Exploding, Rough and Turbulent Solutions of Nonlinear Schrdinger Equations

J. Colliander (University of Toronto)
University of Maryland Colloquium

27 February 2009

1 Introduction

2 Critical Scattering

3 Blowup

4 Weak Turbulence

Nonlinear Schrödinger Initial Value Problem

We consider the defocusing initial value problem:

$$
\left\{\begin{array}{c}
\left(i \partial_{t}+\Delta\right) u= \pm|u|^{p-1} u \tag{p}\\
u(0, x)=u_{0}(x) .
\end{array}\right.
$$

The + case is called defocusing; - is focusing.

- $N L S_{3}^{ \pm}$is ubiquitous in physics. $N L S_{p}^{ \pm}$introduced to explore interplay between dispersion and strength of nonlinearity.
- $N L S_{p}^{ \pm}$is an infinite dimensional Hamiltonian System: study infinite dimensional dynamical behaviors!
- The main question about an evolution PDE: What is the ultimate fate of solutions? We want to understand the maximal-in-time behavior of the solutions.
- Conservation and invariance properties motivate the study of $N L S_{p}^{ \pm}\left(\mathbb{R}^{d}\right)$ for low (and minimal) regularity initial data.

Time Invariant Quantities

$$
\begin{aligned}
\text { Mass } & =\int_{\mathbb{R}^{d}}|u(t, x)|^{2} d x . \\
\text { Momentum } & =2 \Im \int_{\mathbb{R}^{2}} \bar{u}(t) \nabla u(t) d x . \\
\text { Energy } & =H[u(t)]=\frac{1}{2} \int_{R^{2}}|\nabla u(t)|^{2} d x \pm \frac{2}{p+1}|u(t)|^{p+1} d x .
\end{aligned}
$$

- Mass is L^{2}; Momentum is close to $H^{1 / 2}$; Energy involves H^{1}.
- Dynamics on a sphere in L^{2}; focusing/defocusing energy.
- Local conservation laws express how quantity is conserved: e.g., $\partial_{t}|u|^{2}=\nabla \cdot 2 \Im(\bar{u} \nabla u)$. Space/Frequency Localizations?

Dilation Invariance and Critical Regularity

One solution u generates parametrized family $\left\{u^{\lambda}\right\}_{\lambda>0}$ of solutions:

$$
\begin{aligned}
& u:[0, T) \times \mathbb{R}_{x}^{d} \rightarrow \mathbb{C} \text { solves } N L S_{p}^{ \pm}\left(\mathbb{R}^{d}\right) \\
& \Uparrow \\
& u^{\lambda}:\left[0, \lambda^{2} T\right) \times \mathbb{R}_{x}^{d} \rightarrow \mathbb{C} \text { solves } N L S_{p}^{ \pm}\left(\mathbb{R}^{d}\right)
\end{aligned}
$$

where

$$
u^{\lambda}(\tau, y)=\lambda^{-2 /(p-1)} u\left(\lambda^{-2} \tau, \lambda^{-1} y\right)
$$

Norms which are invariant under $u \longmapsto u_{\lambda}$ are critical.

Other Symmetries

■ Phase, space, time translation solution symmetries \Longrightarrow mass, momentum, energy conservation laws.
■ One solution spawns solution family by symmetry orbit.

Dilation Invariance and Critical Regularity

In the L^{2}-based Sobolev scale,

$$
\left\|D^{s} u^{\lambda}(t)\right\|_{L^{2}}=\lambda^{-\frac{2}{p-1}-s+\frac{d}{2}}\left\|D^{s} u(t)\right\|_{L^{2}} .
$$

The critical Sobolev index for $\operatorname{NLS} S_{p}^{ \pm}\left(\mathbb{R}^{d}\right)$ is

$$
s_{c}:=\frac{d}{2}-\frac{2}{p-1} .
$$

Scaling/Conservation Criticality

scaling	regime
$s_{c}<0$	mass subcritical
$s=0$	mass critical
$0<s_{c}<1$	mass super/energy subcritical
$s_{c}=1$	energy critical
$1<s_{c}<d / 2$	energy supercritical

LWP \& Maximal-in-time Implications

Strichartz Estimates, Duhamel, Contraction: $N L S_{3}\left(\mathbb{R}^{2}\right)$ case.

- Optimal (Sobolev H^{s}) regularity: $s \geq s_{c}=0$ [CW], [KPV].

■ Maximality/Blowup Criteria: If $T^{*}<\infty$
■ Strichartz Divergence, e.g.

$$
\|u\|_{L^{4}\left([0, t) \times \mathbb{R}^{2}\right)} \text { diverges as } t \nearrow T^{*} .
$$

■ Subcritical Scaling Lower Bound,

$$
\|u(t)\|_{H^{s}\left(\mathbb{R}^{2}\right)} \gtrsim \frac{1}{\left(T^{*}-t\right)^{s / 2}}, 0<s .
$$

- What blowup speeds are realized by NLS evolutions?
- Small Data Scattering Theory: $\exists \gamma_{0}>0$ such that

$$
\left\|u_{0}\right\|_{L^{2}}<\gamma_{0} \Longrightarrow u(t) \text { global, asymptotically linear. }
$$

Strichartz Refinements

Advances around Fourier Restriction Phenomena led to...

