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1.The initial value problem NLS−3 (R2)

Cauchy problem for (physical; canonical) focusing NLS :{
(i∂t + ∆)u = −|u|2u

u(0, x) = u0(x).
(NLS−3 (R2))

Dilation Symmetry

Suppose u : [0,T ]t × R2
x → C solves NLS .

∀ λ > 0, define uλ(τ, y) = λ−1u(λ−2τ, λ−1y).

Then uλ : [0, λ2T ]τ × R2
y → C is also a solution of NLS.

NLS−3 (R2) is L2-critical.

Other Symmetries

Phase, space, time translation solution symmetries =⇒
mass, momentum, energy conservation laws.

One solution spawns solution family by symmetry orbit.



Conservation Structure

Global Conserved Quantities

Mass =

∫
Rd

|u(t, x)|2dx .

Momentum = 2=
∫

R2

u(t)∇u(t)dx .

Energy = E [u(t)] =
1

2

∫
R2

|∇u(t)|2dx−1

2
|u(t)|4dx .

Local conservation relations [e.g. ∂t |u|2 +∇=(u∇u) = 0]

Mass & Momentum localizations =⇒ virial; Morawetz.
Energy (frequency) localization =⇒ AC laws; I -method.



2. LWP & Maximal-in-time Implications

Strichartz Estimates, Duhamel, Contraction

Optimal (Sobolev Hs) regularity: s ≥ sc = 0 [CW], [KPV].

Maximality/Blowup Criteria: If T ∗ <∞
Strichartz Divergence, e.g.

‖u‖L4([0,t)×R2) diverges as t ↗ T ∗.

Subcritical Scaling Lower Bound,

‖u(t)‖Hs (R2) &
1

(T ∗ − t)s/2
, 0 < s.

What blowup speeds are realized by NLS evolutions?

Small Data Scattering Theory: ∃ γ0 > 0 such that

‖u0‖L2 < γ0 =⇒ u(t) global, asymptotically linear.



Strichartz Refinements

Advances around Fourier Restriction Phenomena led to...

LWP for spaces of initial data larger than L2 [MVV], [B]. . . .

“Small” data scattering valid for certain large L2 data.

Further Implications of T ∗ <∞:

Critical Norm (Mass) Concentration (along time sequence) [B].
Asymptotic Compactness Modulo Symmetries [MV].

Links between rates of blowup quantities [B], [C-Roudenko].



Qualitative Aspects of Small Data Theory

Robust, open set in L2.

Asymptotically linear behavior.

Smallness brutally controls solution via fixed point argument.

What is the boundary of small data scattering portion of
phase space L2?



3. Known Maximal-in-Time Solution Scenarios

1 Soliton solutions exist: u(t, x) = e itR(x)

Q(x) ground state; also excited states.
non-scattering; Strichartz S0 norms diverge global-in-time.
a priori H1 control for H1 data s.t. ‖u0‖L2 < ‖Q‖L2 . [W]

2 {radial}∩L2 3 u0 7−→ u scatters if ‖u0‖L2 < ‖Q‖L2 . [KTV]?

3 PC transformation + solitons =⇒ explicit (fast) 1
t -blowups.

PC is a Stricharz S0 isometry.
There exists an enlarged class of 1

t -blowups [BW]. (Stability?)

4 Virial Blowup Solutions

Obstructive argument
Qualitative properties?



Ground State

H1-GWP mass threshold for NLS−3 (R2) [W]:

‖u0‖L2 < ‖Q‖L2 =⇒ H1 3 u0 7−→ u,T ∗ =∞,

based on optimal Gagliardo-Nirenberg inequality on R2

‖u‖4L4 ≤

[
2

‖Q‖2
L2

]
‖u‖2L2‖∇u‖2L2 .

Q is the ground state solution to −Q + ∆Q = −Q3.

The ground state soliton solution to NLS−3 (R2) is

u(t, x) = e itQ(x).



Pseudoconformal Symmetry

Pseudoconformal transformation:

PC[u](τ, y) = v(τ, y) =
1

|τ |d/2
e

i|y|2
4τ u

(
−1

τ
,
y

τ

)
,

PC is L2-critical NLS solution symmetry:
Suppose 0 < t1 < t2 <∞. If

u : [t1, t2]× R2
x → C solves NLS±

1+ 4
d

(Rd)

then
PC[u] = v : [−t−1

1 ,−t−1
2 ]τ × R2

y → C
solves

i∂τv + ∆yv = ±|v |4/dv .

PC is an L2-Strichartz isometry:
If 2

q + d
r = d

2 then

‖PC[u]‖Lq
τLr

y ([−t−1
1 ,−t−1

2 ]×Rd ) = ‖u‖Lq
t L

r
x ([t1,t2]×Rd ).



Explicit Blowup Solutions

The pseudoconformal image of ground state soliton e itQ(x),

S(t, x) =
1

t
Q
(x

t

)
e−i |x|

2

4t
+ i

t ,

is an explicit blowup solution.

S has minimal mass:

‖S(−1)‖L2
x

= ‖Q‖L2 .

All mass in S is conically concentrated into a point.

Minimal mass H1 blowup solution characterization:
u0 ∈ H1, ‖u0‖L2 = ‖Q‖L2 , T ∗(u0) <∞ implies that u = S up
to an explicit solution symmetry. [M]



Many non-explicit Blowup Solutions

Suppose a : R2 → R. Form virial weight

Va =

∫
R2

a(x)|u|2(t, x)dx

and

∂tVa = Ma(t) =

∫
R2

∇a · 2=(φ∇φ)dx .

