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Nonlinear Schrödinger Initial Value Problem

We consider the defocusing initial value problem:{
(i∂t + ∆)u = ±|u|p−1u

u(0, x) = u0(x).
(NLS±p (Rd))

The + case is called defocusing; − is focusing.

NLS±3 is ubiquitous in physics. NLS±p introduced to explore
interplay between dispersion and strength of nonlinearity.

NLS±p is an infinite dimensional Hamiltonian System:
study infinite dimensional dynamical behaviors!

The main question about an evolution PDE: What is the
ultimate fate of solutions? We want to understand the
maximal-in-time behavior of the solutions.

Conservation and invariance properties motivate the study of
NLS±p (Rd) for low (and minimal) regularity initial data.



Time Invariant Quantities

Mass =

∫
Rd

|u(t, x)|2dx .

Momentum = 2=
∫

R2

u(t)∇u(t)dx .

Energy = H[u(t)] =
1

2

∫
R2

|∇u(t)|2dx± 2

p + 1
|u(t)|p+1dx .

Mass is L2; Momentum is close to H1/2; Energy involves H1.

Dynamics on a sphere in L2; focusing/defocusing energy.

Local conservation laws express how quantity is conserved:
e.g., ∂t |u|2 = ∇ · 2=(u∇u). Space/Frequency Localizations?



Dilation Invariance and Critical Regularity

One solution u generates parametrized family {uλ}λ>0 of solutions:

u : [0,T )× Rd
x → C solves NLS±p (Rd)

m

uλ : [0, λ2T )× Rd
x → C solves NLS±p (Rd)

where
uλ(τ, y) = λ−2/(p−1)u(λ−2τ, λ−1y).

Norms which are invariant under u 7−→ uλ are critical .
Other Symmetries

Phase, space, time translation solution symmetries =⇒
mass, momentum, energy conservation laws.
One solution spawns solution family by symmetry orbit.



Dilation Invariance and Critical Regularity

In the L2-based Sobolev scale,

‖Dsuλ(t)‖L2 = λ
− 2

p−1
−s+ d

2 ‖Dsu(t)‖L2 .

The critical Sobolev index for NLS±p (Rd) is

sc :=
d

2
− 2

p − 1
.

Scaling/Conservation Criticality

scaling regime
sc < 0 mass subcritical
s = 0 mass critical

0 < sc < 1 mass super/energy subcritical
sc = 1 energy critical

1 < sc < d/2 energy supercritical



LWP & Maximal-in-time Implications

Strichartz Estimates, Duhamel, Contraction: NLS3(R2) case.

Optimal (Sobolev Hs) regularity: s ≥ sc = 0 [CW], [KPV].

Maximality/Blowup Criteria: If T ∗ < ∞
Strichartz Divergence, e.g.

‖u‖L4([0,t)×R2) diverges as t ↗ T ∗.

Subcritical Scaling Lower Bound,

‖u(t)‖Hs (R2) &
1

(T ∗ − t)s/2
, 0 < s.

What blowup speeds are realized by NLS evolutions?

Small Data Scattering Theory: ∃ γ0 > 0 such that

‖u0‖L2 < γ0 =⇒ u(t) global, asymptotically linear.



Strichartz Refinements

Advances around Fourier Restriction Phenomena led to...

LWP for spaces of initial data larger than L2 [MVV], [B]. . . .

“Small” data scattering valid for certain large L2 data.

Further Implications of T ∗ < ∞:

Critical Norm (Mass) Concentration (along time sequence) [B].
Asymptotic Compactness Modulo Symmetries [MV].

Links between rates of blowup quantities [B], [C-Roudenko].



Qualitative Aspects of Small Data Theory

Robust, open set in L2.

Asymptotically linear behavior.

Smallness brutally controls solution via fixed point argument.

What is the boundary of small data scattering portion of
phase space L2?



Known Maximal-in-Time Solution Scenarios

1 Asymptotically linear (Scattering) solutions exist.

2 Soliton solutions exist: u(t, x) = e itR(x) (focusing case)

Q(x) ground state; also excited states.
non-scattering; Strichartz norms diverge global-in-time.

