Exploding, Rough and Turbulent Solutions of Nonlinear Schrdinger Equations

J. Colliander (University of Toronto)

University of Maryland Colloquium

27 February 2009

1 INTRODUCTION

2 CRITICAL SCATTERING

3 BLOWUP

4 WEAK TURBULENCE

Nonlinear Schrödinger Initial Value Problem

We consider the defocusing initial value problem:

$$\begin{cases} (i\partial_t + \Delta)u = \pm |u|^{p-1}u \\ u(0, x) = u_0(x). \end{cases}$$

$$(NLS^{\pm}_{p}(\mathbb{R}^{d}))$$

The + case is called defocusing; - is focusing.

- NLS₃[±] is ubiquitous in physics. NLS_p[±] introduced to explore interplay between dispersion and strength of nonlinearity.
- NLS[±]_p is an infinite dimensional Hamiltonian System: study infinite dimensional dynamical behaviors!
- The main question about an evolution PDE: What is the ultimate fate of solutions? We want to understand the maximal-in-time behavior of the solutions.
- Conservation and invariance properties motivate the study of NLS[±]_p(R^d) for low (and minimal) regularity initial data.

TIME INVARIANT QUANTITIES

$$\begin{split} \mathsf{Mass} &= \int_{\mathbb{R}^d} |u(t,x)|^2 dx.\\ \mathsf{Momentum} &= 2\Im \int_{\mathbb{R}^2} \overline{u}(t) \nabla u(t) dx.\\ \mathsf{Energy} &= H[u(t)] = \frac{1}{2} \int_{R^2} |\nabla u(t)|^2 dx \pm \frac{2}{p+1} |u(t)|^{p+1} dx. \end{split}$$

- Mass is L^2 ; Momentum is close to $H^{1/2}$; Energy involves H^1 .
- Dynamics on a sphere in L^2 ; focusing/defocusing energy.
- Local conservation laws express **how** quantity is conserved: e.g., $\partial_t |u|^2 = \nabla \cdot 2\Im(\overline{u}\nabla u)$. Space/Frequency Localizations?

One solution u generates parametrized family $\{u^{\lambda}\}_{\lambda>0}$ of solutions:

$$u: [0, T) imes \mathbb{R}^d_x o \mathbb{C}$$
 solves $NLS^{\pm}_p(\mathbb{R}^d)$

$u^{\lambda}: [0, \lambda^2 T) imes \mathbb{R}^d_x o \mathbb{C}$ solves $NLS^{\pm}_{ ho}(\mathbb{R}^d)$

€

where

$$u^{\lambda}(\tau, y) = \lambda^{-2/(p-1)} u(\lambda^{-2}\tau, \lambda^{-1}y).$$

Norms which are invariant under $u \mapsto u_{\lambda}$ are *critical*. **Other Symmetries**

- Phase, space, time translation solution symmetries mass, momentum, energy conservation laws.
- One solution spawns solution family by symmetry orbit.

DILATION INVARIANCE AND CRITICAL REGULARITY

In the L^2 -based Sobolev scale,

$$\|D^{s}u^{\lambda}(t)\|_{L^{2}} = \lambda^{-\frac{2}{p-1}-s+\frac{d}{2}}\|D^{s}u(t)\|_{L^{2}}.$$

The critical Sobolev index for $NLS_p^{\pm}(\mathbb{R}^d)$ is

$$s_c := \frac{d}{2} - \frac{2}{p-1}$$

Scaling/Conservation Criticality

scaling	regime	
$s_c < 0$	mass subcritical	
<i>s</i> = 0	mass critical	
$0 < s_c < 1$	mass super/energy subcritical	
$s_c = 1$	energy critical	
$1 < s_c < d/2$	energy supercritical	

LWP & MAXIMAL-IN-TIME IMPLICATIONS

Strichartz Estimates, Duhamel, Contraction: $NLS_3(\mathbb{R}^2)$ case.

- Optimal (Sobolev H^s) regularity: $s \ge s_c = 0$ [CW], [KPV].
- Maximality/Blowup Criteria: If $T^* < \infty$

Strichartz Divergence, e.g.

 $||u||_{L^4([0,t)\times\mathbb{R}^2)}$ diverges as $t \nearrow T^*$.

Subcritical Scaling Lower Bound,

$$\|u(t)\|_{H^{s}(\mathbb{R}^{2})} \gtrsim rac{1}{(T^{*}-t)^{s/2}}, \ 0 < s.$$

What blowup speeds are realized by NLS evolutions?
 Small Data Scattering Theory: ∃ γ₀ > 0 such that

 $\|u_0\|_{L^2} < \gamma_0 \implies u(t)$ global, asymptotically linear.

