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1. NLS Cauchy Problem



Nonlinear Schrödinger Initial Value Problem

We consider the initial value problem:{
(i∂t + ∆)u = ±|u|p−1u

u(0, x) = u0(x).
(NLS±p (Rd))

The + case is called defocusing; − is focusing.

NLS±3 is ubiquitous in physics. NLS±p introduced to explore
interplay between dispersion and strength of nonlinearity.

The main question about an evolution PDE: What is the
ultimate fate of solutions? We want to understand the
maximal-in-time behavior of the solutions.

Conservation and invariance properties motivate the study of
NLS±p (Rd) for low (and minimal) regularity initial data.
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Time Invariant Quantities

Mass =

∫
Rd

|u(t, x)|2dx .

Momentum = 2=
∫

R2

u(t)∇u(t)dx .

Energy = H[u(t)] =
1

2

∫
R2

|∇u(t)|2dx± 2

p + 1
|u(t)|p+1dx .

Mass is L2; Momentum is close to H1/2; Energy involves H1.

Dynamics on a sphere in L2; focusing/defocusing energy.

Local conservation laws express how quantity is conserved:
e.g., ∂t |u|2 = ∇ · 2=(u∇u). Space/Frequency Localizations?



Dilation Invariance and Critical Regularity

One solution u generates parametrized family {uλ}λ>0 of solutions:

u : [0,T )× Rd
x → C solves NLS±p (Rd)

m

uλ : [0, λ2T )× Rd
x → C solves NLS±p (Rd)

where
uλ(τ, y) = λ−2/(p−1)u(λ−2τ, λ−1y).

Norms which are invariant under u 7−→ uλ are critical .
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Dilation Invariance and Critical Regularity

In the L2-based Sobolev scale,

‖Dsuλ(t)‖L2 = λ
− 2

p−1
−s+ d

2 ‖Dsu(t)‖L2 .

The critical Sobolev index for NLS±p (Rd) is

sc :=
d

2
− 2

p − 1
.

Scaling/Conservation Criticality

scaling regime
sc < 0 mass subcritical
s = 0 mass critical

0 < sc < 1 mass super/energy subcritical
sc = 1 energy critical

1 < sc < d/2 energy supercritical



Optimal Local-in-time theory

Local-in-time theory for NLS±p (Rd) is essentially complete:

Pioneering advances on spacetime dispersive estimates
culminated in [Cazenave-Weissler 90] to prove local
well-posedness for s ≥ slwp = max(0, sc).
(discussed in more detail for NLS3(R2) soon.)

Ill-posedness results for s < slwp have been established.
[Kenig-Ponce-Vega 01], [Christ-C-Tao 03], [Lebeau 01 05],
[Burq-Gérard-Ibrahim], [Alazard-Carles 07].

When sc < 0, the Galilean symmetry obstructs well-posedness
below s = 0.



Local-in-time theory for NLS3(R2)

We pause to discuss the L2(R2)-critical case.

∀ u0 ∈ L2(R2) ∃ Tlwp(u0) determined by

‖e it∆u0‖L4
tx ([0,Tlwp]×R2) <

1

100
such that

∃ unique u ∈ C ([0,Tlwp]; L
2) ∩ L4

tx([0,Tlwp]× R2) solving
NLS+

3 (R2).

∀ u0 ∈ Hs(R2), s > 0, Tlwp ∼ ‖u0‖
− 2

s
Hs and regularity persists:

u ∈ C ([0,Tlwp];H
s(R2)).

Define the maximal forward existence time T ∗(u0) by

‖u‖L4
tx ([0,T∗−δ]×R2) < ∞

for all δ > 0 but diverges to ∞ as δ ↘ 0.

∃ small data scattering threshold µ0 > 0

‖u0‖L2 < µ0 =⇒ ‖u‖L4
tx (R×R2) < 2µ0.



Global-in-time theory?

What is the ultimate fate of the local-in-time solutions?

L2-critical Defocusing Scattering Conjecture:

L2 3 u0 7−→ u solving NLS+
3 (R2) is global-in-time and

‖u‖L4
t,x

< A(u0) < ∞.

Moreover, ∃ u± ∈ L2(R2) such that

lim
t→±∞

‖e±it∆u± − u(t)‖L2(R2) = 0.