- LWP for spaces of initial data larger than L^{2} [MVV], [B]. ...
- "Small" data scattering valid for certain large L^{2} data.

■ Further Implications of $T^{*}<\infty$:

- Critical Norm (Mass) Concentration (along time sequence) [B].
- Asymptotic Compactness Modulo Symmetries [MV].
- Links between rates of blowup quantities [B], [C-Roudenko].

Qualitative Aspects of Small Data Theory

- Robust, open set in L^{2}.
- Asymptotically linear behavior.
- Smallness brutally controls solution via fixed point argument.
- What is the boundary of small data scattering portion of phase space L^{2} ?

Known Maximal-in-Time Solution Scenarios

1 Asymptotically linear (Scattering) solutions exist.
2 Soliton solutions exist: $u(t, x)=e^{i t} R(x)$ (focusing case)

- $Q(x)$ ground state; also excited states.
- non-scattering; Strichartz norms diverge global-in-time.

3 Finite time blowup solutions are known, e.g. $N L S_{3}^{-}\left(\mathbb{R}^{2}\right)$:

- $\mathcal{P C}$ transformation + solitons \Longrightarrow explicit (fast) $\frac{1}{t}$-blowups.
- There exists an enlarged class of $\frac{1}{t}$-blowups [BW].
- Virial argument \Longrightarrow many blowup solutions.
- Qualitative properties? Recent advances [MR]. "log log"

4 Weakly turbulent solutions of $\mathrm{NLS}_{3}^{+}\left(\mathbb{T}^{2}\right)$. [CKSTT]

2. Critical Scattering

What is the ultimate fate of the local-in-time solutions?
L^{2}-critical Defocusing Scattering Conjecture:
$L^{2} \ni u_{0} \longmapsto u$ solving $\operatorname{NLS}_{3}^{+}\left(\mathbb{R}^{2}\right)$ is global-in-time and

$$
\|u\|_{L_{t, x}^{4}}<A\left(u_{0}\right)<\infty
$$

Moreover, $\exists u_{ \pm} \in L^{2}\left(\mathbb{R}^{2}\right)$ such that

$$
\lim _{t \rightarrow \pm \infty}\left\|e^{ \pm i t \Delta} u_{ \pm}-u(t)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}=0
$$

Remarks:

- Known for small data $\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}<\mu_{0}$.

■ Known [Tao-Visan-Zhang 06] for $N L S_{1+\frac{4}{d}}^{+}\left(\mathbb{R}^{d}\right)$ for large radial data, $d \geq 3$. Same for $d=2$ [Killip-Tao-Visan 07].

- GWP for L^{2} data \Longleftrightarrow Scattering for L^{2} data. [Blue-C 06]

Critical Regularity Scattering Conjecture?

Consider defocusing case $N L S_{p}^{+}\left(\mathbb{R}^{d}\right)$ with critical Sobolev index

$$
s_{c}=\frac{d}{2}-\frac{2}{p-1} .
$$

The critical (diagonal) Strichartz index is

$$
q_{c}=\frac{(p-1)(2+d)}{2} \Longleftrightarrow \frac{2}{q_{c}}+\frac{d}{q_{c}}=\frac{d}{2}-s_{c} .
$$

$H^{s^{s_{c}} \text { critical defocusing scattering conjecture: }}$
$H^{s_{c}}\left(\mathbb{R}^{d}\right) \ni u_{0} \longmapsto u$ solving $N L S_{p}^{+}\left(\mathbb{R}^{d}\right)$ is global-in-time and

$$
\|u\|_{L t, x}^{q_{c}}<A\left(u_{0}\right)<\infty .
$$

Critical Regularity Scattering Conjecture?

Present status of the defocusing scattering conjecture

criticality	general data	radial data	evidence
$s_{c}=0$	$? ? ?$	$[\mathrm{TVZ}],[\mathrm{KTV}]$	GWP: $s_{*}<s<1$
$0<s_{c}<1$	$\checkmark: s_{c}<s_{*}<s<1$	$s=s_{c} ? ?$	$\checkmark:$ extra smooth
$s_{c}=1$	$[\mathrm{CKSTT}],[\mathrm{RV}],[\mathrm{V}]$	$[\mathrm{B} 99],[\mathrm{G}],[\mathrm{T}]$	$\checkmark:$ Resolved!
$1<s_{c}<$????	[KM] + bound	Numerics

- Scattering for $N L S_{p}^{-}$under natural threshold? [HR]
- The existence (and value) of s_{*} depends upon p, d.
- The work [B99] introduced induction on energy idea.
- Simplified/Abstracted road map to critical scattering. [KM]

3. Blowup

Ground State

- H^{1}-GWP mass threshold for $\operatorname{NLS}_{3}^{-}\left(\mathbb{R}^{2}\right)$ [W]:

$$
\left\|u_{0}\right\|_{L^{2}}<\|Q\|_{L^{2}} \Longrightarrow H^{1} \ni u_{0} \longmapsto u, T^{*}=\infty
$$

based on optimal Gagliardo-Nirenberg inequality on \mathbb{R}^{2}

$$
\|u\|_{L^{4}}^{4} \leq\left[\frac{2}{\|Q\|_{L^{2}}^{2}}\right]\|u\|_{L^{2}}^{2}\|\nabla u\|_{L^{2}}^{2} .
$$