Advances around Fourier Restriction Phenomena led to...

- LWP for spaces of initial data larger than L² [MVV], [B]. ...
- "Small" data scattering valid for certain large L^2 data.
- Further Implications of $T^* < \infty$:
 - Critical Norm (Mass) Concentration (along time sequence) [B].
 - Asymptotic Compactness Modulo Symmetries [MV].
- Links between rates of blowup quantities [B], [C-Roudenko].

QUALITATIVE ASPECTS OF SMALL DATA THEORY

- Robust, open set in L^2 .
- Asymptotically linear behavior.
- Smallness brutally controls solution via fixed point argument.
- What is the boundary of small data scattering portion of phase space L²?

- **1** Asymptotically linear (Scattering) solutions exist.
- **2** Soliton solutions exist: $u(t,x) = e^{it}R(x)$ (focusing case)
 - Q(x) ground state; also excited states.
 - non-scattering; Strichartz norms diverge global-in-time.
- **B** Finite time blowup solutions are known, e.g. $NLS_3^-(\mathbb{R}^2)$:
 - \mathcal{PC} transformation + solitons \implies explicit (fast) $\frac{1}{t}$ -blowups.
 - There exists an enlarged class of $\frac{1}{t}$ -blowups [BW].
 - Virial argument \implies many blowup solutions.
 - Qualitative properties? Recent advances [MR]. "log log"
- **4** Weakly turbulent solutions of $NLS_3^+(\mathbb{T}^2)$. [CKSTT]

2. Critical Scattering

What is the ultimate fate of the local-in-time solutions?

 $\frac{L^2\text{-critical Defocusing Scattering Conjecture:}}{L^2 \ni u_0 \longmapsto u \text{ solving } NLS_3^+(\mathbb{R}^2) \text{ is global-in-time and} \\ \|u\|_{L^4_{t,x}} < A(u_0) < \infty.$

Moreover, $\exists \ u_{\pm} \in L^2(\mathbb{R}^2)$ such that

$$\lim_{t\to\pm\infty}\|e^{\pm it\Delta}u_{\pm}-u(t)\|_{L^2(\mathbb{R}^2)}=0.$$

Remarks:

• Known for small data $||u_0||_{L^2(\mathbb{R}^2)} < \mu_0$.

- Known [Tao-Visan-Zhang 06] for NLS⁺_{1+4/d}(ℝ^d) for large radial data, d ≥ 3. Same for d = 2 [Killip-Tao-Visan 07].
- GWP for L^2 data \iff Scattering for L^2 data. [Blue-C 06]

CRITICAL REGULARITY SCATTERING CONJECTURE?

Consider defocusing case $NLS_p^+(\mathbb{R}^d)$ with critical Sobolev index

$$s_c = \frac{d}{2} - \frac{2}{p-1}$$

The critical (diagonal) Strichartz index is

$$q_c=rac{(p-1)(2+d)}{2}\iff rac{2}{q_c}+rac{d}{q_c}=rac{d}{2}-s_c.$$

 $\frac{H^{s_c}\text{-}critical defocusing scattering conjecture:}{H^{s_c}(\mathbb{R}^d) \ni u_0 \longmapsto u \text{ solving } NLS^+_p(\mathbb{R}^d) \text{ is global-in-time and} \\ \|u\|_{L^{q_c}_{t^-}} < A(u_0) < \infty.$

Present status of the defocusing scattering conjecture

criticality	general data	radial data	evidence
$s_c = 0$???	[TVZ],[KTV]	GWP: <i>s</i> _* < <i>s</i> < 1
$0 < s_c < 1$	$\checkmark: s_c < s_* < s < 1$	$s = s_c??$	\checkmark : extra smooth
$s_c = 1$	[CKSTT],[RV],[V]	[B99],[G], [T]	√: <u>Resolved!</u>
$1 < s_{c} <$????	[KM] + bound	Numerics

- Scattering for *NLS*[−]_p under natural threshold? [HR]
- The existence (and value) of s_* depends upon p, d.
- The work [B99] introduced induction on energy idea.
- Simplified/Abstracted road map to critical scattering. [KM]

3. Blowup

Ground State

• H^1 -GWP mass threshold for $NLS_3^-(\mathbb{R}^2)$ [W]:

$$\|u_0\|_{L^2} < \|Q\|_{L^2} \implies H^1 \ni u_0 \longmapsto u, T^* = \infty,$$

based on optimal Gagliardo-Nirenberg inequality on \mathbb{R}^2

$$\|u\|_{L^4}^4 \leq \left[rac{2}{\|Q\|_{L^2}^2}
ight] \|u\|_{L^2}^2 \|
abla u\|_{L^2}^2.$$