Remarks:

Known for small data ‖u0‖L2(R2) < µ0.

Known [Tao-Visan-Zhang 06] for NLS+
1+ 4

d

(Rd) for large radial

data, d ≥ 3. Same for d = 2 [Killip-Tao-Visan 07].

GWP for L2 data ⇐⇒ Scattering for L2 data. [Blue-C 06]
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Critical Regularity Scattering Conjecture?

Consider defocusing case NLS+
p (Rd) with critical Sobolev index

sc =
d

2
− 2

p − 1
.

The critical (diagonal) Strichartz index is

qc =
(p − 1)(2 + d)

2
⇐⇒ 2

qc
+

d

qc
=

d

2
− sc .

Hsc -critical defocusing scattering conjecture:

Hsc (Rd) 3 u0 7−→ u solving NLS+
p (Rd) is global-in-time and

‖u‖Lqc
t,x

< A(u0) < ∞.



Critical Regularity Scattering Conjecture?

Present status of the defocusing scattering conjecture

criticality general data radial data evidence
sc = 0 ??? [TVZ],[KTV] GWP: s∗ < s < 1

0 < sc < 1 X : sc < s∗ < s < 1 s = sc?? X: extra smooth
sc = 1 [CKSTT],[RV],[V] [B99], [T] X: Resolved!

1 < sc < d
2 [KV] if ‖u(t)‖Hsc < C ???? Numerics [CSS]

Scattering for NLS−p under natural threshold.

The existence (and value) of s∗ depends upon p, d .

Radial case with sc = 1
2 may be accessible using Morawetz??

Induction-on-Mass + radial results → sc = 0 accessible???
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2. Outline of Lectures



2. Outline of Lectures

I Introduction: Outline of Course.

II I -method for Global Well-Posedness Below Energy.
1 Abstract Scheme
2 Almost Conservation of H[Iu]
3 Multilinear Correction Terms
4 Resonant Decompositions

III Low Regularity Theory for Focusing NLS.
1 I -method for focusing NLS− below ground state mass
2 Mass Concentration Properties of Hs Blowup Solutions
3 Mass Concentration Properties of L2 Blowup Solutions

IV The I -method with a Morawetz Bootstrap.
1 Interaction Morawetz Estimates
2 H[Iu] + Morawetz GWP & Scattering Results

V A frequency cascading solution to NLS+
3 (T2).
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3. H1 versus H s Global Well-Posedness



3. H1 versus H s Global Well-Posedness

Consider NLS±3 (R2) with finite energy data u0 ∈ H1.
Classical H1-GWP Scheme relies on three inputs:

1 LWP lifetime dependence on data norm: Tlwp ∼ ‖u0‖−2/s
Hs .

2 Energy controls data norm: ‖u(t)‖2H1 . H[u(t)] + ‖u(t)‖2
L2 .

3 Conservation: H[u(t)] + ‖u(t)‖2
L2 ≤ C (Energy ,Mass).

Fix arbitrary time interval [0,T ]. Break [0,T ] into subintervals of
uniform size c(Energy ,Mass) + LWP iteration =⇒ GWP.

For u0 ∈ Hs with 0 < s < 1, we may have infinite energy. Classical
persistence of regularity from LWP/Duhamel only gives

sup
t∈[0,Tlwp]

‖u(t)‖Hs . 2‖u0‖Hs

and LWP iteration fails due to (possible) doubling.
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Abstract I -method Scheme for H s-GWP

Let Hs 3 u0 7−→ u solve NLS for t ∈ [0,Tlwp],Tlwp ∼ ‖u0‖−2/s
Hs .

Consider two ingredients (to be defined):

A smoothing operator I = IN : Hs 7−→ H1. The NLS
evolution u0 7−→ u induces a smooth reference evolution
H1 3 Iu0 7−→ Iu solving I (NLS) equation on [0,Tlwp].

A modified energy Ẽ [Iu] built using the reference evolution.

We postpone how we actually choose these objects.



Abstract I -method Scheme for H s-GWP

We want IN and Ẽ chosen to give a progressive Hs -GWP scheme:

1 Lifetime dependence on data norm: Tlwp ∼ ‖u0‖−2/s
Hs .X

2 Ẽ controls data norm: ∃ tg ∈ [12Tlwp,Tlwp] s.t.