- Q is the ground state solution to $-Q+\Delta Q=-Q^{3}$.
- The ground state soliton solution to $N L S_{3}^{-}\left(\mathbb{R}^{2}\right)$ is

$$
u(t, x)=e^{i t} Q(x)
$$

Pseudoconformal Symmetry

- Pseudoconformal transformation:

$$
\mathcal{P C}[u](\tau, y)=v(\tau, y)=\frac{1}{|\tau|^{d / 2}} e^{\frac{i|y|^{2}}{4 \tau}} u\left(-\frac{1}{\tau}, \frac{y}{\tau}\right)
$$

- $\mathcal{P C}$ is L^{2}-critical NLS solution symmetry:

Suppose $0<t_{1}<t_{2}<\infty$. If

$$
u:\left[t_{1}, t_{2}\right] \times \mathbb{R}_{x}^{2} \rightarrow \mathbb{C} \text { solves } N L S_{1+\frac{4}{d}}^{ \pm}\left(\mathbb{R}^{d}\right)
$$

then

$$
\mathcal{P C}[u]=v:\left[-t_{1}^{-1},-t_{2}^{-1}\right]_{\tau} \times \mathbb{R}_{y}^{2} \rightarrow \mathbb{C}
$$

solves

$$
i \partial_{\tau} v+\Delta_{y} v= \pm|v|^{4 / d} v
$$

- $\mathcal{P C}$ is an L^{2}-Strichartz isometry:

If $\frac{2}{q}+\frac{d}{r}=\frac{d}{2}$ then

$$
\|\mathcal{P C}[u]\|_{L_{\tau}^{q} L_{y}^{r}\left(\left[-t_{1}^{-1},-t_{2}^{-1}\right] \times \mathbb{R}^{d}\right)}=\|u\|_{L_{t}^{q} L_{x}^{r}\left(\left[t_{1}, t_{2}\right] \times \mathbb{R}^{d}\right)} .
$$

Explicit Blowup Solutions

- The pseudoconformal image of ground state soliton $e^{i t} Q(x)$,

$$
S(t, x)=\frac{1}{t} Q\left(\frac{x}{t}\right) e^{-i \frac{|x|^{2}}{4 t}+\frac{i}{t}},
$$

is an explicit blowup solution.

- S has minimal mass:

$$
\|S(-1)\|_{L_{x}^{2}}=\|Q\|_{L^{2}} .
$$

All mass in S is conically concentrated into a point.

- Minimal mass H^{1} blowup solution characterization:
$u_{0} \in H^{1},\left\|u_{0}\right\|_{L^{2}}=\|Q\|_{L^{2}}, T^{*}\left(u_{0}\right)<\infty$ implies that $u=S$ up to an explicit solution symmetry. [M]

Many non-explicit Blowup Solutions

■ Suppose $a: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Form virial weight

$$
V_{a}=\int_{\mathbb{R}^{2}} a(x)|u|^{2}(t, x) d x
$$

and

$$
\partial_{t} V_{a}=M_{a}(t)=\int_{\mathbb{R}^{2}} \nabla a \cdot 2 \Im(\bar{\phi} \nabla \phi) d x
$$

Conservation identities lead to the generalized virial identity

$$
\partial_{t}^{2} V_{a}=\partial_{t} M_{a}=\int_{\mathbb{R}^{2}}(-\Delta \Delta a)|\phi|^{2}+4 a_{j k} \Re\left(\overline{\phi_{j}} \phi_{k}\right)-a_{j j}|u|^{4} d x
$$

- Choosing $a(x)=|x|^{2}$ produces the variance identity

$$
\partial_{t}^{2} \int_{\mathbb{R}^{2}}|x|^{2}|u(t, x)|^{2} d x=16 H\left[u_{0}\right]
$$

- $H\left[u_{0}\right]<0, \int|x|^{2}\left|u_{0}(x)\right|^{2} d x<\infty$ blows up.
- How do these solutions blow up?

NLS Blowup Dynamic?

Question: What are the dynamical properties of $N L S_{3}^{-}\left(\mathbb{R}^{2}\right)$ blowup solutions?
maximality criteria; critical norm behavior asymptotic compactness; profile decompositions conservation structure; virial ideas; parameter modulation

log log BLOWUP REGIME

- Numerical/Persuasive arguments [LPSS] led to:
- Prediction of blowups with $\log \log$ speed:

$$
\|u(t)\|_{H^{1}} \sim \sqrt{\frac{\log \left|\log \left(T^{*}-t\right)\right|}{T^{*}-t}} \gg \frac{1}{\sqrt{T^{*}-t}} .
$$

■ Prediction that such blowups are generic/stable/observed.

- Identification of certain mechanisms forecasting log log.
- $N L S_{5}^{-}\left(\mathbb{R}^{1}\right)$ has log log blowup solutions. [P]

■ Detailed Description of log log regime in series by [MR].

Qualitative Aspects of log log Regime

- Robust, open set in H^{1}.
- Asymptotically nonlinear with subtle interaction.
- Delicate phenomona in critical space (L^{2} instability?).
- Conjectured quantization properties?

■ Boundary of log log regime in phase space?