- Q is the ground state solution to $-Q + \Delta Q = -Q^3$.
- The ground state soliton solution to $NLS_3^-(\mathbb{R}^2)$ is

$$u(t,x)=e^{it}Q(x).$$

PSEUDOCONFORMAL SYMMETRY

Pseudoconformal transformation:

$$\mathcal{PC}[u](\tau, y) = v(\tau, y) = \frac{1}{|\tau|^{d/2}} e^{\frac{i|y|^2}{4\tau}} u\left(-\frac{1}{\tau}, \frac{y}{\tau}\right),$$

■ \mathcal{PC} is L^2 -critical *NLS* solution symmetry: Suppose $0 < t_1 < t_2 < \infty$. If

$$u: [t_1, t_2] imes \mathbb{R}^2_x o \mathbb{C}$$
 solves $\mathit{NLS}^\pm_{1+rac{4}{d}}(\mathbb{R}^d)$

then

$$\mathcal{PC}[u] = v : [-t_1^{-1}, -t_2^{-1}]_{ au} imes \mathbb{R}^2_y o \mathbb{C}$$

solves

$$i\partial_{\tau}v + \Delta_y v = \pm |v|^{4/d}v.$$

•
$$\mathcal{PC}$$
 is an L^2 -Strichartz isometry:
If $\frac{2}{q} + \frac{d}{r} = \frac{d}{2}$ then
 $\|\mathcal{PC}[u]\|_{L^q_r L^r_y([-t_1^{-1}, -t_2^{-1}] \times \mathbb{R}^d)} = \|u\|_{L^q_t L^r_x([t_1, t_2] \times \mathbb{R}^d)}.$

EXPLICIT BLOWUP SOLUTIONS

• The *pseudoconformal* image of ground state soliton $e^{it}Q(x)$,

$$S(t,x) = \frac{1}{t}Q\left(\frac{x}{t}\right)e^{-i\frac{|x|^2}{4t}+\frac{i}{t}},$$

is an explicit blowup solution.

S has minimal mass:

$$\|S(-1)\|_{L^2_x} = \|Q\|_{L^2}.$$

All mass in S is conically concentrated into a point.

 ■ Minimal mass H¹ blowup solution characterization: u₀ ∈ H¹, ||u₀||_{L²} = ||Q||_{L²}, T^{*}(u₀) < ∞ implies that u = S up to an explicit solution symmetry. [M]

MANY NON-EXPLICIT BLOWUP SOLUTIONS

• Suppose $a : \mathbb{R}^2 \to \mathbb{R}$. Form virial weight

$$V_{\mathsf{a}} = \int_{\mathbb{R}^2} a(x) |u|^2(t, x) dx$$

and

$$\partial_t V_{\mathsf{a}} = M_{\mathsf{a}}(t) = \int_{\mathbb{R}^2} \nabla \mathsf{a} \cdot 2\Im(\overline{\phi} \nabla \phi) d\mathsf{x}.$$

Conservation identities lead to the generalized virial identity

$$\partial_t^2 V_a = \partial_t M_a = \int_{\mathbb{R}^2} (-\Delta \Delta a) |\phi|^2 + 4a_{jk} \Re(\overline{\phi_j} \phi_k) - a_{jj} |u|^4 dx.$$

• Choosing $a(x) = |x|^2$ produces the variance identity

$$\partial_t^2 \int_{\mathbb{R}^2} |x|^2 |u(t,x)|^2 dx = 16H[u_0]$$

H[u₀] < 0, ∫ |x|²|u₀(x)|²dx < ∞ blows up.
How do these solutions blow up?

Question: What are the dynamical properties of $NLS_3^-(\mathbb{R}^2)$ blowup solutions?

maximality criteria; critical norm behavior asymptotic compactness; profile decompositions conservation structure; virial ideas; parameter modulation Numerical/Persuasive arguments [LPSS] led to:

Prediction of blowups with log log speed:

$$\|u(t)\|_{H^1} \sim \sqrt{rac{\log|\log(T^*-t)|}{T^*-t}} \gg rac{1}{\sqrt{T^*-t}}.$$

Prediction that such blowups are generic/stable/observed.Identification of certain mechanisms forecasting log log.

• $NLS_5^-(\mathbb{R}^1)$ has log log blowup solutions. [P]

Detailed Description of log log regime in series by [MR].