3 Finite time blowup solutions are known, e.g. NLS−3 (R2):

PC transformation + solitons =⇒ explicit (fast) 1
t -blowups.

There exists an enlarged class of 1
t -blowups [BW].

Virial argument =⇒ many blowup solutions.
Qualitative properties? Recent advances [MR]. “log log”

4 Weakly turbulent solutions of NLS+
3 (T2). [CKSTT]



2. Critical Scattering

What is the ultimate fate of the local-in-time solutions?

L2-critical Defocusing Scattering Conjecture:

L2 3 u0 7−→ u solving NLS+
3 (R2) is global-in-time and

‖u‖L4
t,x

< A(u0) < ∞.

Moreover, ∃ u± ∈ L2(R2) such that

lim
t→±∞

‖e±it∆u± − u(t)‖L2(R2) = 0.

Remarks:

Known for small data ‖u0‖L2(R2) < µ0.

Known [Tao-Visan-Zhang 06] for NLS+
1+ 4

d

(Rd) for large radial

data, d ≥ 3. Same for d = 2 [Killip-Tao-Visan 07].

GWP for L2 data ⇐⇒ Scattering for L2 data. [Blue-C 06]



Critical Regularity Scattering Conjecture?

Consider defocusing case NLS+
p (Rd) with critical Sobolev index

sc =
d

2
− 2

p − 1
.

The critical (diagonal) Strichartz index is

qc =
(p − 1)(2 + d)

2
⇐⇒ 2

qc
+

d

qc
=

d

2
− sc .

Hsc -critical defocusing scattering conjecture:

Hsc (Rd) 3 u0 7−→ u solving NLS+
p (Rd) is global-in-time and

‖u‖Lqc
t,x

< A(u0) < ∞.



Critical Regularity Scattering Conjecture?

Present status of the defocusing scattering conjecture

criticality general data radial data evidence
sc = 0 ??? [TVZ],[KTV] GWP: s∗ < s < 1

0 < sc < 1 X : sc < s∗ < s < 1 s = sc?? X: extra smooth
sc = 1 [CKSTT],[RV],[V] [B99],[G], [T] X: Resolved!

1 < sc < ???? [KM] + bound Numerics

Scattering for NLS−p under natural threshold? [HR]

The existence (and value) of s∗ depends upon p, d .

The work [B99] introduced induction on energy idea.

Simplified/Abstracted road map to critical scattering. [KM]



3. Blowup

Ground State

H1-GWP mass threshold for NLS−3 (R2) [W]:

‖u0‖L2 < ‖Q‖L2 =⇒ H1 3 u0 7−→ u,T ∗ = ∞,

based on optimal Gagliardo-Nirenberg inequality on R2

‖u‖4L4 ≤

[
2

‖Q‖2
L2

]
‖u‖2L2‖∇u‖2L2 .

Q is the ground state solution to −Q + ∆Q = −Q3.

The ground state soliton solution to NLS−3 (R2) is

u(t, x) = e itQ(x).



Pseudoconformal Symmetry

Pseudoconformal transformation:

PC[u](τ, y) = v(τ, y) =
1

|τ |d/2
e

i|y|2
4τ u

(
−1

τ
,
y

τ

)
,

PC is L2-critical NLS solution symmetry:
Suppose 0 < t1 < t2 < ∞. If

u : [t1, t2]× R2
x → C solves NLS±

1+ 4
d

(Rd)

then
PC[u] = v : [−t−1

1 ,−t−1
2 ]τ × R2

y → C
solves

i∂τv + ∆yv = ±|v |4/dv .

PC is an L2-Strichartz isometry:
If 2

q + d
r = d

2 then

‖PC[u]‖Lq
τLr

y ([−t−1
1 ,−t−1

2 ]×Rd ) = ‖u‖Lq
t L

r
x ([t1,t2]×Rd ).



