Weak Turbulence for a 2D periodic SChRÖDINGER EQUATION

J. Colliander (U. Toronto)
Canada-France Congress 2008

3 June 2008

1 Introduction

2 Overview of Proof

3 Arnold Diffusion for Toy Model

4 Construction of Resonant Set \wedge

1. Introduction

The NLS Initial Value Problem

[Joint work with Keel, Staffilani, Takaoka and Tao]
We consider the defocusing initial value problem:

$$
\left\{\begin{array}{c}
\left(-i \partial_{t}+\Delta\right) u=|u|^{2} u \tag{2}\\
u(0, x)=u_{0}(x), \text { where } x \in \mathbb{T}^{2}, \mathbb{R}^{2} .
\end{array}\right.
$$

Smooth solution $u(x, t)$ exists globally and

$$
\begin{aligned}
& \text { Mass }=M(u)=\|u(t)\|^{2}=M(0) \\
& \text { Energy }=E(u)=\int\left(\frac{1}{2}|\nabla u(t, x)|^{2}+\frac{1}{4}|u(x, t)|^{4}\right) d x=E(0)
\end{aligned}
$$

We want to understand the shape of $|\hat{u}(t, \xi)|$. The conservation laws impose L^{2}-moment constraints on this object.

Notion of Weak Turbulence

DEFINITION

Weak turbulence is the phenomenon of global-in-time defocusing solutions shifting their mass toward increasingly high frequencies.

This shift is also called a forward cascade.

- A way to measure weak turbulence is to study

$$
\|u(t)\|_{\dot{H}^{s}}^{2}=\int|\hat{u}(t, \xi)|^{2}|\xi|^{2 s} d \xi
$$

and prove that it grows for large times t.

- Turbulence is incompatible with scattering and integrability.

Incompatible with Scattering \& Integrability

■ Scattering: \forall global solution $u(t, x) \in H^{s} \exists u_{0}^{+} \in H^{s}$ such that,

$$
\lim _{t \rightarrow+\infty}\left\|u(t, x)-e^{i t \Delta} u_{0}^{+}(x)\right\|_{H^{s}}=0
$$

Note: $\left\|e^{i t \Delta} u_{0}^{+}\right\|_{H^{s}}=\left\|u_{0}^{+}\right\|_{H^{s}} \Longrightarrow\|u(t)\|_{H^{s}}$ is bounded.
■ Complete Integrability: The 1d equation

$$
\left(i \partial_{t}+\Delta\right) u=-|u|^{2} u
$$

has infinitely many conservation laws. Combining them in the right way one gets that $\|u(t)\|_{H^{s}} \leq C_{s}$ for all times.

Past Results

- Bourgain: (late 90's)

For the periodic IVP $N L S\left(\mathbb{T}^{2}\right)$ one can prove

$$
\|u(t)\|_{H^{s}}^{2} \leq C_{s}|t|^{4 s}
$$

The idea is to improve the local estimate for $t \in[-1,1]$

$$
\begin{gathered}
\|u(t)\|_{H^{s}} \leq C_{s}\|u(0)\|_{H^{s}}, \quad \text { for } C_{s} \gg 1 \\
\left(\Longrightarrow\|u(t)\|_{H^{s}} \lesssim C^{|t|}\right. \text { upper bounds) to obtain } \\
\|u(t)\|_{H^{s}} \leq 1\|u(0)\|_{H^{s}}+C_{s}\|u(0)\|_{H^{s}}^{1-\delta} \text { for } C_{s} \gg 1
\end{gathered}
$$

for some $\delta>0$. This iterates to give

$$
\|u(t)\|_{H^{s}} \leq C_{s}|t|^{1 / \delta}
$$

■ Improvements: Staffilani, Colliander-Delort-Kenig-Staffilani.

Past Results

- Bourgain: (late 90's)

Given $m, s \gg 1$ there exist $\tilde{\Delta}$ and a global solution $u(x, t)$ to the modified wave equation

$$
\left(\partial_{t t}-\tilde{\Delta}\right) u=u^{p}
$$

such that $\|u(t)\|_{H^{s}} \sim|t|^{m}$.

- Physics: Weak turbulence theory: Hasselmann \& Zakharov. Numerics ($\mathrm{d}=1$): Majda-McLaughlin-Tabak; Zakharov et. al.