QUALITATIVE ASPECTS OF $\log \log \operatorname{Regime}$

- Robust, open set in H^1 .
- Asymptotically nonlinear with subtle interaction.
- Delicate phenomona in critical space (L² instability?).
- Conjectured quantization properties?
- Boundary of log log regime in phase space?

THEOREM (MERLE-RAPHAËL): log log Regime

Consider any initial data $u_0 \in H^1$ such that

- Small Excess Mass: $\|Q\|_{L^2} < \|u_0\|_{L^2} < \|Q\|_{L^2} + \alpha^*$.
- Negative Total Energy: $H[u_0] < 0$.

The associated solution $u_0 \mapsto u$ explodes with $T^* < \infty$ and

• $\exists \ (\lambda(t), x(t), \gamma(t) \in \mathbb{R}^*_+ \times \mathbb{R}^2 \times \mathbb{R}) \text{ and } u^* \in L^2 \text{ s.t.}$

$$u(t) - rac{1}{\lambda(t)} Q\left(rac{x-x(t)}{\lambda(t)}
ight) e^{i\gamma(t)}
ightarrow u^* ext{ in } L^2$$

•
$$x(t) \rightarrow x(T^*)$$
 in \mathbb{R}^2 as $t \nearrow T^*$.

Sharp log log speed law holds:

$$\lambda(t)\sqrt{rac{\log|\log(T^*-t)|}{T^*-t}} o \sqrt{2\pi} ext{ as } t
earrow T^*.$$

• $u^* \notin H^s$ for s > 0; $u^* \notin L^p$ for p > 2. (Rough residual)

- **Fact**: \mathcal{PC} + log log for $E < 0 \implies \exists \text{ log log with } E > 0$.
- H¹-Stability Theorem: The set of data with u₀ ∈ H¹ with small excess mass blowing up in log log regime is open in H¹.
- Develops bootstrap approach to constructing log log.
- Further Bootstrap/stability applications [PR:Ω], [R:Ring].

Theorem (C-RAPHAËL): H^s STABILITY OF log log

Let u₀ ∈ H¹ evolve into the log log regime.
∀ s > 0 ∃ ε = ε(s, u₀) > 0 such that ∀ v₀ ∈ H^s(ℝ²) ||u₀ - v₀||_{H^s} < ε,

 $NLS_3^-(\mathbb{R}^2)$ solution $v_0 \mapsto v$ blows up in log log regime.

Thus, the H^1 log log blowup solutions constructed by [MR] are contained in an open superset of log log blowups in H^s , $\forall s > 0$.

- The theorem implies existence of rough blowup solutions.
- Proof does not apply to perturbations of H^s log log blowups.
- The condition s > 0 is expected to be optimal.
 Small L² (but huge H^s) perturbation destroys rough residual mass (u^{*} ∉ H^s, ∀ s > 0) leading to fast ¹/_t-blowup? (Zwiers)
- Strategy of proof
 - Isolate roles of energy conservation in [MR] analysis.
 - Relax to almost conserved modified energy via *I*-method.
 - Big Bootstrap.
- Other Applications of Dynamical Rescaled *I*-method?

ENERGY CONSERVATION IN [MR] ANALYSIS

■ Control of *\epsilon*:

$$\int |\nabla \epsilon|^2 dx \lesssim e^{-\frac{C}{b}} + \lambda^2 |E(u)|.$$

• Energy conservation and $\lambda \searrow 0 \implies$

$$\int |\nabla \epsilon|^2 dx \lesssim e^{-\frac{C}{b}} + \lambda^2 |E(u)|.$$

- We can maintain same conclusion if |E(u)| ≪ ¹/_{λ²}.
 (Observation in [CRSW]; Led to [C-Raphaël] collaboration)
- Systematically replace E(u) by $E(I_N u)$.

[CKSTT: joint work with **Keel**, **Staffilani**, **Takaoka and Tao**] We consider the defocusing initial value problem:

$$\begin{cases} (-i\partial_t + \Delta)u = |u|^2 u\\ u(0, x) = u_0(x), \text{ where } x \in \mathbb{T}^2. \end{cases}$$
 (NLS(\mathbb{T}^2))

Smooth solution u(x, t) exists globally and

Mass =
$$M(u) = ||u(t)||^2 = M(0)$$

Energy = $E(u) = \int \frac{1}{2} |\nabla u(t, x)|^2 + \frac{1}{4} |u(x, t)|^4 dx = E(0)$

We want to understand the shape of $|\hat{u}(t,\xi)|$. The conservation laws impose L^2 -moment constraints on this object.