‖u(tg )‖2
Hs . Ẽ [Iu(tg )] + ‖u(tg )‖2L2 .

3 Almost Conservation of Modifed Energy:

sup
t∈[0,Tlwp]

Ẽ [Iu(t)] ≤ Ẽ [Iu0] + N−α.

The scheme advances over K uniform sized time steps of length
O(Ẽ [u0]

−1/s) until the modified energy doubles

KN−α ∼ Ẽ [Iu0].

This extends to solution for t ∈ [0,NαẼ [Iu0]
− 1

s ] which contains
[0,T ] for large enough N provided s > sα with sα < 1.



First Version of the I -method: Ẽ = H[Iu]

For s < 1,N � 1 define smooth monotone m : R2
ξ → R+ s.t.

m(ξ) =

{
1 for |ξ| < N(

|ξ|
N

)s−1
for |ξ| > 2N.

The associated Fourier multiplier operator, (̂Iu)(ξ) = m(ξ)û(ξ),
satisfies I : Hs → H1. Note that, pointwise in time, we have

‖u‖Hs . ‖Iu‖H1 . N1−s‖u‖Hs .

Set Ẽ [Iu(t)] = H[Iu(t)]. A detailed multilinear Fourier analysis
establishes that H[Iu] is almost conserved with α = 3

2 for
NLS±3 (R2) and with α = 1 for NLS±3 (R3). After some
bookkeeping....



First Version of the I -method: Ẽ = H[Iu]

Theorem (CKSTT:MRL02)

NLS+
3 (R2) is globally well-posed for data in Hs(R2) for 4

7 < s < 1.

NLS+
3 (R3) is globally well-posed for data in Hs(R2) for 5

6 < s < 1.

Moreover, ‖u(t)‖Hs . 〈t〉β(s) for appropriate β(s) (both cases).

The same result applies for NLS−3 (R2) provided ‖u0‖L2 < ‖Q‖L2

where Q is the ground state, the unique (up to translations)
positive solution of −Q + ∆Q = Q3.



L2-critical in Weighted L2 spaces

Based on PC transformation & inspired by [Bourgain98], we have:

Theorem (Blue-C 06)

For s ≥ 0, if NLS+
1+ 4

d

(Rd) is GWP for Hs(Rd) initial data then

NLS+
1+ 4

d

(Rd) is GWP and scatters for data satisfying

〈·〉su0(·) ∈ L2. The same result applies to the focusing case
provided ‖u0‖L2 < ‖Q‖L2 .

Thus, GWP for L2 data ⇐⇒ Scattering for L2 data.

Hs -GWP improvements imply weighted space improvements.

PC transformation isometry in L2-admissible Strichartz spaces.
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NLS±3 (R2): Present Status for General Data

regularity idea reference
s > 2

3 high/low frequency decomposition [Bourgain98]
s > 4

7 H(Iu) [CKSTT02]
s > 1

2 resonant cut of 2nd energy [CKSTT07]
s ≥ 1

2 H(Iu) & Interaction Morawetz [Fang-Grillakis05]
s > 2

5 H(Iu) & Interaction I -Morawetz [CGTz07]

s > 1
3 resonant cut & I -Morawetz [C-Roy08]

s > 0?

Morawetz-based arguments are only for defocusing case.

Focusing results assume ‖u0‖L2 < ‖Q‖L2 .

Unify theory of focusing-under-ground-state and defocusing?
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4. Low Regularity Theory for Focusing NLS



4. Low Regularity Theory for Focusing NLS

Remark:

The H1-GWP scheme is relaxed to an Hs -GWP scheme by
replacing the energy H[u] by the modified energy Ẽ [Iu].

The energy plays a basic role in other aspects of the NLS
theory (e.g. soliton stability, properties of blowup).

Natural idea: Explore whether existing H1 theory may be
systematically relaxed to Hs by replacing H[u] by Ẽ [Iu].
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L2 Critical Case: Blowup Solution Properties

Explicit Blowup Solutions

Arise as pseudoconformal image of e itQ(x) :

S(t, x) =
1

t
Q

(x

t

)
e−i |x|

2

4t
+ i

t .

S has minimal mass:

‖S(−1)‖L2
x

= ‖Q‖L2 .

All mass in S is conically concentrated into a point.