Conjecture

Solutions to dispersive equations on \mathbb{R}^{d} DO NOT exhibit weak turbulence. \exists solutions to dispersive equations on \mathbb{T}^{d} that exhibit weak turbulence. In particular for $\operatorname{NLS}\left(\mathbb{T}^{2}\right)$ there exists $u(x, t)$ s. t.

$$
\|u(t)\|_{H^{s}}^{2} \rightarrow \infty \text { as } t \rightarrow \infty
$$

Main Result

We consider the defocusing initial value problem:

$$
\left\{\begin{array}{c}
\left(-i \partial_{t}+\Delta\right) u=|u|^{2} u \tag{2}\\
u(0, x)=u_{0}(x), \quad x \in \mathbb{T}^{2}
\end{array}\right.
$$

Theorem (Colliander-Keel-Staffilani-TAKaOka-Tao)

Let $s>1, K \gg 1$ and $0<\sigma<1$ be given. Then there exists a global smooth solution $u(x, t)$ and $T>0$ such that

$$
\left\|u_{0}\right\|_{H^{s}} \leq \sigma
$$

and

$$
\|u(T)\|_{H^{s}}^{2} \geq K
$$

2. Overview of Proof

Arnold Diffusion

Preliminary Reductions

- Gauge Freedom:

If u solves NLS then $v(t, x)=e^{-i 2 G t} u(t, x)$ solves

$$
\left\{\begin{array}{c}
i \partial_{t} v+\Delta v=\left(2 G+|v|^{2}\right) v \tag{G}\\
v(0, x)=v_{0}(x), \quad x \in \mathbb{T}^{2} .
\end{array}\right.
$$

■ Fourier Ansatz: Recast the dynamics in Fourier coefficients,

$$
v(t, x)=\sum_{n \in \mathbb{Z}^{2}} a_{n}(t) e^{i\left(n \cdot x+|n|^{2} t\right)}
$$

$$
\left\{\begin{array}{cc}
i \partial_{t} a_{n}=2 G a_{n}+ & \sum_{\substack{n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2}}} a_{n_{1}} \bar{a}_{n_{2}} a_{n_{3}} e^{i \omega_{4} t} \\
& \\
n_{1}-n_{2}+n_{3}=n & \\
a_{n}(0)=\widehat{u_{0}}(n), & n \in \mathbb{Z}^{2} . \\
& \left(\mathcal{F} N L S_{G}\right)
\end{array}\right.
$$

Preliminary Reductions

- Diagonal decomposition of sum:

$$
\begin{array}{ccc}
\sum & = & \sum \\
n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\
n_{1}-n_{2}+n_{3}=n & & n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\
n_{1}-n_{2}+n_{3}=n & n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\
& n \neq n_{1}, n_{3} & \\
+ & \sum & n=n_{2}+n_{3}=n \\
& & n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\
& n_{1}-n_{2}+n_{3}=n & n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\
& n=n_{1}-n_{2}+n_{3}=n \\
& & n=n_{1}=n_{3}
\end{array}
$$

- Choice of G :

$$
G=-\left\|u_{0}\right\|_{L^{2}}^{2} .
$$

Resonant truncation

- NLS dynamic is recast as

$$
-i \partial_{t} a_{n}=-a_{n}\left|a_{n}\right|^{2}+\sum_{n_{1}, n_{2}, n_{3} \in \Gamma(n)} a_{n_{1}} \bar{a}_{n_{2}} a_{n_{3}} e^{i \omega_{4} t} . \quad(\mathcal{F} N L S)
$$

where

$$
\Gamma(n)=\left\{n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2}: n_{1}-n_{2}+n_{3}=n, n_{1} \neq n, n_{3} \neq n\right\} .
$$

$$
\begin{aligned}
\Gamma_{\text {res }}(n) & =\left\{n_{1}, n_{2}, n_{3} \in \Gamma(n): \omega_{4}=0\right\} . \\
& =\left\{\text { Triples }\left(n_{1}, n_{2}, n_{3}\right):\left(n_{1}, n_{2}, n_{3}, n_{4}\right) \text { is a rectangle }\right\}
\end{aligned}
$$

- The resonant truncation of $\mathcal{F} N L S$ is

$$
-i \partial_{t} b_{n}=-b_{n}\left|b_{n}\right|^{2}+\sum_{n_{1}, n_{2}, n_{3} \in \Gamma_{r e s}(n)} b_{n_{1}} \bar{b}_{n_{2}} b_{n_{3}} . \quad(R \mathcal{F} N L S)
$$