DEFINITION

Weak turbulence is the phenomenon of global-in-time defocusing solutions shifting their mass toward increasingly high frequencies.

This shift is also called a forward cascade.

A way to measure weak turbulence is to study

$$\|u(t)\|_{\dot{H}^{s}}^{2} = \int |\hat{u}(t,\xi)|^{2} |\xi|^{2s} d\xi$$

and prove that it grows for large times t.

- Turbulence is incompatible with scattering and integrability.
- Finite time blowup behavior is not weak turbulence.

Scattering: \forall global solution $u(t, x) \in H^s \exists u_0^+ \in H^s$ such that,

$$\lim_{t\to+\infty}\|u(t,x)-e^{it\Delta}u_0^+(x)\|_{H^s}=0.$$

Note: $\|e^{it\Delta}u_0^+\|_{H^s} = \|u_0^+\|_{H^s} \implies \|u(t)\|_{H^s}$ is bounded. Proofs rely on Morawetz-type (global dispersive) estimate.

Complete Integrability: The 1d equation

$$(i\partial_t + \partial_x^2)u = |u|^2 u$$

has infinitely many conservation laws. Combining them in the right way one gets that $||u(t)||_{H^s} \leq C_s$ for all times.

Glassey's virial identity shows corresponding focusing problem

$$\begin{cases} (-i\partial_t + \Delta)u = -|u|^2 u\\ u(0, x) = u_0(x), \text{ where } x \in \mathbb{R}^2. \end{cases}$$
 (NLS⁻(\mathbb{R}^2))

has many finite time blowup solutions.

The associated energy has a changed sign:

$$E(u) = \int \frac{1}{2} |\nabla u(t,x)|^2 - \frac{1}{4} |u(x,t)|^4 \, dx.$$

• Blowup solutions explode in H^1 in finite time.

PAST RESULTS (DEFOCUSING CASE)

Bourgain: (late 90's)
 For the periodic IVP NLS(T²) one can prove

 $||u(t)||_{H^s}^2 \leq C_s |t|^{4s}.$

The idea is to improve the local estimate for $t \in [-1,1]$

 $\|u(t)\|_{H^s} \leq C_s \|u(0)\|_{H^s}, \quad ext{for } C_s \gg 1$

 $(\implies \|u(t)\|_{H^s} \lesssim C^{|t|}$ upper bounds) to obtain

 $\|u(t)\|_{H^s} \le 1 \|u(0)\|_{H^s} + C_s \|u(0)\|_{H^s}^{1-\delta}$ for $C_s \gg 1$,

for some $\delta > 0$. This iterates to give

 $\|u(t)\|_{H^s}\leq C_s|t|^{1/\delta}.$

Improvements: Staffilani, Colliander-Delort-Kenig-Staffilani.

PAST RESULTS

Bourgain: (late 90's) Given $m, s \gg 1$ there exist $\tilde{\Delta}$ and a global solution u(x, t) to the modified wave equation

$$(\partial_{tt} - \tilde{\Delta})u = u^p$$

such that $||u(t)||_{H^s} \sim |t|^m$.

 Physics: Weak turbulence theory: Hasselmann & Zakharov. Numerics (d=1): Majda-McLaughlin-Tabak; Zakharov et. al.

CONJECTURE

Solutions to dispersive equations on \mathbb{R}^d DO NOT exhibit weak turbulence. \exists solutions to dispersive equations on \mathbb{T}^d that exhibit weak turbulence. In particular for $NLS(\mathbb{T}^2)$ there exists u(x, t) s. t.

 $\|u(t)\|_{H^s}^2 \to \infty \text{ as } t \to \infty.$

MAIN RESULT

We consider the defocusing initial value problem:

$$\begin{cases} (-i\partial_t + \Delta)u = |u|^2 u\\ u(0, x) = u_0(x), \text{ where } x \in \mathbb{T}^2, \mathbb{R}^2. \end{cases}$$
 (NLS(\mathbb{T}^2))

THEOREM (COLLIANDER-KEEL-STAFFILANI-TAKAOKA-TAO)

Let s > 1, $k \gg 1$ and $0 < \sigma < 1$ be given. Then there exists a global smooth solution u(x, t) and T > 0 such that

 $\|u_0\|_{H^s} \leq \sigma$

and

 $\|u(t)\|_{H^s}^2 \geq K.$

2. Overview of Proof

PRELIMINARY REDUCTIONS

Gauge Freedom:

If *u* solves NLS then $v(t,x) = e^{-i2Gt}u(t,x)$ solves

$$\begin{cases} i\partial_t v + \Delta v = (2G + |v|^2)v \\ v(0, x) = v_0(x), \qquad x \in \mathbb{T}^2. \end{cases}$$
(NLS_G)

• Fourier Ansatz: Recast the dynamics in Fourier coefficients,

$$v(t,x) = \sum_{n \in \mathbb{Z}^2} a_n(t) e^{i(n \cdot x + |n|^2 t)}$$

$$\begin{cases} i\partial_{t}a_{n} = 2Ga_{n} + \sum_{\substack{n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\ n_{1} - n_{2} + n_{3} = n \\ a_{n}(0) = \widehat{u_{0}}(n), & n \in \mathbb{Z} \end{cases}$$

Diagonal decomposition of sum:

$$\sum_{\substack{n_1, n_2, n_3 \in \mathbb{Z}^2 \\ n_1 - n_2 + n_3 = n \\ n \neq n_1, n_2, n_3 \in \mathbb{Z}^2 \\ n_1 - n_2 + n_3 = n \\ n \neq n_1, n_3 \\ n \neq n_1, n_3 \\ n = n_1 \\ + \sum_{\substack{n_1, n_2, n_3 \in \mathbb{Z}^2 \\ n_1, n_2, n_3 \in \mathbb{Z}^2 \\ n_1 - n_2 + n_3 = n \\ n = n_1 \\ n_1 - n_2 + n_3 = n \\ n = n_1 \\ n_1 - n_2 + n_3 = n \\ n = n_1 \\ n_1 - n_2 + n_3 = n \\ n = n_1 \\ n = n_$$

• Choice of G:

$$G = - \|u_0\|_{L^2}^2.$$

RESONANT TRUNCATION

NLS dynamic is recast as

$$-i\partial_t a_n = -a_n |a_n|^2 + \sum_{n_1, n_2, n_3 \in \Gamma(n)} a_{n_1} \overline{a}_{n_2} a_{n_3} e^{i\omega_4 t}. \quad (\mathcal{F}NLS)$$

where

$$\Gamma(n) = \{n_1, n_2, n_3 \in \mathbb{Z}^2 : n_1 - n_2 + n_3 = n, n_1 \neq n, n_3 \neq n\}.$$

$$\begin{aligned} \Gamma_{res}(n) &= \{n_1, n_2, n_3 \in \Gamma(n) : \omega_4 = 0\} \\ &= \{ \text{ Triples } (n_1, n_2, n_3) : (n_1, n_2, n_3, n_4) \text{ is a rectangle } \} \end{aligned}$$

• The resonant truncation of $\mathcal{F}NLS$ is

$$-i\partial_t b_n = -b_n |b_n|^2 + \sum_{n_1, n_2, n_3 \in \Gamma_{res}(n)} b_{n_1} \overline{b}_{n_2} b_{n_3}. \quad (R\mathcal{F}NLS)$$

• A set $\Lambda \subset \mathbb{Z}^2$ is closed under resonant interactions if

$$n_1, n_2, n_3 \in \Gamma_{res}(n), n_1, n_2, n_3 \in \Lambda \implies n \in \Lambda.$$

• A finite dimensional resonant truncation of *FNLS* is

$$-i\partial_t b_n = -b_n |b_n|^2 + \sum_{n_1, n_2, n_3 \in \Gamma_{res}(n) \cap \Lambda^3} b_{n_1} \overline{b}_{n_2} b_{n_3}. \ (RFNLS_\Lambda)$$

- \forall resonant-closed finite $\Lambda \subset \mathbb{Z}^2 \ R\mathcal{F}NLS_{\Lambda}$ is an ODE.
- If spt(a_n(0)) ⊂ Λ then *FNLS*-evolution a_n(0) → a_n(t) is nicely approximated by *RFNLS*_Λ-ODE a_n(0) → b_n(t).
- Given ϵ , s, K, build Λ so that $RFNLS_{\Lambda}$ has weak turbulence.

Imagine a resonant-closed $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_M$ with properties. Define a nuclear family to be a rectangle (n_1, n_2, n_3, n_4) where the frequencies n_1, n_3 (the 'parents') live in generation Λ_j and n_2, n_4 ('children') live in generation Λ_{j+1} .