Theorem (Merle-RaphaËl): log log Regime

Consider any initial data $u_{0} \in H^{1}$ such that
■ Small Excess Mass: $\|Q\|_{L^{2}}<\left\|u_{0}\right\|_{L^{2}}<\|Q\|_{L^{2}}+\alpha^{*}$.
■ Negative Total Energy: $H\left[u_{0}\right]<0$.
The associated solution $u_{0} \longmapsto u$ explodes with $T^{*}<\infty$ and

- $\exists\left(\lambda(t), x(t), \gamma(t) \in \mathbb{R}_{+}^{*} \times \mathbb{R}^{2} \times \mathbb{R}\right)$ and $u^{*} \in L^{2}$ s.t.

$$
u(t)-\frac{1}{\lambda(t)} Q\left(\frac{x-x(t)}{\lambda(t)}\right) e^{i \gamma(t)} \rightarrow u^{*} \text { in } L^{2}
$$

- $x(t) \rightarrow x\left(T^{*}\right)$ in \mathbb{R}^{2} as $t \nearrow T^{*}$.
- Sharp $\log \log$ speed law holds:

$$
\lambda(t) \sqrt{\frac{\log \left|\log \left(T^{*}-t\right)\right|}{T^{*}-t}} \rightarrow \sqrt{2 \pi} \text { as } t \nearrow T^{*}
$$

■ $u^{*} \notin H^{s}$ for $s>0 ; u^{*} \notin L^{p}$ for $p>2$. (Rough residual)

Theorem (Raphä̈l): H^{1} Stability of $\log \log$

■ Fact: $\mathcal{P C}+\log \log$ for $E<0 \Longrightarrow \exists \log \log$ with $E>0$.

- H^{1}-Stability Theorem: The set of data with $u_{0} \in H^{1}$ with small excess mass blowing up in log log regime is open in H^{1}.
- Develops bootstrap approach to constructing log log.

■ Further Bootstrap/stability applications [PR: Ω], [R:Ring].

Theorem (C-RAPHAËL): H^{s} Stability of log log

- Let $u_{0} \in H^{1}$ evolve into the log log regime.

■ $\forall s>0 \exists \epsilon=\epsilon\left(s, u_{0}\right)>0$ such that $\forall v_{0} \in H^{s}\left(\mathbb{R}^{2}\right)$

$$
\left\|u_{0}-v_{0}\right\|_{H^{s}}<\epsilon,
$$

$N L S_{3}^{-}\left(\mathbb{R}^{2}\right)$ solution $v_{0} \longmapsto v$ blows up in log log regime.
Thus, the $H^{1} \log \log$ blowup solutions constructed by $[\mathrm{MR}]$ are contained in an open superset of $\log \log$ blowups in $H^{s}, \forall s>0$.

Remarks about the H^{s} stability of log log

- The theorem implies existence of rough blowup solutions.

■ Proof does not apply to perturbations of $H^{s} \log \log$ blowups.

- The condition $s>0$ is expected to be optimal.

Small L^{2} (but huge H^{s}) perturbation destroys rough residual mass ($u^{*} \notin H^{s}, \forall s>0$) leading to fast $\frac{1}{t}$-blowup? (Zwiers)

- Strategy of proof
- Isolate roles of energy conservation in [MR] analysis.
- Relax to almost conserved modified energy via l-method.
- Big Bootstrap.

■ Other Applications of Dynamical Rescaled I-method?

Energy Conservation in [MR] analysis

- Control of ϵ :

$$
\int|\nabla \epsilon|^{2} d x \lesssim e^{-\frac{c}{b}}+\lambda^{2}|E(u)| .
$$

- Energy conservation and $\lambda \searrow 0 \Longrightarrow$

$$
\int|\nabla \epsilon|^{2} d x \lesssim e^{-\frac{c}{b}}+\lambda^{2}|E(u)|
$$

- We can maintain same conclusion if $|E(u)| \ll \frac{1}{\lambda^{2}}$. (Observation in [CRSW]; Led to [C-Raphaël] collaboration)
- Systematically replace $E(u)$ by $E\left(I_{N} u\right)$.

3. Weak Turbulence

[CKSTT: joint work with Keel, Staffilani, Takaoka and Tao] We consider the defocusing initial value problem:

$$
\left\{\begin{array}{c}
\left(-i \partial_{t}+\Delta\right) u=|u|^{2} u \tag{2}\\
u(0, x)=u_{0}(x), \text { where } x \in \mathbb{T}^{2} .
\end{array}\right.
$$

Smooth solution $u(x, t)$ exists globally and

$$
\begin{aligned}
& \text { Mass }=M(u)=\|u(t)\|^{2}=M(0) \\
& \text { Energy }=E(u)=\int \frac{1}{2}|\nabla u(t, x)|^{2}+\frac{1}{4}|u(x, t)|^{4} d x=E(0)
\end{aligned}
$$

We want to understand the shape of $|\hat{u}(t, \xi)|$. The conservation laws impose L^{2}-moment constraints on this object.

Notion of Weak Turbulence

DEFINITION

Weak turbulence is the phenomenon of global-in-time defocusing solutions shifting their mass toward increasingly high frequencies.

This shift is also called a forward cascade.

- A way to measure weak turbulence is to study

$$
\|u(t)\|_{\dot{H}^{s}}^{2}=\int|\hat{u}(t, \xi)|^{2}|\xi|^{2 s} d \xi
$$

and prove that it grows for large times t.