Minimal mass H1 blowup solution characterization:
u0 ∈ H1, ‖u0‖L2 = ‖Q‖L2 , T ∗(u0) < ∞ implies that u = S up
to an explicit solution symmetry. [Merle]
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L2 Critical Case: Blowup Solution Properties

Virial Identity =⇒ ∃ Many Blowup Solutions

Integration by parts and the equation yields

∂2
t

∫
R2

x

|x |2|u(t, x)|2dx = 8H[u0].

H[u0] < 0,
∫
|x |2|u0(x)|2dx < ∞ blows up.

How do these solutions blow up?
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L2 Critical Case: Mass Concentration

H1 Theory of Mass Concentration

H1 ∩ {radial} 3 u0 7−→ u,T ∗ < ∞ implies

lim inf
t↗T∗

∫
|x |<(T∗−t)1/2−

|u(t, x)|2dx ≥ ‖Q‖2L2 .

[Merle-Tsutsumi]

H1 blowups parabolically concentrate at least the ground
state mass. Explicit blowups S concentrate mass much faster.

Fantastic recent progress on the H1 blowup theory.
[Merle-Raphaël]
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L2 Critical Case: Mass Concentration

L2 Theory of Mass Concentration

L2 3 u0 7−→ u,T ∗ < ∞ implies

lim sup
t↗T∗

sup
cubes I ,side(I )≤(T∗−t)1/2

∫
I
|u(t, x)|2dx ≥ ‖u0‖−M

L2 .

[Bourgain98]

L2 blowups parabolically concentrate some mass.

Extensions in [Merle-Vega], [Carles-Keraani], [Bégout-Vargas].

For large L2 data, do there exist tiny concentrations?
([TVZ], [KTV]: No, for radial data.)
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Typical blowups leave an L2 stain at time T ∗

[Merle-Raphaël]:

H1 ∩ {‖Q‖L2 < ‖u0‖L2 < ‖Q‖L2 + α∗} 3 u0 7−→ u solving
NLS−3 (R2) on [0,T ∗) (maximal) with T ∗ < ∞.
∃ λ(t), x(t), θ(t) ∈ R+, R2, R/(2πZ) and u∗ such that

u(t)− λ(t)−1Q

(
x − x(t)

λ(t)

)
e iθ(t) → u∗

strongly in L2(R2). Typically, u∗ /∈Hs ∪ Lp for s > 0, p > 2!
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L2 Critical Case: Conjectures/Questions

Consider focusing NLS−3 (R2):

Scattering Below the Ground State Mass. ([KTV]:X)

‖u0‖L2 < ‖Q‖L2 =⇒ ??? u0 7−→ u with ‖u‖L4
tx

< ∞.

(Also, L2 solutions of NLS+
3 (R2) satisfy??? ‖u‖L4

tx
< ∞.)

Minimal Mass Blowup Characterization.

‖u0‖L2 = ‖Q‖L2 , u0 7−→ u,T ∗ < ∞ =⇒ ??? u = S ,

modulo a solution symmetry. An intermediate step would
extend characterization of the minimal mass blowup solutions
in Hs for s < 1.

Concentrated mass amounts are quantized.
The explicit blowups constructed by pseudoconformally
transforming time periodic solutions with ground and excited
state profiles are the only asymptotic profiles.

Are there any general upper bounds?



L2 Critical Case: Partial Results

For 0.86 ∼ 1
5(1 +

√
11) < s < 1,Hs ∩ {radial} 3 u0 7−→

u,T ∗ < ∞ =⇒

lim supt↗T∗

∫
|x |<(T∗−t)s/2−

|u(t, x)|2dx ≥ ‖Q‖2L2 .

Hs -blowup solutions concentrate ground state mass.
[C-Raynor-C.Sulem-Wright]

‖u0‖L2 = ‖Q‖L2 , u0 ∈ Hs , ∼ 0.86 < s < 1,T ∗ < ∞ =⇒
∃ tn ↗ T ∗ s.t. u(tn) → Q in H s̃(s) (mod symmetry sequence).
For Hs blowups with ‖u0‖L2 > ‖Q‖L2 , u(tn) ⇀ V ∈ H1 (mod
symmetry sequence). [Hmidi-Keraani] This is an Hs analog of
an H1 result of [Weinstein] which preceded the minimal H1

blowup solution characterization.