- $\forall \ 1 \leq j < M$ and $\forall \ n_1 \in \Lambda_j \exists$ unique nuclear family such that $n_1, n_3 \in \Lambda_j$ are parents and $n_2, n_4 \in \Lambda_{j+1}$ are children.
- $\forall \ 1 \leq j < M$ and $\forall \ n_2 \in \Lambda_{j+1} \exists$ unique nuclear family such that $n_2, n_4 \in \Lambda_{j+1}$ are children and $n_1, n_3 \in \Lambda_j$ are parents.
- The sibling of a frequency is never its spouse.
- Besides nuclear families, Λ contains no other rectangles.
- The function $n \mapsto a_n(0)$ is constant on each generation Λ_i .

Assume we can construct such a $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_M$. The properties imply $R\mathcal{F}NLS_{\Lambda}$ simplifies to the toy model ODE

$$\partial_t b_j(t) = -i|b_j(t)|^2 b_j(t) + 2i\overline{b}_j(t)[b_j(t)^2 - b_{j+1}(t)^2].$$

$$L^{2} \sim \sum_{j} |b_{j}(t)|^{2} = \sum_{j} |b_{j}(0)|^{2}$$

 $H^{s} \sim \sum_{j} |b_{j}(t)|^{2} (\sum_{n \in \Lambda_{j}} |n|^{2s}).$

We also want Λ to satisfy Wide Diaspora Property

$$\sum_{n\in\Lambda_M}|n|^{2s}\gg\sum_{n\in\Lambda_1}|n|^{2s}$$

Solution of the Toy Model is a vector flow $t \to b(t) \in \mathbb{C}^M$

$$b(t)=(b_1(t),\ldots,b_M(t))\in\mathbb{C}^M$$
; $b_j=0 \ orall \ j\leq 0, j\geq M+1.$

- Local Well-Posedness; Let S(t) denote associated flowmap.
- Mass Conservation: $|b(t)|^2 = |b(0)|^2 \implies$

■ Toy Model ODE is Globally Well-Posed. ■ Invariance of the sphere: $\Sigma = \{x \in \mathbb{C}^M : |x|^2 = 1\}$

$$S(t)\Sigma = \Sigma.$$

PROPERTIES OF THE TOY MODEL ODE

Support Conservation:

$$\begin{array}{rcl} \partial_t |b_j|^2 &=& 2Re(\overline{b_j}\partial_t b_j) \\ &=& 4Re(i\overline{b_j}^2[b_{j-1}^2 - b_{j+1}^2]) \\ &\leq& C|b_j|^2. \end{array}$$

Thus, if $b_j(0) = 0$ then $b_j(t) = 0$ for all t. Invariance of coordinate tori:

$$\mathbb{T}_j = \{(b_1,\ldots,b_M \in \Sigma) : |b_j| = 1, b_k = 0 \ \forall \ k \neq j\}$$

Mass Conservation $\implies S(T)\mathbb{T}_j = \mathbb{T}_j$. Dynamics on the invariant tori is easy:

$$b_j(t) = e^{-i(t+ heta)}; b_k(t) = 0 \,\,orall \,\,k
eq j.$$

Consider M = 2. Then *ODE* is of the form

$$\partial_t b_1 = -i|b_1|^2 b_1 + 2i\overline{b_1}b_2^2$$

$$\partial_t b_2 = -i|b_2|^2 b_2 + 2i\overline{b_2}b_1^2.$$

Let $\omega = e^{2i\pi/3}$ (cube root of unity). This ODE has explicit solution

$$b_1(t) = rac{e^{-it}}{\sqrt{1+e^{2\sqrt{3}t}}}\omega \ , b_2(t) = rac{e^{-it}}{\sqrt{1+e^{-2\sqrt{3}t}}}\omega^2$$

As
$$t \to -\infty$$
, $(b_1(t), b_2(t)) \to (e^{-it}\omega, 0) \in \mathbb{T}_1$.
As $t \to +\infty$, $(b_1(t), b_2(t)) \to (0, e^{-it}\omega^2) \in \mathbb{T}_2$.

EXPLICIT SLIDER SOLUTION

Two Explicit Solution Families

CONCATENATED SLIDERS: IDEA OF PROOF

Arnold Diffusion for Toy Model Statement

THEOREM

Let $M \ge 6$. Given $\epsilon > 0$ there exist x_3 within ϵ of \mathbb{T}_3 and x_{M-2} within ϵ of \mathbb{T}_{M-2} and a time t such that

 $S(t)x_3=x_{M-2}.$

Remark

 $S(t)x_3$ is a solution of total mass 1 arbitrarily concentrated at mode j = 3 at some time t_0 and then arbitrarily concentrated at mode j = M - 2 at later time t.