Finite dimensional resonant truncation

- A set $\Lambda \subset \mathbb{Z}^{2}$ is closed under resonant interactions if

$$
n_{1}, n_{2}, n_{3} \in \Gamma_{\text {res }}(n), n_{1}, n_{2}, n_{3} \in \Lambda \Longrightarrow n \in \Lambda .
$$

- A finite dimensional resonant truncation of $\mathcal{F} N L S$ is

$$
-i \partial_{t} b_{n}=-b_{n}\left|b_{n}\right|^{2}+\sum_{n_{1}, n_{2}, n_{3} \in \Gamma_{\text {res }}(n) \cap \Lambda^{3}} b_{n_{1}} \bar{b}_{n_{2}} b_{n_{3}} .\left(R \mathcal{F} N L S_{\Lambda}\right)
$$

- \forall resonant-closed finite $\Lambda \subset \mathbb{Z}^{2} R \mathcal{F} N L S_{\Lambda}$ is an ODE.
- If $\operatorname{spt}\left(a_{n}(0)\right) \subset \Lambda$ then $\mathcal{F} N L S$-evolution $a_{n}(0) \longmapsto a_{n}(t)$ is nicely approximated by $R \mathcal{F} N L S_{\Lambda}-$ ODE $a_{n}(0) \longmapsto b_{n}(t)$.
■ Given ϵ, s, K, build Λ so that $R \mathcal{F} N L S_{\Lambda}$ has weak turbulence.

Imagine we build a resonant $\Lambda \subset \mathbb{Z}^{2}$ SUCh that...

Imagine a resonant-closed $\Lambda=\Lambda_{1} \cup \cdots \cup \Lambda_{M}$ with properties.
Define a nuclear family to be a rectangle ($n_{1}, n_{2}, n_{3}, n_{4}$) where the frequencies n_{1}, n_{3} (the 'parents') live in generation Λ_{j} and n_{2}, n_{4} ('children') live in generation Λ_{j+1}.

■ $\forall 1 \leq j<M$ and $\forall n_{1} \in \Lambda_{j} \exists$ unique nuclear family such that $n_{1}, n_{3} \in \Lambda_{j}$ are parents and $n_{2}, n_{4} \in \Lambda_{j+1}$ are children.

- $\forall 1 \leq j<M$ and $\forall n_{2} \in \Lambda_{j+1} \exists$ unique nuclear family such that $n_{2}, n_{4} \in \Lambda_{j+1}$ are children and $n_{1}, n_{3} \in \Lambda_{j}$ are parents.
- The sibling of a frequency is never its spouse.
- Besides nuclear families, Λ contains no other rectangles.

■ The function $n \longmapsto a_{n}(0)$ is constant on each generation Λ_{j}.

Cartoon Construction of Λ

The toy model ODE

Assume we can construct such a $\Lambda=\Lambda_{1} \cup \cdots \cup \Lambda_{M}$. The properties imply $R \mathcal{F} N L S_{\Lambda}$ simplifies to the toy model ODE

$$
\partial_{t} b_{j}(t)=-i\left|b_{j}(t)\right|^{2} b_{j}(t)+2 i \bar{b}_{j}(t)\left[b_{j}(t)^{2}-b_{j+1}(t)^{2}\right]
$$

$$
\begin{aligned}
L^{2} & \sim \sum_{j}\left|b_{j}(t)\right|^{2}=\sum_{j}\left|b_{j}(0)\right|^{2} \\
H^{s} & \sim \sum_{j}\left|b_{j}(t)\right|^{2}\left(\sum_{n \in \Lambda_{j}}|n|^{2 s}\right) .
\end{aligned}
$$

We also want Λ to satisfy Wide Diaspora Property

$$
\sum_{n \in \Lambda_{M}}|n|^{2 s} \gg \sum_{n \in \Lambda_{1}}|n|^{2 s}
$$

Conservation laws for the ODE system

$$
\begin{aligned}
& \text { Mass }=\sum_{j}\left|b_{j}(t)\right|^{2}=C_{0} \\
& \text { Momentum }=\sum_{j}\left|b_{j}(t)\right|^{2} \sum_{n \in \Lambda_{j}} n=C_{1}, \\
& \text { Energy }=K+P=C_{2},
\end{aligned}
$$

where

$$
\begin{aligned}
K & =\sum_{j}\left|b_{j}(t)\right|^{2} \sum_{n \in \Lambda_{j}}|n|^{2}, \\
P & =\frac{1}{2} \sum_{j}\left|b_{j}(t)\right|^{4}+\sum_{j}\left|b_{j}(t)\right|^{2}\left|b_{j+1}(t)\right|^{2} .
\end{aligned}
$$

Conservation laws for ODE do not involve Fourier moments!