- Turbulence is incompatible with scattering and integrability.
- Finite time blowup behavior is not weak turbulence.

Incompatible with Scattering \& Integrability

■ Scattering: \forall global solution $u(t, x) \in H^{s} \exists u_{0}^{+} \in H^{s}$ such that,

$$
\lim _{t \rightarrow+\infty}\left\|u(t, x)-e^{i t \Delta} u_{0}^{+}(x)\right\|_{H^{s}}=0
$$

Note: $\left\|e^{i t \Delta} u_{0}^{+}\right\|_{H^{s}}=\left\|u_{0}^{+}\right\|_{H^{s}} \Longrightarrow\|u(t)\|_{H^{s}}$ is bounded. Proofs rely on Morawetz-type (global dispersive) estimate.

- Complete Integrability: The 1d equation

$$
\left(i \partial_{t}+\partial_{x}^{2}\right) u=|u|^{2} u
$$

has infinitely many conservation laws. Combining them in the right way one gets that $\|u(t)\|_{H^{s}} \leq C_{s}$ for all times.

DISTINCTIONS FROM FINITE TIME BLOWUP SETTING

- Glassey's virial identity shows corresponding focusing problem

$$
\left\{\begin{array}{c}
\left(-i \partial_{t}+\Delta\right) u=-|u|^{2} u \tag{NLS}\\
u(0, x)=u_{0}(x), \text { where } \quad x \in \mathbb{R}^{2}
\end{array}\right.
$$

has many finite time blowup solutions.

- The associated energy has a changed sign:

$$
E(u)=\int \frac{1}{2}|\nabla u(t, x)|^{2}-\frac{1}{4}|u(x, t)|^{4} d x
$$

- Blowup solutions explode in H^{1} in finite time.

Past Results (Defocusing case)

- Bourgain: (late 90's)

For the periodic IVP $N L S\left(\mathbb{T}^{2}\right)$ one can prove

$$
\|u(t)\|_{H^{s}}^{2} \leq C_{s}|t|^{4 s}
$$

The idea is to improve the local estimate for $t \in[-1,1]$

$$
\begin{gathered}
\|u(t)\|_{H^{s}} \leq C_{s}\|u(0)\|_{H^{s}}, \quad \text { for } C_{s} \gg 1 \\
\left(\Longrightarrow\|u(t)\|_{H^{s}} \lesssim C^{|t|} \text { upper bounds }\right) \text { to obtain } \\
\|u(t)\|_{H^{s}} \leq 1\|u(0)\|_{H^{s}}+C_{s}\|u(0)\|_{H^{s}}^{1-\delta} \text { for } C_{s} \gg 1
\end{gathered}
$$

for some $\delta>0$. This iterates to give

$$
\|u(t)\|_{H^{s}} \leq C_{s}|t|^{1 / \delta}
$$

■ Improvements: Staffilani, Colliander-Delort-Kenig-Staffilani.

Past Results

- Bourgain: (late 90's)

Given $m, s \gg 1$ there exist $\tilde{\Delta}$ and a global solution $u(x, t)$ to the modified wave equation

$$
\left(\partial_{t t}-\tilde{\Delta}\right) u=u^{p}
$$

such that $\|u(t)\|_{H^{s}} \sim|t|^{m}$.

- Physics: Weak turbulence theory: Hasselmann \& Zakharov. Numerics ($\mathrm{d}=1$): Majda-McLaughlin-Tabak; Zakharov et. al.

Conjecture

Solutions to dispersive equations on \mathbb{R}^{d} DO NOT exhibit weak turbulence. \exists solutions to dispersive equations on \mathbb{T}^{d} that exhibit weak turbulence. In particular for $\operatorname{NLS}\left(\mathbb{T}^{2}\right)$ there exists $u(x, t)$ s. t.

$$
\|u(t)\|_{H^{s}}^{2} \rightarrow \infty \text { as } t \rightarrow \infty
$$

Main Result

We consider the defocusing initial value problem:

$$
\left\{\begin{array}{c}
\left(-i \partial_{t}+\Delta\right) u=|u|^{2} u \tag{2}\\
u(0, x)=u_{0}(x), \text { where } x \in \mathbb{T}^{2}, \mathbb{R}^{2}
\end{array}\right.
$$

Theorem (Colliander-Keel-Staffilani-TAKaoka-Tao)

Let $s>1, k \gg 1$ and $0<\sigma<1$ be given. Then there exists a global smooth solution $u(x, t)$ and $T>0$ such that

$$
\left\|u_{0}\right\|_{H^{s}} \leq \sigma
$$

and

$$
\|u(t)\|_{H^{s}}^{2} \geq K
$$

2. Overview of Proof

Arnold Diffusion

Preliminary Reductions

- Gauge Freedom:

If u solves NLS then $v(t, x)=e^{-i 2 G t} u(t, x)$ solves

$$
\left\{\begin{array}{c}
i \partial_{t} v+\Delta v=\left(2 G+|v|^{2}\right) v \tag{G}\\
v(0, x)=v_{0}(x), \quad x \in \mathbb{T}^{2} .
\end{array}\right.
$$