Explicit Blowup Solutions

The pseudoconformal image of ground state soliton e itQ(x),

S(t, x) =
1

t
Q

(x

t

)
e−i |x|

2

4t
+ i

t ,

is an explicit blowup solution.

S has minimal mass:

‖S(−1)‖L2
x

= ‖Q‖L2 .

All mass in S is conically concentrated into a point.

Minimal mass H1 blowup solution characterization:
u0 ∈ H1, ‖u0‖L2 = ‖Q‖L2 , T ∗(u0) < ∞ implies that u = S up
to an explicit solution symmetry. [M]



Many non-explicit Blowup Solutions

Suppose a : R2 → R. Form virial weight

Va =

∫
R2

a(x)|u|2(t, x)dx

and

∂tVa = Ma(t) =

∫
R2

∇a · 2=(φ∇φ)dx .

Conservation identities lead to the generalized virial identity

∂2
t Va = ∂tMa =

∫
R2

(−∆∆a)|φ|2 + 4ajk<(φjφk)− ajj |u|4dx .

Choosing a(x) = |x |2 produces the variance identity

∂2
t

∫
R2

|x |2|u(t, x)|2dx = 16H[u0].

H[u0] < 0,
∫
|x |2|u0(x)|2dx < ∞ blows up.

How do these solutions blow up?



NLS Blowup Dynamic?

Question: What are the dynamical properties of NLS−3 (R2)
blowup solutions?

maximality criteria; critical norm behavior
asymptotic compactness; profile decompositions
conservation structure; virial ideas; parameter modulation



log log blowup regime

Numerical/Persuasive arguments [LPSS] led to:

Prediction of blowups with log log speed:

‖u(t)‖H1 ∼
√

log | log(T ∗ − t)|
T ∗ − t

� 1√
T ∗ − t

.

Prediction that such blowups are generic/stable/observed.
Identification of certain mechanisms forecasting log log.

NLS−5 (R1) has log log blowup solutions. [P]

Detailed Description of log log regime in series by [MR].



Qualitative Aspects of log log regime

Robust, open set in H1.

Asymptotically nonlinear with subtle interaction.

Delicate phenomona in critical space (L2 instability?).

Conjectured quantization properties?

Boundary of log log regime in phase space?



Theorem (Merle-Raphaël): log log Regime

Consider any initial data u0 ∈ H1 such that

Small Excess Mass: ‖Q‖L2 < ‖u0‖L2 < ‖Q‖L2 + α∗.

Negative Total Energy: H[u0] < 0.

The associated solution u0 7−→ u explodes with T ∗ < ∞ and

∃ (λ(t), x(t), γ(t) ∈ R∗+ × R2 × R) and u∗ ∈ L2 s.t.

u(t)− 1

λ(t)
Q

(
x − x(t)

λ(t)

)
e iγ(t) → u∗ in L2.

x(t) → x(T ∗) in R2 as t ↗ T ∗.

Sharp log log speed law holds:

λ(t)

√
log | log(T ∗ − t)|

T ∗ − t
→
√

2π as t ↗ T ∗.

u∗ /∈ Hs for s > 0; u∗ /∈ Lp for p > 2. (Rough residual)



Theorem (Raphaël): H1 Stability of log log

Fact: PC + log log for E < 0 =⇒ ∃ log log with E > 0.

H1-Stability Theorem: The set of data with u0 ∈ H1 with
small excess mass blowing up in log log regime is open in H1.

Develops bootstrap approach to constructing log log.

Further Bootstrap/stability applications [PR:Ω], [R:Ring].



Theorem (C-Raphaël): H s Stability of log log

Let u0 ∈ H1 evolve into the log log regime.

∀ s > 0 ∃ ε = ε(s, u0) > 0 such that ∀ v0 ∈ Hs(R2)

‖u0 − v0‖Hs < ε,

NLS−3 (R2) solution v0 7−→ v blows up in log log regime.

Thus, the H1 log log blowup solutions constructed by [MR] are
contained in an open superset of log log blowups in Hs , ∀ s > 0.



Remarks about the H s stability of log log

The theorem implies existence of rough blowup solutions.