The task is to construct a finite set $\Lambda \subset \mathbb{Z}^2$ satisfying the properties that led to the Toy Model ODE. We do this in two steps:

- **I** Build combinatorial model of Λ called $\Sigma \subset \mathbb{C}^{M-1}$.
- **2** Build a map $f : \mathbb{C}^{M-1} \to \mathbb{R}^2$ which gives

$$f(\Sigma) = \Lambda \subset \mathbb{Z}^2$$

satisfying the properties.

Construction of Combinatorial Model Σ

■ Standard Unit Square: $S = \{0, 1, 1 + i, i\} \subset C, S = S_1 \cup S_2$ where $S_1 = \{1, i\}$ and $S_2 = \{0, 1 + i\}$

$$\blacksquare \mathbb{Z}^2 \equiv \mathbb{Z}[i]; (n_1, n_2) \equiv n_1 + in_2$$

We define

$$\Sigma_j = \{(z_1, z_2, \dots, z_{M-1}) : z_1, \dots, z_{j-1} \in S_2, z_j, \dots, z_{M-1} \in S_1\}$$

with the properties • $\Sigma_j = S_2^{j-1} \times S_1^{M-j} \subset \mathbb{C}^{M-1}$ • $|\Sigma_j| = 2^{M-1}$

Next, we define

$$\Sigma = \Sigma_1 \cup \cdots \cup \Sigma_M.$$

Combinatorial Nuclear Family

• Consider the set $F = \{F_0, F_1, F_{1+i}, F_i\} \subset \Sigma$ defined by

$$F_w = (z_1, \ldots, z_{j-1}, w, z_{j+1}, \ldots, z_n)$$

with $z_1, \ldots, z_{j-1} \in S_2$ and $z_{j+1}, \ldots, z_n \in S_2$ and $w \in S$.

- The elements $F_0, F_{1+i} \in \Sigma_{j+1}$ are called *children*.
- The elements F_1 , F_i are called *parents*.
- The four element set F is called a combinatorial nuclear family connecting the generations Σ_j and Σ_{j+1}.

■ $\forall j \exists 2^{M-2}$ combinatorial nuclear families connecting generations Σ_j and Σ_{j+1} .

- The set Σ satisfies
 - Existence and uniqueness of spouse and children (of sibling and parents).
 - Sibling is never also a spouse.

We need to map $\Sigma \subset \mathbb{C}^{M-1}$ into the frequency lattice \mathbb{Z}^2 .

- We first define $f_1 : \Sigma_1 \to \mathbb{C}$.
- $\forall \ 1 \leq j \leq M$ and each combinatorial nuclear family F connecting generations Σ_j and Σ_{j+1} , we associate an angle $\theta(F) \in \mathbb{R}/2\pi\mathbb{Z}$.
- Given f_1 and the angles of all the families, we define placement functions $f_j : \Sigma_j \to \mathbb{C}$ recursively by the rule: Suppose $f_j : \Sigma_j \to \mathbb{C}$ has been defined. We define $f_{j+1} : \Sigma_{j+1} \to \mathbb{C}$:

$$f_{j+1}(F_{1+i}) = \frac{1+e^{i\theta(F)}}{2}f_j(F_1) + \frac{1-e^{i\theta(F)}}{2}f_j(F_i)$$

$$f_{j+1}(F_0) = \frac{1+e^{i\theta(F)}}{2}f_j(F_1) - \frac{1-e^{i\theta(F)}}{2}f_j(F_i)$$

for all combinatorial nuclear families connecting Σ_j to Σ_{j+1} .

Let $M \ge 2$, s > 1, and let N be a sufficiently large integer (depending on M). \exists an initial placement function $f_1 : \Sigma_1 \to \mathbb{C}$ and choices of angles $\theta(F)$ for each nuclear family F (and thus an associated complete placement function $f : \Sigma \to \mathbb{C}$) with the following properties:

- (Non-degeneracy) The function *f* is injective.
- (Integrality) We have $f(\Sigma) \subset \mathbb{Z}[i]$.
- (Magnitude) We have $C(M)^{-1}N \le |f(x)| \le C(M)N$ for all $x \in \Sigma$.
- (Closure/Faithfulness) If x_1, x_2, x_3 are distinct elements of Σ are such that $f(x_1), f(x_2), f(x_3)$ form a right-angled triangle, then x_1, x_2, x_3 belong to a combinatorial nuclear family.

(Wide Diaspora/Norm Explosion) We have

$$\sum_{n \in f(\Sigma_M)} |n|^{2s} > \frac{1}{2} 2^{(s-1)(M-1)} \sum_{n \in f(\Sigma_1)} |n|^{2s}.$$