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1.THE INITIAL VALUE PROBLEM NLS; (R?)

Cauchy problem for (physical; canonical) focusing NLS :

{(i@t + A)u=—|ufu (NLS; (R?))

u(0, x) = up(x).
Dilation Symmetry

= Suppose v : [0, T]; x R2 — C solves NLS.
m VA >0, define u’(7,y) = A u(A 727, A7 Ly).
m Then v* : [0, A2T]; x R2 — C is also a solution of NLS.
m NLS; (R?) is [2-critical.
Other Symmetries

m Phase, , time translation solution symmetries —>
mass, , energy conservation laws.

m One solution spawns solution family by symmetry orbit.



CONSERVATION STRUCTURE

m Global Conserved Quantities

Mass:/ |lu(t, x)|?dx.

Rd

Momentum = 2%/ u(t)Vu(t)dx.
R2

Energy = E[u(t)] = ;//?2 |Vu(t)]2dx—%]u(t)|4dx.

m Local conservation relations [e.g. O:|u|? + V(aVu) = 0]

m Mass & Momentum localizations = virial; Morawetz.
m Energy (frequency) localization = AC laws; /-method.



2. LWP & MAXIMAL-IN-TIME IMPLICATIONS

Strichartz Estimates, Duhamel, Contraction

m Optimal (Sobolev H?) regularity: s > s. =0 [CW], [KPV].
m Maximality/Blowup Criteria: If T* < oo
m Strichartz Divergence, e.g.

llullL+(jo,e)xr2) diverges as t / T*.

m Subcritical Scaling Lower Bound,

1

[u(®) ]| 1=re) 2 (T — 07 0<s.

m What blowup speeds are realized by NLS evolutions?
m Small Data Scattering Theory: 3 79 > 0 such that

lluol| 2 < vo = u(t) global, asymptotically linear.



STRICHARTZ REFINEMENTS

Advances around Fourier Restriction Phenomena led to...

m LWP for spaces of initial data larger than L2 [MVV], [B]. ...

m “Small” data scattering valid for certain large L? data.
m Further Implications of T* < oo:

m Critical Norm (Mass) Concentration (along time sequence) [B].
m Asymptotic Compactness Modulo Symmetries [MV].

m Links between rates of blowup quantities [B], [C-Roudenko].



QUALITATIVE ASPECTS OF SMALL DATA THEORY

Robust, open set in L.

Asymptotically linear behavior.
m Smallness brutally controls solution via fixed point argument.

m What is the boundary of small data scattering portion of
phase space [??



3. KNOWN MAXIMAL-IN-TIME SOLUTION SCENARIOS

Soliton solutions exist: u(t,x) = e R(x)
m Q(x) ground state; also excited states.
m non-scattering; Strichartz S° norms diverge global-in-time.
m a priori H! control for H! data s.t. ||uol/;2 < || Q] 2. [W]

{radial}NL? > ug — u scatters if ||up|/;2 < || Q| 2. [KTV]?

PC transformation + solitons = explicit (fast) 1-blowups.
m PC is a Stricharz SO isometry.
= There exists an enlarged class of 1-blowups [BW]. (Stability?)

Virial Blowup Solutions

m Obstructive argument
m Qualitative properties?



(GROUND STATE

m H'-GWP mass threshold for NLS; (R2) [W]:
lwolliz < Qe = H' 3 wo — u, T" = o0,
based on optimal Gagliardo-Nirenberg inequality on R?

2
lullfs < [HQHQI lullZ= 1V ulf2.
12

m Q is the ground state solution to —Q + AQ = —Q°3.
m The ground state soliton solution to NLS; (R?) is

u(t,x) = e Q(x).



PSEUDOCONFORMAL SYMMETRY

m Pseudoconformal transformation:

1 iw? 1y
PClu)(T,y) = v(T,y) = WT/ze i u <—T, 7_) )

m PC is L?-critical NLS solution symmetry:
Suppose 0 < t; < tp < c0. If

u: [t 2] x R2 — C solves NLSleJr (RY)

4
d

then
PClu] = v : [-t; 1, —t; Y], ¥ Rf, —C

solves
i0rv+ Ay = +|v[*9y.

m PC is an L2-Strichartz isometry:
If % + % = g then

[PCLull LIl ([~ Yty xRY) = | U”L‘jL;([tl,tQ]de)'



ExprLicIT BLOWUP SOLUTIONS

m The pseudoconformal image of ground state soliton eitQ(x),
1 o /x\ 2.
5({'7)() = EQ (?> e "7 +t,

is an explicit blowup solution.

m S has minimal mass:
[1S(=Dlz = 1Rl 12-

All mass in S is conically concentrated into a point.

m Minimal mass H! blowup solution characterization:
up € HY, |luoll 2 = | @Il 2, T*(uo) < oo implies that u= S up
to an explicit solution symmetry. [M]



MANY NON-EXPLICIT BLOWUP SOLUTIONS

m Suppose a: R? — R. Form virial weight

= alx U2 X)dax
Vo= [ abaluf(e.0d

and
0:Va = My(t) = [ Va 23(pVe)dx.
]R2

Conservation identities lead to the generalized virial identity

OV, = O:M, = /2(_AAa)\¢\2 + 4apR(pjok) — ajj|ul*dx.
R

m Choosing a(x) = |x|? produces the variance identity
af/ IxP|u(t, x)|2dx = 16H[u].
R2

m Hlup] <0, [ |x[?|uo(x)|?dx < oo blows up.
m How do these solutions blow up?