Proof does not apply to perturbations of Hs log log blowups.

The condition s > 0 is expected to be optimal.
Small L2 (but huge Hs) perturbation destroys rough residual
mass (u∗ /∈ Hs , ∀ s > 0) leading to fast 1

t -blowup? (Zwiers)

Strategy of proof

Isolate roles of energy conservation in [MR] analysis.
Relax to almost conserved modified energy via I -method.
Big Bootstrap.

Other Applications of Dynamical Rescaled I -method?



Energy Conservation in [MR] analysis

Control of ε: ∫
|∇ε|2dx . e−

C
b + λ2|E (u)|.

Energy conservation and λ ↘ 0 =⇒∫
|∇ε|2dx . e−

C
b + λ2|E (u)|.

We can maintain same conclusion if |E (u)| � 1
λ2 .

(Observation in [CRSW]; Led to [C-Raphaël] collaboration)

Systematically replace E (u) by E (INu).



3. Weak Turbulence

[CKSTT: joint work with Keel, Staffilani, Takaoka and Tao]
We consider the defocusing initial value problem:{

(−i∂t + ∆)u = |u|2u
u(0, x) = u0(x), where x ∈ T2.

(NLS(T2))

Smooth solution u(x , t) exists globally and

Mass = M(u) = ‖u(t)‖2 = M(0)

Energy = E (u) =

∫
1

2
|∇u(t, x)|2 +

1

4
|u(x , t)|4 dx = E (0)

We want to understand the shape of |û(t, ξ)|. The conservation
laws impose L2-moment constraints on this object.



Notion of Weak Turbulence

Definition

Weak turbulence is the phenomenon of global-in-time defocusing
solutions shifting their mass toward increasingly high frequencies.

This shift is also called a forward cascade.

A way to measure weak turbulence is to study

‖u(t)‖2
Ḣs =

∫
|û(t, ξ)|2|ξ|2sdξ

and prove that it grows for large times t.

Turbulence is incompatible with scattering and integrability.

Finite time blowup behavior is not weak turbulence.



Incompatible with Scattering & Integrability

Scattering: ∀ global solution u(t, x) ∈ Hs ∃ u+
0 ∈ Hs such

that,
lim

t→+∞
‖u(t, x)− e it∆u+

0 (x)‖Hs = 0.

Note: ‖e it∆u+
0 ‖Hs = ‖u+

0 ‖Hs =⇒ ‖u(t)‖Hs is bounded.
Proofs rely on Morawetz-type (global dispersive) estimate.

Complete Integrability: The 1d equation

(i∂t + ∂2
x )u = |u|2u

has infinitely many conservation laws. Combining them in the
right way one gets that ‖u(t)‖Hs ≤ Cs for all times.



Distinctions from finite time blowup setting

Glassey’s virial identity shows corresponding focusing problem{
(−i∂t + ∆)u = −|u|2u

u(0, x) = u0(x), where x ∈ R2.
(NLS−(R2))

has many finite time blowup solutions.

The associated energy has a changed sign:

E (u) =

∫
1

2
|∇u(t, x)|2−1

4
|u(x , t)|4 dx .

Blowup solutions explode in H1 in finite time.



Past Results (defocusing case)

Bourgain: (late 90’s)
For the periodic IVP NLS(T2) one can prove

‖u(t)‖2Hs ≤ Cs |t|4s .

The idea is to improve the local estimate for t ∈ [−1, 1]

‖u(t)‖Hs ≤ Cs‖u(0)‖Hs , for Cs � 1

( =⇒ ‖u(t)‖Hs . C |t| upper bounds) to obtain

‖u(t)‖Hs ≤ 1‖u(0)‖Hs + Cs‖u(0)‖1−δ
Hs for Cs � 1,

for some δ > 0. This iterates to give

‖u(t)‖Hs ≤ Cs |t|1/δ.

Improvements: Staffilani, Colliander-Delort-Kenig-Staffilani.



