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THE NLS INITIAL VALUE PROBLEM

[Joint work with Keel, Staffilani, Takaoka and Tao]
We consider the defocusing initial value problem:

—i0¢ u=|ulu
{“(O’X() :auo—é_xﬁ) Whe’re’X c T2, (NLS(T?))

Smooth solution u(x, t) exists globally and
Mass = M(u) = ||u(t)||* = M(0)

1 1
Energy = E(u) = / E\Vu(t,x)lz + Z|U(X’ t)[* dx = E(0)

We want to understand the shape of |i(t,&)|. The conservation
laws impose L?-moment constraints on this object.



NoTION OF WEAK TURBULENCE

DEFINITION

Weak turbulence is the phenomenon of global-in-time defocusing
solutions shifting their mass toward increasingly high frequencies.

This shift is also called a forward cascade.

m A way to measure weak turbulence is to study
(03, = [ la(e. ORI de

and prove that it grows for large times t.
m Turbulence is incompatible with scattering and integrability.

m Finite time blowup behavior is not weak turbulence.



INCOMPATIBLE WITH SCATTERING & INTEGRABILITY

m Scattering: V global solution u(t,x) € H* 3 ug € H® such
that,
lim [Ju(t, x) — e ug (x)[|n= = 0.

t——+4o00

Note: |[e®2ug ||ws = ||lug |l#s = |lu(t)||ns is bounded.
Proofs rely on (global dispersive) estimate.

m Complete Integrability: The 1d equation
(id: + 0%)u = |ulu

has infinitely many conservation laws. Combining them in the
right way one gets that ||u(t)||ys < Cs for all times.



DISTINCTIONS FROM FINITE TIME BLOWUP SETTING

m Glassey's virial identity shows corresponding focusing problem

{ : (—i0¢ + A)u = —|ul?u

(T2
0,x) = up(x), where x € R?. (NLS™(R?))

has many finite time blowup solutions.

m The associated energy has a changed sign:
1 5 1 4
E(u) = [ 5I9u(t, )P lu(x, 1)* dx.

m Blowup solutions explode in H' in finite time.



BOURGAIN’S GLASSEY VERSUS MORAWETZ EXAMPLE
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BOURGAIN’S GLASSEY VERSUS MORAWETZ EXAMPLE

Bourgain constructed a coupled NLS system with Energy

(u,v) /|() ul? — u| dx+/Vv|2dy

4 </(1+yuy2)3u2dx> </|v\4e_|y|2dy>.

m If (u(0),v(0)) € H® x H°, s > 1 and v(0) # 0 there is a
global solution (u(t), v(t)) € H® x H".
m However, if [|u(0)[?x2dx < oo and E(u(0), v(0)) < oo then

lim sup([[u(e)l[1 + [[v(t)ll2) = oo



PAST RESULTS (DEFOCUSING CASE)

m Bourgain: (late 90's)
For the periodic IVP NLS(T?) one can prove

Ju(e) 3 < Colel*.
The idea is to improve the local estimate for t € [—1,1]
[u(t)[[Hs < Csl|u(0) ||, for Cs> 1
(= |Ju(t)||ws < CIt upper bounds) to obtain
()l < Lu(0)llne + Csllu(0)[I}5" for Cs > 1,
for some & > 0. This iterates to give
lu(e)][ms < Csle[*°.

m Improvements: Staffilani, Colliander-Delort-Kenig-Staffilani.



PasT RESULTS

m Bourgain: (late 90's)
Given m,s > 1 there exist A and a global solution u(x, t) to
the modified wave equation

(att — A)U = Up

such that ||u(t)||gs ~ |t|™.
m Physics: Weak turbulence theory: Hasselmann & Zakharov.
Numerics (d=1): Majda-McLaughlin-Tabak; Zakharov et. al.

CONJECTURE

Solutions to dispersive equations on RY DO NOT exhibit weak
turbulence. 3 solutions to dispersive equations on T9 that exhibit
weak turbulence. In particular for NLS(T?) there exists u(x, t) s. t.

|lu(t)||%s — oo as t — oo.



MAIN RESULT

We consider the defocusing initial value problem:

(—i0r + A)u = |ul?u

{U(OM) = up(x), where x € T?, R2. (NLS(T2))

THEOREM (COLLIANDER-KEEL-STAFFILANI-TAKAOKA-TAO)

Lets > 1, k> 1and0 < o <1 be given. Then there exists a
global smooth solution u(x,t) and T > 0 such that

luol[s < o

and
Ju(t)[[Fs > K.



2. OVERVIEW OF PROOF
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PRELIMINARY REDUCTIONS

m Gauge Freedom:
If u solves NLS then v(t,x) = e~2¢ty(t, x) solves

- _ 2
{lf)tv+Av—(2G+|vl v (NLS)

v(0, x) = wo(x), x € T2
m Fourier Ansatz: Recast the dynamics in Fourier coefficients,

V(t,X) _ Z an(t)ei(n-x+\n|2t).

neZ?

iOran, = 2Ga, + > Qn, Any an, €t
ni, np, N3 € 7?2
n—n-+n3=n
a,(0) = do(n), ne 7z
(FNLSg)



PRELIMINARY REDUCTIONS

m Diagonal decomposition of sum:

>, = > o+ X
2 2
nl,ng,n3€Z2 ni, mp,n3 € Z ni, N2, n3 € Z
n—n+n=n n—m+n=n n—m+n=n
n# ny,n3 n=m
+ R
m, no, n3 € 72 m, no, n3 € 72
n—n+n=n n—n+n=n
n=n3 n=ny = n3
m Choice of G:

2
G = —|luollz2-



RESONANT TRUNCATION

m NLS dynamic is recast as

—iBran = —an|an|® + Z amamane*t.  (FNLS)

n1,n2,n3€(n)

where

F(n):{nl,ng,ng;EZz:n1—n2+n3:n,n17£n,n37$n}.