NLS Browupr DyNAMIC?

Question: What are the dynamical properties of NLS; (R?)
blowup solutions?

maximality criteria; critical norm behavior
asymptotic compactness; profile decompositions
conservation structure; virial ideas; parameter modulation



4. loglog BLOWUP REGIME

m Numerical /Persuasive arguments [LPSS] led to:
m Prediction of blowups with loglog speed:

log | log(T* — t)] 1
t ~ .
[[u(t) ]| \/ e Vi

m Prediction that such blowups are generic/stable/observed.
m |dentification of certain mechanisms forecasting log log.

m NLS; (R') has log log blowup solutions. [P]
m Detailed Description of loglog regime in series by [MR].



QUALITATIVE ASPECTS OF loglog REGIME

Robust, open set in H*.

Asymptotically nonlinear with subtle interaction.

Delicate phenomona in critical space (L? instability?).

Conjectured quantization properties?

Boundary of log log regime in phase space?



THEOREM (MERLE-RAPHAEL): loglog REGIME

Consider any initial data ug € H* such that
m Small Excess Mass: ||Q|2 < ||uol| 2 < || Q]2 + .
m Negative Total Energy: H[up] < 0.

The associated solution ug — u explodes with T* < oo and
m 3 (A(t), x(t),7(t) € R x R? x R) and u* € L? s.t.

1 X =x(t)\ iyt .
u(t)—/\(t)Q< D) )e ) - v in L2

m x(t) = x(T*)inR%ast / T*
m Sharp loglog speed law holds:

T*—t
m u* ¢ H® for s > 0; u* ¢ LP for p > 2. (Rough residual)

A(t)\/'°g|'°g(T* —O L amast o T



THEOREM (RAPHAEL): H! STABILITY OF log log

m Fact: PC + loglog for E <0 = 3 loglog with E > 0.

H'-Stability Theorem: The set of data with ug € H! with
small excess mass blowing up in loglog regime is open in H*.

Develops bootstrap approach to constructing log log.
Further Bootstrap/stability applications [PR:Q], [R:Ring].



Theorem (C-RAPHAEL): H*® STABILITY OF log log

m Let up € H* evolve into the loglog regime.
mVs>03e=e(s,up) > 0such that V vy € H5(R?)

||UO — V0||Hs < €,
NLS; (R?) solution vo — v blows up in log log regime.

Thus, the H! loglog blowup solutions constructed by [MR] are
contained in an open superset of log log blowups in H®*, V s > 0.



REMARKS ABOUT THE H°® STABILITY OF loglo
g log

m The theorem implies existence of rough blowup solutions.
m Proof does not apply to perturbations of H* loglog blowups.
m The condition s > 0 is expected to be optimal.
Small L2 (but huge HS) perturbation destroys rough residual
mass (u* ¢ H®, V s > 0) leading to fast 1-blowup? (Zwiers)
m Strategy of proof

m Isolate roles of energy conservation in [MR] analysis.
m Relax to almost conserved modified energy via /-method.
m Big Bootstrap.

m Other Applications of Dynamical Rescaled /-method?



AsPECTS OF THE [MR]| ANALYSIS

m Geometrical description of Ioglog blowup solutions.
m Various profiles Q, Qp, Qb7 Qb + Ch(t)- (Obscure Notation)
m Modulation parameters related to solution symmetries.
m Three zones: blowup core, radiation, distant/decoupled.

Virial /Coercivity constraints; Orthogonality conditions.

Signals of log log blowup speed.

A key role played by Energy conservation.



(GEOMETRICAL DESCRIPTION

m Near T*, loglog blowups satisfy geometrical ansatz

1 x—x(t)\
t - N7 ”‘/(t)_
U( aX) )\(t)(Qb(t) + 6) ( )\(t) > €
m Parameters (A(t), x(t),~(t), b(t)) solve ODEs forced by F(e).
m ODEs emerge from geometrical ansatz, taking inner products
with equation, imposing orthogonality conditions.
(These choices change across the [MR] works.)



SIGNALS OF THE loglog BLOWUP

* ds _ 1 : :
m 7" <oo, & =5 (sisarescaled time)

m Core size ) linked with deformation b:

Formal manipulations (eliminating b) lead to log log law for A.

m Control of €:

/|Ve|2dx < e 5+ N2|E(u)].



ENERCY CONSERVATION IN [MR] ANALYSIS

m Control of e:
/|Ve|2dx < e 5+ N2 |E(u)).
m Energy conservation and A \ 0 —

/|Ve|2dx < e 5+ N2|E(u)].

= We can maintain same conclusion if | E(u)| < +5.
(Observation in [CRSW]; Led to [C-Raphaél] collaboration)



5. DYNAMICAL RESCALED [-METHOD BOOTSTRAP
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