3. Arnold Diffusion for the Toy Model ODE

Using dynamical systems methods, we construct a Toy Model ODE evolution such that:

2. Arnold Diffusion for the Toy Model ODE

Using dynamical systems methods, we construct a Toy Model ODE evolution such that:

We construct a travelling wave through the generations.

Properties of the Toy Model ODE

- Solution of the Toy Model is a vector flow $t \rightarrow b(t) \in \mathbb{C}^{M}$

$$
b(t)=\left(b_{1}(t), \ldots, b_{M}(t)\right) \in \mathbb{C}^{M} ; b_{j}=0 \forall j \leq 0, j \geq M+1
$$

- Local Well-Posedness; Let $S(t)$ denote associated flowmap.
- Mass Conservation: $|b(t)|^{2}=|b(0)|^{2} \Longrightarrow$
- Toy Model ODE is Globally Well-Posed.
- Invariance of the sphere: $\Sigma=\left\{x \in \mathbb{C}^{M}:|x|^{2}=1\right\}$

$$
S(t) \Sigma=\Sigma
$$

Properties of the Toy Model ODE

- Support Conservation:

$$
\begin{aligned}
\partial_{t}\left|b_{j}\right|^{2} & =2 \operatorname{Re}\left(\overline{b_{j}} \partial_{t} b_{j}\right) \\
& =4 \operatorname{Re}\left(i{\overline{b_{j}}}^{2}\left[b_{j-1}^{2}-b_{j+1}^{2}\right]\right) \\
& \leq C\left|b_{j}\right|^{2}
\end{aligned}
$$

Thus, if $b_{j}(0)=0$ then $b_{j}(t)=0$ for all t.

- Invariance of coordinate tori:

$$
\mathbb{T}_{j}=\left\{\left(b_{1}, \ldots, b_{M} \in \Sigma\right):\left|b_{j}\right|=1, b_{k}=0 \forall k \neq j\right\}
$$

Mass Conservation $\Longrightarrow S(T) \mathbb{T}_{j}=\mathbb{T}_{j}$.
Dynamics on the invariant tori is easy:

$$
b_{j}(t)=e^{-i(t+\theta)} ; b_{k}(t)=0 \forall k \neq j .
$$

Explicit Slider Solution

Consider $M=2$. Then $O D E$ is of the form

$$
\begin{aligned}
\partial_{t} b_{1} & =-i\left|b_{1}\right|^{2} b_{1}+2 i \overline{b_{1}} b_{2}^{2} \\
\partial_{t} b_{2} & =-i\left|b_{2}\right|^{2} b_{2}+2 i \overline{b_{2}} b_{1}^{2}
\end{aligned}
$$

Let $\omega=e^{2 i \pi / 3}$ (cube root of unity). This ODE has explicit solution

$$
b_{1}(t)=\frac{e^{-i t}}{\sqrt{1+e^{2 \sqrt{3}} t}} \omega, b_{2}(t)=\frac{e^{-i t}}{\sqrt{1+e^{-2 \sqrt{3} t}}} \omega^{2} .
$$

- As $t \rightarrow-\infty,\left(b_{1}(t), b_{2}(t)\right) \rightarrow\left(e^{-i t} \omega, 0\right) \in \mathbb{T}_{1}$.
$■$ As $t \rightarrow+\infty,\left(b_{1}(t), b_{2}(t)\right) \rightarrow\left(0, e^{-i t} \omega^{2}\right) \in \mathbb{T}_{2}$.

Explicit Slider Solution

Two Explicit Solution Families

Concatenated Sliders: Idea of Proof

Arnold Diffusion for Toy Model Statement

Theorem

Let $M \geq 6$. Given $\epsilon>0$ there exist x_{3} within ϵ of \mathbb{T}_{3} and x_{M-2} within ϵ of \mathbb{T}_{M-2} and a time t such that

$$
S(t) x_{3}=x_{M-2} .
$$

REMARK

$S(t) x_{3}$ is a solution of total mass 1 arbitrarily concentrated at mode $j=3$ at some time t_{0} and then arbitrarily concentrated at mode $j=M-2$ at later time t.