Same results for NLS−4
d
+1

(Rd) in Hs , s > d+8
d+10 . [Visan-Zhang]



L2 Critical Case: Partial Results

[C-Roudenko 07]
Spacetime norm divergence rate

‖u‖L4
tx ([0,t]×R2) & (T ∗ − t)−β

is linked with mass concentration rate

lim sup
t↗T∗

sup

cubes I ,side(I )≤(T∗−t)
1
2 +

β
2

∫
I
|u(t, x)|2dx ≥ ‖u0‖−M

L2 .

This work refines the proof in [Bourgain 98].
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5. Interaction Morawetz: Local Conservation



5. Interaction Morawetz: Local Conservation

Suppose φ : [0,T ]× Rd → C solves generalized NLS

(i∂t + ∆)φ = N

for some N = N (t, x , u) : [0,T ]×Rd ×C → C. Assume φ is nice.

We introduce notation to compactly express mass and momentum
(non)conservation for solutions of generalized NLS.

Write ∂xj φ = ∂jφ = φj .



Local mass/momentum (non)conservation

mass density: T00 = |φ|2

momentum density/mass current:
T0j = Tj0 = 2=(φφj)

(linear part of the) momentum current:
Ljk = Lkj = −∂j∂k |φ|2 + 4<(φjφk)

mass bracket: {f , g}m = =(f g)

momentum bracket: {f , g}jp = <(f ∂jg − g∂j f )

Local mass (non)conservation identity:

∂tT00 + ∂jT0j = 2{N , φ}m
Local momentum (non)conservation identity:

∂tT0j + ∂kLkj = 2{N , φ}j
p



Local mass/momentum (non)conservation

Consider N = F ′(|φ|2)φ for polynomial F : R+ → R.

We calculate the mass bracket

{F ′(|φ|2)φ, φ}m = =(F ′(|φ|2)φφ) = 0.

Thus mass is conserved for these nonlinearities.

We calculate the momentum bracket

{F ′(|φ|2)φ, φ}j
p = −∂jG (|φ|2)

where G (z) = zF ′(z)− F (z) ∼ F (z).
Thus the momentum bracket contributes a divergence and
momentum is conserved for these nonlinearities.



Generalized Virial Identity

Suppose a : Rd → R. Form the Morawetz Action

Ma(t) =

∫
Rd

∇a · 2=(φ∇φ)dx .

Conservation identities lead to the generalized virial identity

∂tMa =

∫
Rd

(−∆∆a)|φ|2 + 4ajk<(φjφk) + 2aj{N , φ}j
pdx .

Idea of Morawetz Estimates: Cleverly choose the weight
function a so that ∂tMa ≥ 0 but Ma ≤ C (φ0) to obtain spacetime
control on φ. This strategy imposes various constraints on a which
suggest choosing a(x) = |x |.



Example: [Lin-Strauss 78] Morawetz identity

Consider (i∂t + ∆)φ = F ′(|φ|2)φ with F ′ ≥ 0 and x ∈ R3. Choose
a(x) = |x |. Observe that a is weakly convex, ∇a = x

|x | is bounded,
and −∆∆a = 4πδ0. One gets the Lin-Strauss Morawetz identity

Ma(T )−Ma(0) =

T∫
0

∫
R3

4πδ0(x)|φ(t, x)|2 + (≥ 0) + 4
G (|φ|2)
|x |

dxdt

which implies the spacetime control estimate

(H[u0])
1/2‖u0‖L2 &

T∫
0

∫
R3

G (|φ|2)
|x |

dxdt.



Tensor Product Idea

[CKSTT 04] (Hassell 04)

Suppose φ1, φ2 are two solutions of (i∂t + ∆)φ = F ′(|φ|2)φ
with F ′ ≥ 0 and x ∈ R3. The “2-particle” wave function

Ψ(t, x1, x2) = φ1(t, x1)φ2(t, x2)

satisfies an NLS-type equation on R1+6

(i∂t + ∆1 + ∆2)Ψ = [F ′(|φ1|2) + F ′(|φ2|2)]Ψ.

Note that [F ′(|φ1|2) + F ′(|φ2|2)] ≥ 0 so defocusing.