Past Results

Bourgain: (late 90’s)
Given m, s � 1 there exist ∆̃ and a global solution u(x , t) to
the modified wave equation

(∂tt − ∆̃)u = up

such that ‖u(t)‖Hs ∼ |t|m.

Physics: Weak turbulence theory: Hasselmann & Zakharov.
Numerics (d=1): Majda-McLaughlin-Tabak; Zakharov et. al.

Conjecture

Solutions to dispersive equations on Rd DO NOT exhibit weak
turbulence. ∃ solutions to dispersive equations on Td that exhibit
weak turbulence. In particular for NLS(T2) there exists u(x , t) s. t.

‖u(t)‖2Hs →∞ as t →∞.



Main Result

We consider the defocusing initial value problem:{
(−i∂t + ∆)u = |u|2u

u(0, x) = u0(x), where x ∈ T2, R2.
(NLS(T2))

Theorem (Colliander-Keel-Staffilani-Takaoka-Tao)

Let s > 1, k � 1 and 0 < σ < 1 be given. Then there exists a
global smooth solution u(x , t) and T > 0 such that

‖u0‖Hs ≤ σ

and
‖u(t)‖2Hs ≥ K .



2. Overview of Proof



Preliminary reductions

Gauge Freedom:
If u solves NLS then v(t, x) = e−i2Gtu(t, x) solves{

i∂tv + ∆v = (2G + |v |2)v
v(0, x) = v0(x), x ∈ T2.

(NLSG )

Fourier Ansatz: Recast the dynamics in Fourier coefficients,

v(t, x) =
∑
n∈Z2

an(t)e
i(n·x+|n|2t).


i∂tan = 2Gan +

∑
n1, n2, n3 ∈ Z2

n1 − n2 + n3 = n

an1an2an3e
iω4t

an(0) = û0(n), n ∈ Z2.
(FNLSG )

ω4 = |n1|2 − |n2|2 + |n3|2 − |n|2.



Preliminary reductions

Diagonal decomposition of sum:∑
n1, n2, n3 ∈ Z2

n1 − n2 + n3 = n

=
∑

n1, n2, n3 ∈ Z2

n1 − n2 + n3 = n
n 6= n1, n3

+
∑

n1, n2, n3 ∈ Z2

n1 − n2 + n3 = n
n = n1

+
∑

n1, n2, n3 ∈ Z2

n1 − n2 + n3 = n
n = n3

−
∑

n1, n2, n3 ∈ Z2

n1 − n2 + n3 = n
n = n1 = n3

Choice of G :

G = −‖u0‖2L2 .



Resonant truncation

NLS dynamic is recast as

−i∂tan = −an|an|2 +
∑

n1,n2,n3∈Γ(n)

an1an2an3e
iω4t . (FNLS)

where

Γ(n) = {n1, n2, n3 ∈ Z2 : n1 − n2 + n3 = n, n1 6= n, n3 6= n}.

Γres(n) = {n1, n2, n3 ∈ Γ(n) : ω4 = 0}.
= { Triples (n1, n2, n3) : (n1, n2, n3, n4) is a rectangle }

The resonant truncation of FNLS is

−i∂tbn = −bn|bn|2 +
∑

n1,n2,n3∈Γres(n)

bn1bn2bn3 . (RFNLS)



Finite dimensional resonant truncation

A set Λ ⊂ Z2 is closed under resonant interactions if

n1, n2, n3 ∈ Γres(n), n1, n2, n3 ∈ Λ =⇒ n ∈ Λ.

A finite dimensional resonant truncation of FNLS is

−i∂tbn = −bn|bn|2 +
∑

n1,n2,n3∈Γres(n)∩Λ3

bn1bn2bn3 . (RFNLSΛ)

∀ resonant-closed finite Λ ⊂ Z2 RFNLSΛ is an ODE.

If spt(an(0)) ⊂ Λ then FNLS-evolution an(0) 7−→ an(t) is
nicely approximated by RFNLSΛ-ODE an(0) 7−→ bn(t).

Given ε, s,K , build Λ so that RFNLSΛ has weak turbulence.



Imagine we build a resonant Λ ⊂ Z2 such that...