Conservation identities lead to the generalized virial identity

∂2
t Va = ∂tMa =

∫
R2

(−∆∆a)|φ|2 + 4ajk<(φjφk)− ajj |u|4dx .

Choosing a(x) = |x |2 produces the variance identity

∂2
t

∫
R2

|x |2|u(t, x)|2dx = 16H[u0].

H[u0] < 0,
∫
|x |2|u0(x)|2dx <∞ blows up.

How do these solutions blow up?



NLS Blowup Dynamic?

Question: What are the dynamical properties of NLS−3 (R2)
blowup solutions?

maximality criteria; critical norm behavior
asymptotic compactness; profile decompositions
conservation structure; virial ideas; parameter modulation



4. log log blowup regime

Numerical/Persuasive arguments [LPSS] led to:

Prediction of blowups with log log speed:

‖u(t)‖H1 ∼
√

log | log(T ∗ − t)|
T ∗ − t

� 1√
T ∗ − t

.

Prediction that such blowups are generic/stable/observed.
Identification of certain mechanisms forecasting log log.

NLS−5 (R1) has log log blowup solutions. [P]

Detailed Description of log log regime in series by [MR].



Qualitative Aspects of log log regime

Robust, open set in H1.

Asymptotically nonlinear with subtle interaction.

Delicate phenomona in critical space (L2 instability?).

Conjectured quantization properties?

Boundary of log log regime in phase space?



Theorem (Merle-Raphaël): log log Regime

Consider any initial data u0 ∈ H1 such that

Small Excess Mass: ‖Q‖L2 < ‖u0‖L2 < ‖Q‖L2 + α∗.

Negative Total Energy: H[u0] < 0.

The associated solution u0 7−→ u explodes with T ∗ <∞ and

∃ (λ(t), x(t), γ(t) ∈ R∗
+ × R2 × R) and u∗ ∈ L2 s.t.

u(t)− 1

λ(t)
Q

(
x − x(t)

λ(t)

)
e iγ(t) → u∗ in L2.

x(t)→ x(T ∗) in R2 as t ↗ T ∗.

Sharp log log speed law holds:

λ(t)

√
log | log(T ∗ − t)|

T ∗ − t
→
√

2π as t ↗ T ∗.

u∗ /∈ Hs for s > 0; u∗ /∈ Lp for p > 2. (Rough residual)



Theorem (Raphaël): H1 Stability of log log

Fact: PC + log log for E < 0 =⇒ ∃ log log with E > 0.

H1-Stability Theorem: The set of data with u0 ∈ H1 with
small excess mass blowing up in log log regime is open in H1.

Develops bootstrap approach to constructing log log.

Further Bootstrap/stability applications [PR:Ω], [R:Ring].



Theorem (C-Raphaël): H s Stability of log log

Let u0 ∈ H1 evolve into the log log regime.

∀ s > 0 ∃ ε = ε(s, u0) > 0 such that ∀ v0 ∈ Hs(R2)

‖u0 − v0‖Hs < ε,

NLS−3 (R2) solution v0 7−→ v blows up in log log regime.

Thus, the H1 log log blowup solutions constructed by [MR] are
contained in an open superset of log log blowups in Hs , ∀ s > 0.



Remarks about the H s stability of log log

The theorem implies existence of rough blowup solutions.

Proof does not apply to perturbations of Hs log log blowups.

The condition s > 0 is expected to be optimal.
Small L2 (but huge Hs) perturbation destroys rough residual
mass (u∗ /∈ Hs , ∀ s > 0) leading to fast 1

t -blowup? (Zwiers)

Strategy of proof

Isolate roles of energy conservation in [MR] analysis.
Relax to almost conserved modified energy via I -method.
Big Bootstrap.

Other Applications of Dynamical Rescaled I -method?



Aspects of the [MR] Analysis

Geometrical description of log log blowup solutions.

Various profiles Q,Qb, Q̃b, Q̃b(t) + ζb(t). (Obscure Notation)
Modulation parameters related to solution symmetries.
Three zones: blowup core, radiation, distant/decoupled.

Virial/Coercivity constraints; Orthogonality conditions.

Signals of log log blowup speed.

A key role played by Energy conservation.



Geometrical Description

Near T ∗, log log blowups satisfy geometrical ansatz

u(t, x) =
1

λ(t)
(Qb(t) + ε)

(
x − x(t)

λ(t)

)
e iγ(t).

Parameters (λ(t), x(t), γ(t), b(t)) solve ODEs forced by F (ε).

ODEs emerge from geometrical ansatz, taking inner products
with equation, imposing orthogonality conditions.
(These choices change across the [MR] works.)



Signals of the log log blowup

T ∗ <∞, ds
dt = 1

λ2 . (s is a rescaled time)

Core size λ linked with deformation b:

λ(s) ∼ e−e
C 1

b(s)
, − λs

λ
∼ b.

Formal manipulations (eliminating b) lead to log log law for λ.

Control of ε: ∫
|∇ε|2dx . e−

C
b + λ2|E (u)|.



Energy Conservation in [MR] analysis

Control of ε: ∫
|∇ε|2dx . e−

C
b + λ2|E (u)|.

Energy conservation and λ↘ 0 =⇒∫
|∇ε|2dx . e−

C
b + λ2|E (u)|.

We can maintain same conclusion if |E (u)| � 1
λ2 .

(Observation in [CRSW]; Led to [C-Raphaël] collaboration)



5. Dynamical Rescaled I -method bootstrap
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