Reparametrize R6 using center-of-mass coordinates (x , y)
with x = 1

2(x1 + x2) ∈ R3. Note that y = 0 corresponds to
the diagonal x1 = x2 = x . Apply the generalized virial identity
with the choice a(x1, x2) = |y |. Dismissing terms with
favorable signs, one obtains...



Example: L4(Rt × R3
x) Interaction Morawetz

‖∇u‖L∞
[0,T ]

L2
x
‖u0‖3

L2 ≥
∫ T

0

∫
R6

(−∆6∆6|y |)|Ψ(x1, x2)|2dx1dx2dt

≥ c

∫ T

0

∫
R6

δ{y=0}(x1, x2)|φ1(x1)φ2(x2)|2dx1dx2dt

≥ c

∫ T

0

∫
R3

|φ1(t, x)φ2(t, x)|2dxdt.

Specializing to φ1 = φ2 gives the interaction Morawetz estimate∫ T

0

∫
R3

|φ(t, x)|4dxdt ≤ C‖∇u‖L∞
[0,T ]

L2
x
‖u0‖3

L2
x

valid uniformly for all defocusing NLS equations on R3.



”The” Interaction Morawetz Estimate

Efforts to extend the L4(Rt × R3
x) interaction Morawetz to the R2

x

setting led to...

Theorem (C-Grillakis-Tzirakis 08)

Finite energy solutions of any defocusing NLS+(Rd) satisfy

‖D
3−d

2 |u|2‖2
L2

t,x
. ‖u0‖3L2

x
‖∇u‖L∞t L2

x
.

Independently & simultaneously by [Planchon-Vega].

Simplifies proof [Nakanishi] of H1-scattering when 0 < sc < 1.

Simplified proof extends to Hs for certain s < 1.

Other applications?
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6. A Cascading Solution to NLS+
3 (T2).



6. A Cascading Solution to NLS+
3 (T2).

We consider the defocusing initial value problem:{
(−i∂t + ∆)u = |u|2u

u(0, x) = u0(x), where x ∈ T2, R2.
(NLS(T2))

Smooth solution u(x , t) exists globally and

Mass = M(u) = ‖u(t)‖2 = M(0)

Energy = E (u) =

∫
(
1

2
|∇u(t, x)|2 +

1

4
|u(x , t)|4) dx = E (0)

We want to understand the shape of |û(t, ξ)|. The conservation
laws impose L2-moment constraints on this object.



Past Results

Bourgain: (late 90’s)
For the periodic IVP NLS(T2) one can prove

‖u(t)‖2
Hs ≤ Cs |t|4s .

The idea is to improve the local estimate for t ∈ [−1, 1]

‖u(t)‖Hs ≤ Cs‖u(0)‖Hs , for Cs � 1

( =⇒ ‖u(t)‖Hs . C |t| upper bounds) to obtain

‖u(t)‖Hs ≤ 1‖u(0)‖Hs + Cs‖u(0)‖1−δ
Hs for Cs � 1,

for some δ > 0. This iterates to give

‖u(t)‖Hs ≤ Cs |t|1/δ.

Improvements: Staffilani, C-Delort-Kenig-Staffilani.



Past Results

Bourgain: (late 90’s)
Given m, s � 1 there exist ∆̃ and a global solution u(x , t) to
the modified wave equation

(∂tt − ∆̃)u = up

such that ‖u(t)‖Hs ∼ |t|m.
Physics: Weak turbulence theory: Hasselmann & Zakharov.
Numerics (d=1): Majda-McLaughlin-Tabak; Zakharov et. al.

Conjecture

Solutions to dispersive equations on Rd do not exhibit high
Sobolev norm growth. ∃ solutions to dispersive equations on Td

with high Sobolev norm growth. In particular for NLS(T2) there
exists u(t, x) s. t.

‖u(t)‖2Hs →∞ as t →∞.
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Existence Result

We consider the defocusing initial value problem:{
(−i∂t + ∆)u = |u|2u

u(0, x) = u0(x), x ∈ T2.
(NLS(T2))

Theorem (C-Keel-Staffilani-Takaoka-Tao)

Let s > 1, K � 1 and 0 < σ < 1 be given. Then there exists a
global smooth solution u(t, x) and T > 0 such that

‖u0‖Hs ≤ σ

and
‖u(T )‖2

Hs ≥ K .



Overview of Proof
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