Imagine a resonant-closed Λ = Λ1 ∪ · · · ∪ ΛM with properties.
Define a nuclear family to be a rectangle (n1, n2, n3, n4) where the
frequencies n1, n3 (the ’parents’) live in generation Λj and n2, n4

(’children’) live in generation Λj+1.

∀ 1 ≤ j < M and ∀ n1 ∈ Λj ∃ unique nuclear family such that
n1, n3 ∈ Λj are parents and n2, n4 ∈ Λj+1 are children.

∀ 1 ≤ j < M and ∀ n2 ∈ Λj+1 ∃ unique nuclear family such
that n2, n4 ∈ Λj+1 are children and n1, n3 ∈ Λj are parents.

The sibling of a frequency is never its spouse.

Besides nuclear families, Λ contains no other rectangles.

The function n 7−→ an(0) is constant on each generation Λj .



Cartoon Construction of Λ



Cartoon Construction of Λ



Cartoon Construction of Λ



Cartoon Construction of Λ



Cartoon Construction of Λ



Cartoon Construction of Λ



Cartoon Construction of Λ



Cartoon Construction of Λ



Cartoon Construction of Λ



Cartoon Construction of Λ



Cartoon Construction of Λ



Cartoon Construction of Λ



Cartoon Construction of Λ



Cartoon Construction of Λ



Cartoon Construction of Λ



Cartoon Construction of Λ



The toy model ODE

Assume we can construct such a Λ = Λ1 ∪ · · · ∪ ΛM . The
properties imply RFNLSΛ simplifies to the toy model ODE

∂tbj(t) = −i |bj(t)|2bj(t) + 2ibj(t)[bj(t)
2 − bj+1(t)

2].

L2 ∼
∑

j

|bj(t)|2 =
∑

j

|bj(0)|2

Hs ∼
∑

j

|bj(t)|2(
∑
n∈Λj

|n|2s).

We also want Λ to satisfy Wide Diaspora Property∑
n∈ΛM

|n|2s �
∑
n∈Λ1

|n|2s .



Properties of the Toy Model ODE

Solution of the Toy Model is a vector flow t → b(t) ∈ CM

b(t) = (b1(t), . . . , bM(t)) ∈ CM ; bj = 0 ∀ j ≤ 0, j ≥ M + 1.

Local Well-Posedness; Let S(t) denote associated flowmap.

Mass Conservation: |b(t)|2 = |b(0)|2 =⇒

Toy Model ODE is Globally Well-Posed.
Invariance of the sphere: Σ = {x ∈ CM : |x |2 = 1}

S(t)Σ = Σ.



Properties of the Toy Model ODE

Support Conservation:

∂t |bj |2 = 2Re(bj∂tbj)

= 4Re(ibj
2
[b2

j−1 − b2
j+1])

≤ C |bj |2.

Thus, if bj(0) = 0 then bj(t) = 0 for all t.

Invariance of coordinate tori:

Tj = {(b1, . . . , bM ∈ Σ) : |bj | = 1, bk = 0 ∀ k 6= j}

Mass Conservation =⇒ S(T )Tj = Tj .
Dynamics on the invariant tori is easy:

bj(t) = e−i(t+θ); bk(t) = 0 ∀ k 6= j .



Explicit Slider Solution

Consider M = 2. Then ODE is of the form

∂tb1 = −i |b1|2b1 + 2ib1b
2
2

∂tb2 = −i |b2|2b2 + 2ib2b
2
1.

Let ω = e2iπ/3 (cube root of unity). This ODE has explicit solution

b1(t) =
e−it√

1 + e2
√

3t
ω , b2(t) =

e−it√
1 + e−2

√
3t

ω2.

As t → −∞, (b1(t), b2(t)) → (e−itω, 0) ∈ T1.

As t → +∞, (b1(t), b2(t)) → (0, e−itω2) ∈ T2.