Targets and Covering

Let O, D denote points in our phase space Σ. Can we flow along $S(t)$ from nearby the origin point 0 to nearby the destination point D ? More generally, suppose O and D are subsets of Σ.

The notion of a target quantifies this question.

TARgets

- Let \mathcal{M} denote a subset of Σ. Let d be a (pseudo)metric on Σ. Let $R>0$ be a radius.
- The Target $(\mathcal{M}, d, R):=\{x \in \Sigma: d(x, M)<R\}$.
- Given $x, y \in \Sigma$. We say x hits y if $y=S(t) x$ for some $t \geq 0$.

Covering

Given an initial target (M_{1}, d_{1}, R_{1}) and a final target $\left(M_{2}, d_{2}, R_{2}\right)$. We say $\left(M_{1}, d_{1}, R_{1}\right)$ can $\operatorname{cover}\left(M_{2}, d_{2}, R_{2}\right)$ and write

$$
\left(M_{1}, d_{1}, R_{1}\right) \Longrightarrow\left(M_{2}, d_{2}, R_{2}\right)
$$

if:
$\forall x_{2} \in M_{2} \exists x_{1} \in M_{1}$ such that $\forall y_{1} \in \Sigma$ with $d_{1}\left(x_{1}, y_{1}\right)<R_{1} \exists y_{2} \in \Sigma$ with $d\left(x_{2}, y_{2}\right)<R_{2}$ such that y_{1} hits y_{2}.

- The flowout of $\left(M_{1}, d_{1}, R_{1}\right)$ is surjective onto $\left(M_{2}, d_{2}, R_{2}\right)$.

■ Covering also includes a notion of stability.

Strategy of Proof

- Transitivity of Covering: If $\left(M_{1}, d_{1}, r_{1}\right) \Longrightarrow\left(M_{2}, d_{2}, r_{2}\right)$ and $\left(M_{2}, d_{2}, r_{2}\right) \Longrightarrow\left(M_{3}, d_{3}, r_{3}\right)$ then $\left(M_{1}, d_{1}, r_{1}\right) \Longrightarrow\left(M_{3}, d_{3}, r_{3}\right)$.
■ $\forall j \in 3, \ldots, M-2$ we define 3 targets close to \mathbb{T}_{j} :
- Incoming Target ($M_{j}^{-}, d_{j}^{-}, R_{j}^{-}$)
- Ricochet Target ($M_{j}^{0}, d_{j}^{0}, R_{j}^{0}$)
- Outgoing Target $\left(M_{j}^{+}, d_{j}^{+}, R_{j}^{+}\right)$

■ $\forall j=3, \ldots, M-2$ with appropriate $d_{j}^{-, 0,+}, R_{j}^{-, 0,+}$, prove:

- $\left(M_{j}^{-}, d_{j}^{-}, R_{j}^{-}\right) \Longrightarrow\left(M_{j}^{0}, d_{j}^{0}, R_{j}^{0}\right)$
- $\left(M_{j}^{0}, d_{j}^{0}, R_{j}^{0}\right) \Longrightarrow\left(M_{j}^{+}, d_{j}^{+}, R_{j}^{+}\right)$
- $\left(M_{j}^{+}, d_{j}^{+}, R_{j}^{+}\right) \Longrightarrow\left(M_{j+1}^{+}, d_{j+1}^{+}, R_{j+1}^{+}\right)$

Targets Around T_{j}

4. Construction of Resonant Set \wedge

The task is to construct a finite set $\Lambda \subset \mathbb{Z}^{2}$ satisfying the properties that led to the Toy Model ODE. We do this in two steps:
1 Build combinatorial model of Λ called $\Sigma \subset \mathbb{C}^{M-1}$.
2 Build a map $f: \mathbb{C}^{M-1} \rightarrow \mathbb{R}^{2}$ which gives

$$
f(\Sigma)=\Lambda \subset \mathbb{Z}^{2}
$$

satisfying the properties.