■ Fourier Ansatz: Recast the dynamics in Fourier coefficients,

$$
v(t, x)=\sum_{n \in \mathbb{Z}^{2}} a_{n}(t) e^{i\left(n \cdot x+|n|^{2} t\right)}
$$

$$
\left\{\begin{array}{cc}
i \partial_{t} a_{n}=2 G a_{n}+ & \sum_{\substack{n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2}}} a_{n_{1}} \bar{a}_{n_{2}} a_{n_{3}} e^{i \omega_{4} t} \\
& \\
n_{1}-n_{2}+n_{3}=n & \\
a_{n}(0)=\widehat{u_{0}}(n), & n \in \mathbb{Z}^{2} . \\
& \left(\mathcal{F} N L S_{G}\right)
\end{array}\right.
$$

Preliminary Reductions

- Diagonal decomposition of sum:

$$
\begin{array}{ccc}
\sum & = & \sum \\
n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\
n_{1}-n_{2}+n_{3}=n & & n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\
n_{1}-n_{2}+n_{3}=n & n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\
& n \neq n_{1}, n_{3} & \\
+ & \sum & n=n_{2}+n_{3}=n \\
& & n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\
& n_{1}-n_{2}+n_{3}=n & n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\
& n=n_{1}-n_{2}+n_{3}=n \\
& & n=n_{1}=n_{3}
\end{array}
$$

- Choice of G :

$$
G=-\left\|u_{0}\right\|_{L^{2}}^{2} .
$$

Resonant truncation

- NLS dynamic is recast as

$$
-i \partial_{t} a_{n}=-a_{n}\left|a_{n}\right|^{2}+\sum_{n_{1}, n_{2}, n_{3} \in \Gamma(n)} a_{n_{1}} \bar{a}_{n_{2}} a_{n_{3}} e^{i \omega_{4} t} . \quad(\mathcal{F} N L S)
$$

where

$$
\Gamma(n)=\left\{n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2}: n_{1}-n_{2}+n_{3}=n, n_{1} \neq n, n_{3} \neq n\right\} .
$$

$$
\begin{aligned}
\Gamma_{\text {res }}(n) & =\left\{n_{1}, n_{2}, n_{3} \in \Gamma(n): \omega_{4}=0\right\} . \\
& =\left\{\text { Triples }\left(n_{1}, n_{2}, n_{3}\right):\left(n_{1}, n_{2}, n_{3}, n_{4}\right) \text { is a rectangle }\right\}
\end{aligned}
$$

- The resonant truncation of $\mathcal{F} N L S$ is

$$
-i \partial_{t} b_{n}=-b_{n}\left|b_{n}\right|^{2}+\sum_{n_{1}, n_{2}, n_{3} \in \Gamma_{r e s}(n)} b_{n_{1}} \bar{b}_{n_{2}} b_{n_{3}} . \quad(R \mathcal{F} N L S)
$$

Finite dimensional Resonant truncation

- A set $\Lambda \subset \mathbb{Z}^{2}$ is closed under resonant interactions if

$$
n_{1}, n_{2}, n_{3} \in \Gamma_{\text {res }}(n), n_{1}, n_{2}, n_{3} \in \Lambda \Longrightarrow n \in \Lambda .
$$

- A finite dimensional resonant truncation of $\mathcal{F} N L S$ is

$$
-i \partial_{t} b_{n}=-b_{n}\left|b_{n}\right|^{2}+\sum_{n_{1}, n_{2}, n_{3} \in \Gamma_{\text {res }}(n) \cap \Lambda^{3}} b_{n_{1}} \bar{b}_{n_{2}} b_{n_{3}} .\left(R \mathcal{F} N L S_{\Lambda}\right)
$$

- \forall resonant-closed finite $\Lambda \subset \mathbb{Z}^{2} R \mathcal{F} N L S_{\Lambda}$ is an ODE.
- If $\operatorname{spt}\left(a_{n}(0)\right) \subset \Lambda$ then $\mathcal{F} N L S$-evolution $a_{n}(0) \longmapsto a_{n}(t)$ is nicely approximated by $R \mathcal{F} N L S_{\Lambda}-$ ODE $a_{n}(0) \longmapsto b_{n}(t)$.
■ Given ϵ, s, K, build Λ so that $R \mathcal{F} N L S_{\Lambda}$ has weak turbulence.

Imagine we build a resonant $\Lambda \subset \mathbb{Z}^{2}$ SUCh that...

Imagine a resonant-closed $\Lambda=\Lambda_{1} \cup \cdots \cup \Lambda_{M}$ with properties.
Define a nuclear family to be a rectangle ($n_{1}, n_{2}, n_{3}, n_{4}$) where the frequencies n_{1}, n_{3} (the 'parents') live in generation Λ_{j} and n_{2}, n_{4} ('children') live in generation Λ_{j+1}.

■ $\forall 1 \leq j<M$ and $\forall n_{1} \in \Lambda_{j} \exists$ unique nuclear family such that $n_{1}, n_{3} \in \Lambda_{j}$ are parents and $n_{2}, n_{4} \in \Lambda_{j+1}$ are children.

- $\forall 1 \leq j<M$ and $\forall n_{2} \in \Lambda_{j+1} \exists$ unique nuclear family such that $n_{2}, n_{4} \in \Lambda_{j+1}$ are children and $n_{1}, n_{3} \in \Lambda_{j}$ are parents.
- The sibling of a frequency is never its spouse.
- Besides nuclear families, Λ contains no other rectangles.

