BOURGAIN 

different from) that to establish LWP results in H'('Ir), s > 0 (the key ingredient is 

again Strichartz' inequality). For self containedness sake, this analysis is repeated 

here in w (Appendix). 

In principle, once the appropriate normal form is obtained, the estimates are 

direct and purely spatial. The main point is that now the remaining monomials 

in the nonlinearity satisfy certain specific frequency configurations, which allow 

us to improve on the /-method approach. This is exactly how we proceed to 

establish GWP in H ', s >  89 To go beyond this, we rely on a refined bilinear 

(or trilinear) Strichartz inequality with different frequency ranges for the factors; 

see w We only prove a qualitative statement, and it would be worth extracting a 
1 precise formulation. The actual proof of GWP for s < ~ proceeds in two stages. 

We first carry out the preceding analysis, upgraded with the improved Strichartz 

inequality, for a truncated equation Inl _< N1 (w The full equation is then treated 

perturbatively in w along a scheme similar to that in [Bo4] but replacing the usual 

Hamiltonian by the almost conserved quantities studied in w Possibly, this part 

of the analysis could be avoided by modifying the framework of w to avoid the 

need of  restricting Fourier modes. Rather than trying this, we return in w to space- 

time estimates, following a scheme that, while perhaps not technically obvious, is 

conceptually rather familiar (cf. [Bo4], [St]). 

Last, considering 2D defocusing cubic NLS on ql? 2, GWP may be shown for 

s > ], by simply carrying out the [C-K-S-T-Tl-analysis. Improving on this by 

adjusting the arguments used here is not straightforward for certain arithmetical 

reasons. We do not pursue this point here. 

1 T h e / - m e t h o d  

Consider on T d the equation 

OH 
(1.1) iqt = Oq 

where 

where q = (qn)nez~, 

(1.2) H(q) = Z ]nl21qnl2 +'Af(q) 

and N(q) is a polynomial expression in q, q. 

We assume the "defocusing property" 

(1.3) Ilqll~l = ~ Inl21q.l = 5 H(q). 

R e m a r k .  Starting from an initial defocusing Hamiltonian H, we transform 

H to 7/ = H o F with F certain symplectic transformations. We will ensure in 

colliand
Rectangle

colliand
Highlight



Overview and Delicate Case of Proof

Angle constraint in Ωr gives better estimates based on two effects:

Cancellation with [X (σ2)]sym,

Angular refinement of Bilinear Strichartz.

We use a refinement exploiting spherical symmetry of m.

Lemma

Let N1, . . . ,N4 be in the delicate case with (ξ1, ξ2, ξ3, ξ4) ∈ Ωr .
Then

|[X (σ2)]sym| . m(N1)
2N1N3θ0 + m(N3)

2N2
3 .



Angular Refinement of Bilinear Strichartz

Lemma (Angle Refined Bilinear Strichartz)

Let 0 < N1 ≤ N2 and 0 < θ < 1
50 . Then for any v1, v2 ∈ X 0,1/2+

with spatial frequencies N1,N2 respectively, the spacetime function

F (t, x) :=

∫
R2

∫
R2

e i(t(τ1+τ2)+x ·(ξ1+ξ2))

×χ{| cos ∠(ξ1,ξ2)|≤θ}ṽ1(τ1, ξ1)ṽ2(τ2, ξ2) dξ1dξ2

obeys the bound

‖F‖L2
t,x

. θ1/2‖v1‖X 0,1/2+‖v2‖X 0,1/2+ .
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