Construction of Combinatorial Model Σ

- Standard Unit Square: $S=\{0,1,1+i, i\} \subset C, S=S_{1} \cup S_{2}$ where $S_{1}=\{1, i\}$ and $S_{2}=\{0,1+i\}$

■ $\mathbb{Z}^{2} \equiv \mathbb{Z}[i] ;\left(n_{1}, n_{2}\right) \equiv n_{1}+i n_{2}$

Construction of Combinatorial Model Σ

- We define

$$
\Sigma_{j}=\left\{\left(z_{1}, z_{2}, \ldots, z_{M-1}\right): z_{1}, \ldots, z_{j-1} \in S_{2}, z_{j}, \ldots, z_{M-1} \in S_{1}\right\}
$$

with the properties

- $\Sigma_{j}=S_{2}^{j-1} \times S_{1}^{M-j} \subset \mathbb{C}^{M-1}$
- $\left|\Sigma_{j}\right|=2^{M-1}$

■ Next, we define

$$
\Sigma=\Sigma_{1} \cup \cdots \cup \Sigma_{M}
$$

- $|\Sigma|=M 2^{M-1}$.
- Σ_{j} is called a generation.

Combinatorial Nuclear Family

■ Consider the set $F=\left\{F_{0}, F_{1}, F_{1+i}, F_{i}\right\} \subset \Sigma$ defined by

$$
F_{w}=\left(z_{1}, \ldots, z_{j-1}, w, z_{j+1}, \ldots, z_{n}\right)
$$

with $z_{1}, \ldots, z_{j-1} \in S_{2}$ and $z_{j+1}, \ldots, z_{n} \in S_{2}$ and $w \in S$.

- The elements $F_{0}, F_{1+i} \in \Sigma_{j+1}$ are called children.
- The elements F_{1}, F_{i} are called parents.
- The four element set F is called a combinatorial nuclear family connecting the generations Σ_{j} and Σ_{j+1}.
- $\forall j \exists 2^{M-2}$ combinatorial nuclear families connecting generations Σ_{j} and Σ_{j+1}.
- The set Σ satisfies
- Existence and uniqueness of spouse and children (of sibling and parents).
- Sibling is never also a spouse.

Construction of the Placement Function

We need to map $\Sigma \subset \mathbb{C}^{M-1}$ into the frequency lattice \mathbb{Z}^{2}.
■ We first define $f_{1}: \Sigma_{1} \rightarrow \mathbb{C}$.

- $\forall 1 \leq j \leq M$ and each combinatorial nuclear family F connecting generations Σ_{j} and Σ_{j+1}, we associate an angle $\theta(F) \in \mathbb{R} / 2 \pi \mathbb{Z}$.
- Given f_{1} and the angles of all the families, we define placement functions $f_{j}: \Sigma_{j} \rightarrow \mathbb{C}$ recursively by the rule: Suppose $f_{j}: \Sigma_{j} \rightarrow \mathbb{C}$ has been defined. We define $f_{j+1}: \Sigma_{j+1} \rightarrow \mathbb{C}$:

$$
\begin{aligned}
f_{j+1}\left(F_{1+i}\right) & =\frac{1+e^{i \theta(F)}}{2} f_{j}\left(F_{1}\right)+\frac{1-e^{i \theta(F)}}{2} f_{j}\left(F_{i}\right) \\
f_{j+1}\left(F_{0}\right) & =\frac{1+e^{i \theta(F)}}{2} f_{j}\left(F_{1}\right)-\frac{1-e^{i \theta(F)}}{2} f_{j}\left(F_{i}\right)
\end{aligned}
$$

for all combinatorial nuclear families connecting Σ_{j} to Σ_{j+1}.

Theorem: Good Placement Function

Let $M \geq 2, s>1$, and let N be a sufficiently large integer (depending on M). \exists an initial placement function $f_{1}: \Sigma_{1} \rightarrow \mathbb{C}$ and choices of angles $\theta(F)$ for each nuclear family F (and thus an associated complete placement function $f: \Sigma \rightarrow \mathbb{C}$) with the following properties:

- (Non-degeneracy) The function f is injective.
- (Integrality) We have $f(\Sigma) \subset \mathbb{Z}[i]$.
- (Magnitude) We have $C(M)^{-1} N \leq|f(x)| \leq C(M) N$ for all $x \in \Sigma$.
- (Closure/Faithfulness) If x_{1}, x_{2}, x_{3} are distinct elements of Σ are such that $f\left(x_{1}\right), f\left(x_{2}\right), f\left(x_{3}\right)$ form a right-angled triangle, then x_{1}, x_{2}, x_{3} belong to a combinatorial nuclear family.
- (Wide Diaspora/Norm Explosion) We have

$$
\sum_{n \in f\left(\Sigma_{M}\right)}|n|^{2 s}>\frac{1}{2} 2^{(s-1)(M-1)} \sum_{n \in f\left(\Sigma_{1}\right)}|n|^{2 s}
$$