■ The function $n \longmapsto a_{n}(0)$ is constant on each generation Λ_{j}.

Cartoon Construction of Λ

The toy model ODE

Assume we can construct such a $\Lambda=\Lambda_{1} \cup \cdots \cup \Lambda_{M}$. The properties imply $R \mathcal{F} N L S_{\Lambda}$ simplifies to the toy model ODE

$$
\partial_{t} b_{j}(t)=-i\left|b_{j}(t)\right|^{2} b_{j}(t)+2 i \bar{b}_{j}(t)\left[b_{j}(t)^{2}-b_{j+1}(t)^{2}\right]
$$

$$
\begin{aligned}
L^{2} & \sim \sum_{j}\left|b_{j}(t)\right|^{2}=\sum_{j}\left|b_{j}(0)\right|^{2} \\
H^{s} & \sim \sum_{j}\left|b_{j}(t)\right|^{2}\left(\sum_{n \in \Lambda_{j}}|n|^{2 s}\right) .
\end{aligned}
$$

We also want Λ to satisfy Wide Diaspora Property

$$
\sum_{n \in \Lambda_{M}}|n|^{2 s} \gg \sum_{n \in \Lambda_{1}}|n|^{2 s}
$$

Properties of the Toy Model ODE

- Solution of the Toy Model is a vector flow $t \rightarrow b(t) \in \mathbb{C}^{M}$

$$
b(t)=\left(b_{1}(t), \ldots, b_{M}(t)\right) \in \mathbb{C}^{M} ; b_{j}=0 \forall j \leq 0, j \geq M+1
$$

- Local Well-Posedness; Let $S(t)$ denote associated flowmap.
- Mass Conservation: $|b(t)|^{2}=|b(0)|^{2} \Longrightarrow$
- Toy Model ODE is Globally Well-Posed.
- Invariance of the sphere: $\Sigma=\left\{x \in \mathbb{C}^{M}:|x|^{2}=1\right\}$

$$
S(t) \Sigma=\Sigma
$$

Properties of the Toy Model ODE

- Support Conservation:

$$
\begin{aligned}
\partial_{t}\left|b_{j}\right|^{2} & =2 \operatorname{Re}\left(\overline{b_{j}} \partial_{t} b_{j}\right) \\
& =4 \operatorname{Re}\left(i{\overline{b_{j}}}^{2}\left[b_{j-1}^{2}-b_{j+1}^{2}\right]\right) \\
& \leq C\left|b_{j}\right|^{2}
\end{aligned}
$$

Thus, if $b_{j}(0)=0$ then $b_{j}(t)=0$ for all t.

- Invariance of coordinate tori:

$$
\mathbb{T}_{j}=\left\{\left(b_{1}, \ldots, b_{M} \in \Sigma\right):\left|b_{j}\right|=1, b_{k}=0 \forall k \neq j\right\}
$$

Mass Conservation $\Longrightarrow S(T) \mathbb{T}_{j}=\mathbb{T}_{j}$.
Dynamics on the invariant tori is easy:

$$
b_{j}(t)=e^{-i(t+\theta)} ; b_{k}(t)=0 \forall k \neq j .
$$

Explicit Slider Solution

Consider $M=2$. Then $O D E$ is of the form

$$
\begin{aligned}
\partial_{t} b_{1} & =-i\left|b_{1}\right|^{2} b_{1}+2 i \overline{b_{1}} b_{2}^{2} \\
\partial_{t} b_{2} & =-i\left|b_{2}\right|^{2} b_{2}+2 i \overline{b_{2}} b_{1}^{2}
\end{aligned}
$$

Let $\omega=e^{2 i \pi / 3}$ (cube root of unity). This ODE has explicit solution

$$
b_{1}(t)=\frac{e^{-i t}}{\sqrt{1+e^{2 \sqrt{3}} t}} \omega, b_{2}(t)=\frac{e^{-i t}}{\sqrt{1+e^{-2 \sqrt{3} t}}} \omega^{2} .
$$

- As $t \rightarrow-\infty,\left(b_{1}(t), b_{2}(t)\right) \rightarrow\left(e^{-i t} \omega, 0\right) \in \mathbb{T}_{1}$.

■ As $t \rightarrow+\infty,\left(b_{1}(t), b_{2}(t)\right) \rightarrow\left(0, e^{-i t} \omega^{2}\right) \in \mathbb{T}_{2}$.

Explicit Slider Solution

Two Explicit Solution Families

Concatenated Sliders: Idea of Proof

Arnold Diffusion for Toy Model Statement

Theorem

Let $M \geq 6$. Given $\epsilon>0$ there exist x_{3} within ϵ of \mathbb{T}_{3} and x_{M-2} within ϵ of \mathbb{T}_{M-2} and a time t such that

$$
S(t) x_{3}=x_{M-2} .
$$

REMARK

$S(t) x_{3}$ is a solution of total mass 1 arbitrarily concentrated at mode $j=3$ at some time t_{0} and then arbitrarily concentrated at mode $j=M-2$ at later time t.