Explicit Slider Solution



Two Explicit Solution Families



Concatenated Sliders: Idea of Proof



Arnold Diffusion for Toy Model Statement

Theorem

Let M ≥ 6. Given ε > 0 there exist x3 within ε of T3 and xM−2

within ε of TM−2 and a time t such that

S(t)x3 = xM−2.

Remark

S(t)x3 is a solution of total mass 1 arbitrarily concentrated at
mode j = 3 at some time t0 and then arbitrarily concentrated at
mode j = M − 2 at later time t.



Construction of Resonant Set Λ

The task is to construct a finite set Λ ⊂ Z2 satisfying the properties
that led to the Toy Model ODE. We do this in two steps:

1 Build combinatorial model of Λ called Σ ⊂ CM−1.

2 Build a map f : CM−1 → R2 which gives

f (Σ) = Λ ⊂ Z2

satisfying the properties.



Construction of Combinatorial Model Σ

Standard Unit Square: S = {0, 1, 1 + i , i} ⊂ C ,S = S1 ∪ S2

where S1 = {1, i} and S2 = {0, 1 + i}

Z2 ≡ Z[i ]; (n1, n2) ≡ n1 + in2



Construction of Combinatorial Model Σ

We define

Σj = {(z1, z2, . . . , zM−1) : z1, . . . , zj−1 ∈ S2, zj , . . . , zM−1 ∈ S1}

with the properties

Σj = S j−1
2 × SM−j

1 ⊂ CM−1

|Σj | = 2M−1

Next, we define
Σ = Σ1 ∪ · · · ∪ ΣM .

|Σ| = M2M−1.
Σj is called a generation.



Combinatorial Nuclear Family

Consider the set F = {F0,F1,F1+i ,Fi} ⊂ Σ defined by

Fw = (z1, . . . , zj−1,w , zj+1, . . . , zn)

with z1, . . . , zj−1 ∈ S2 and zj+1, . . . , zn ∈ S2 and w ∈ S .

The elements F0,F1+i ∈ Σj+1 are called children.
The elements F1,Fi are called parents.
The four element set F is called a combinatorial nuclear family
connecting the generations Σj and Σj+1.

∀ j ∃ 2M−2 combinatorial nuclear families connecting
generations Σj and Σj+1.

The set Σ satisfies

Existence and uniqueness of spouse and children (of sibling
and parents).
Sibling is never also a spouse.



Construction of the Placement Function

We need to map Σ ⊂ CM−1 into the frequency lattice Z2.

We first define f1 : Σ1 → C.

∀ 1 ≤ j ≤ M and each combinatorial nuclear family F
connecting generations Σj and Σj+1, we associate an angle
θ(F ) ∈ R/2πZ.

Given f1 and the angles of all the families, we define
placement functions fj : Σj → C recursively by the rule:
Suppose fj : Σj → C has been defined. We define
fj+1 : Σj+1 → C:

fj+1(F1+i ) =
1 + e iθ(F )

2
fj(F1) +

1− e iθ(F )

2
fj(Fi )

fj+1(F0) =
1 + e iθ(F )

2
fj(F1)−

1− e iθ(F )

2
fj(Fi )

for all combinatorial nuclear families connecting Σj to Σj+1.



Theorem: Good Placement Function

Let M ≥ 2, s > 1, and let N be a sufficiently large integer
(depending on M). ∃ an initial placement function f1 : Σ1 → C
and choices of angles θ(F ) for each nuclear family F (and thus an
associated complete placement function f : Σ → C) with the
following properties:

(Non-degeneracy) The function f is injective.
(Integrality) We have f (Σ) ⊂ Z[i ].
(Magnitude) We have C (M)−1N ≤ |f (x)| ≤ C (M)N for all
x ∈ Σ.
(Closure/Faithfulness) If x1, x2, x3 are distinct elements of Σ
are such that f (x1), f (x2), f (x3) form a right-angled triangle,
then x1, x2, x3 belong to a combinatorial nuclear family.
(Wide Diaspora/Norm Explosion) We have∑

n∈f (ΣM)

|n|2s >
1

2
2(s−1)(M−1)

∑
n∈f (Σ1)

|n|2s .
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