Construction of Resonant Set \wedge

The task is to construct a finite set $\Lambda \subset \mathbb{Z}^{2}$ satisfying the properties that led to the Toy Model ODE. We do this in two steps:
1 Build combinatorial model of Λ called $\Sigma \subset \mathbb{C}^{M-1}$.
2 Build a map $f: \mathbb{C}^{M-1} \rightarrow \mathbb{R}^{2}$ which gives

$$
f(\Sigma)=\Lambda \subset \mathbb{Z}^{2}
$$

satisfying the properties.

Construction of Combinatorial Model Σ

- Standard Unit Square: $S=\{0,1,1+i, i\} \subset C, S=S_{1} \cup S_{2}$ where $S_{1}=\{1, i\}$ and $S_{2}=\{0,1+i\}$

■ $\mathbb{Z}^{2} \equiv \mathbb{Z}[i] ;\left(n_{1}, n_{2}\right) \equiv n_{1}+i n_{2}$

Construction of Combinatorial Model Σ

- We define

$$
\Sigma_{j}=\left\{\left(z_{1}, z_{2}, \ldots, z_{M-1}\right): z_{1}, \ldots, z_{j-1} \in S_{2}, z_{j}, \ldots, z_{M-1} \in S_{1}\right\}
$$

with the properties

- $\Sigma_{j}=S_{2}^{j-1} \times S_{1}^{M-j} \subset \mathbb{C}^{M-1}$
- $\left|\Sigma_{j}\right|=2^{M-1}$

■ Next, we define

$$
\Sigma=\Sigma_{1} \cup \cdots \cup \Sigma_{M}
$$

- $|\Sigma|=M 2^{M-1}$.

■ Σ_{j} is called a generation.

Combinatorial Nuclear Family

- Consider the set $F=\left\{F_{0}, F_{1}, F_{1+i}, F_{i}\right\} \subset \Sigma$ defined by

$$
F_{w}=\left(z_{1}, \ldots, z_{j-1}, w, z_{j+1}, \ldots, z_{n}\right)
$$

with $z_{1}, \ldots, z_{j-1} \in S_{2}$ and $z_{j+1}, \ldots, z_{n} \in S_{2}$ and $w \in S$.

- The elements $F_{0}, F_{1+i} \in \Sigma_{j+1}$ are called children.
- The elements F_{1}, F_{i} are called parents.
- The four element set F is called a combinatorial nuclear family connecting the generations Σ_{j} and Σ_{j+1}.
- $\forall j \exists 2^{M-2}$ combinatorial nuclear families connecting generations Σ_{j} and Σ_{j+1}.
- The set Σ satisfies
- Existence and uniqueness of spouse and children (of sibling and parents).
- Sibling is never also a spouse.

Construction of the Placement Function

We need to map $\Sigma \subset \mathbb{C}^{M-1}$ into the frequency lattice \mathbb{Z}^{2}.
■ We first define $f_{1}: \Sigma_{1} \rightarrow \mathbb{C}$.

- $\forall 1 \leq j \leq M$ and each combinatorial nuclear family F connecting generations Σ_{j} and Σ_{j+1}, we associate an angle $\theta(F) \in \mathbb{R} / 2 \pi \mathbb{Z}$.
- Given f_{1} and the angles of all the families, we define placement functions $f_{j}: \Sigma_{j} \rightarrow \mathbb{C}$ recursively by the rule: Suppose $f_{j}: \Sigma_{j} \rightarrow \mathbb{C}$ has been defined. We define $f_{j+1}: \Sigma_{j+1} \rightarrow \mathbb{C}$:

$$
\begin{aligned}
f_{j+1}\left(F_{1+i}\right) & =\frac{1+e^{i \theta(F)}}{2} f_{j}\left(F_{1}\right)+\frac{1-e^{i \theta(F)}}{2} f_{j}\left(F_{i}\right) \\
f_{j+1}\left(F_{0}\right) & =\frac{1+e^{i \theta(F)}}{2} f_{j}\left(F_{1}\right)-\frac{1-e^{i \theta(F)}}{2} f_{j}\left(F_{i}\right)
\end{aligned}
$$

for all combinatorial nuclear families connecting Σ_{j} to Σ_{j+1}.

Theorem: Good Placement Function

Let $M \geq 2, s>1$, and let N be a sufficiently large integer (depending on M). \exists an initial placement function $f_{1}: \Sigma_{1} \rightarrow \mathbb{C}$ and choices of angles $\theta(F)$ for each nuclear family F (and thus an associated complete placement function $f: \Sigma \rightarrow \mathbb{C}$) with the following properties:

- (Non-degeneracy) The function f is injective.
- (Integrality) We have $f(\Sigma) \subset \mathbb{Z}[i]$.
- (Magnitude) We have $C(M)^{-1} N \leq|f(x)| \leq C(M) N$ for all $x \in \Sigma$.
- (Closure/Faithfulness) If x_{1}, x_{2}, x_{3} are distinct elements of Σ are such that $f\left(x_{1}\right), f\left(x_{2}\right), f\left(x_{3}\right)$ form a right-angled triangle, then x_{1}, x_{2}, x_{3} belong to a combinatorial nuclear family.
- (Wide Diaspora/Norm Explosion) We have

$$
\sum_{n \in f\left(\Sigma_{M}\right)}|n|^{2 s}>\frac{1}{2} 2^{(s-1)(M-1)} \sum_{n \in f\left(\Sigma_{1}\right)}|n|^{2 s}
$$