Mres(n) = {m,n2,n3 €T(n):ws=0}.
= { Triples (n1, n2, n3) : (n1, n2, n3, ng) is a rectangle }

m The resonant truncation of FNLS is

—i0¢by = —bylbn> + > bnbnybn,. (RFNLS)

n11n2:n3erres(n)



FINITE DIMENSIONAL RESONANT TRUNCATION

m A set A C Z2 is closed under resonant interactions if
ni, n2,n3 € MNes(n), n1,na,n3 € N = neA.
m A finite dimensional resonant truncation of FNLS is

—i0¢by = —bp|by|? + > by by by (RFNLS)

nlan27n3€rres(")m/\3

m V resonant-closed finite A C Z? RFNLS, is an ODE.

m If spt(an(0)) C A then FNLS-evolution a,(0) — ap(t) is
nicely approximated by RFNLS)-ODE a,(0) — bp(t).

m Given ¢, s, K, build A so that RFNLS, has weak turbulence.



IMAGINE WE BUILD A RESONANT A C Z2 SUCH THAT...

Imagine a resonant-closed A = A; U --- U Ay with properties.
Define a nuclear family to be a rectangle (ny, na, n3, ny) where the
frequencies ny, n3 (the 'parents’) live in generation A; and ny, na
(‘children’) live in generation Aji1.
mV1<j<MandV n €A; 3 unique nuclear family such that
ni, n3 € \; are parents and np, ng € Aji1 are children.
mV1<j<MandV n € Aj11 3 unique nuclear family such
that nz, ng € Aj11 are children and ny, n3 € A; are parents.
m The sibling of a frequency is never its spouse.
m Besides nuclear families, A contains no other rectangles.

m The function n — a,(0) is constant on each generation A;.



CARTOON CONSTRUCTION OF A
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CARTOON CONSTRUCTION OF A
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CARTOON CONSTRUCTION OF A




THE TOY MODEL ODE

Assume we can construct sucha A=A U---UApy. The
properties imply RFNLSp simplifies to the toy model ODE

B bj(t) = —ilbj(t)[*b;(t) + 2ib;(t)[bi(t)* — bj1(t)?]-
L2~ b0 =) 1bi(0)
j j
HS ~ > BP0 Inf*).
]

nE/\j
We also want A to satisfy Wide Diaspora Property

Z ‘n|2s > Z |n’2s.

neNy nehy



CONSERVATION LAWS FOR THE ODE SYSTEM

Mass = Z bi(t))? =
J
Momentum = Z |b;(t)[? Z n=(C,

j nE/\j
Energy = K+ P = (,

where

K= Z ()17 D Inl?,

neh;
=2 Y Ibe i+ 2 (O (O
J

Conservation laws for ODE do not involve Fourier moments!



3. ARNOLD DIFFUSION FOR THE ToOoy MODEL ODE

Using dynamical systems methods, we construct a Toy Model ODE
evolution such that:

j= j=M-2




2. ARNOLD DIFFUSION FOR THE ToOoy MODEL ODE

Using dynamical systems methods, we construct a Toy Model ODE
evolution such that:

t=T

A travelling wave through the generations.



PROPERTIES OF THE Toy MoODEL ODE

m Solution of the Toy Model is a vector flow t — b(t) € CM
b(t) = (by(t),...,bu(t)) €CM;b;=0V,j<0,j>M+1.
m Local Well-Posedness; Let S(t) denote associated flowmap.

m Mass Conservation: |b(t)|?> = |b(0)]? =

m Toy Model ODE is Globally Well-Posed.
m Invariance of the sphere: ¥ = {x € CM : |x|2 = 1}

S(t)T = ¥.



PROPERTIES OF THE Toy MoODEL ODE

m Support Conservation:

0e|bj|? 2Re(b;jd: b))
T2
4Re(ib;"[b7 1 — b1])

< Clb?

Thus, if b;j(0) = 0 then b;(t) = 0 for all ¢.

m Invariance of coordinate tori:
Tj={(b1,....bm € X): |bj| =1,bx =0V k #j}

Mass Conservation — S(T)T; =T;.
Dynamics on the invariant tori is easy:

bi(t) = e "+ b (t) =0V k # .



EXPLICIT SLIDER SOLUTION

Consider M = 2. Then ODE is of the form

Orby = —i|by|?by + 2iby b3
Otby = —i|by|?by + 2ibyb?.

Let w = 2'™/3 (

cube root of unity). This ODE has explicit solution
et ,

\/1—|—e2\/§tw ’ \/1+e*2*/§tw ‘

m As t — —o0, (bi(t), ba(t)) — (e~ tw,0) € Ty.
m As t — 0o, (bi(t), ba(t)) — (0, e w?) € To.

bl(t)z bz(t) =



EXPLICIT SLIDER SOLUTION

T k

L]



Two EXPLICIT SOLUTION FAMILIES




CONCATENATED SLIDERS: IDEA OF PROOF

T_3 T 4 T5 T_6



ARNOLD DIFFUSION FOR TOY MODEL STATEMENT

THEOREM

Let M > 6. Given ¢ > 0 there exist x3 within € of T3 and xpj_2
within € of Tyy_» and a time t such that

5(t)X3 = XM—2.

REMARK

S(t)x3 is a solution of total mass 1 arbitrarily concentrated at
mode j = 3 at some time ty and then arbitrarily concentrated at
mode j = M — 2 at later time t.



TARGETS AND COVERING

Let O, D denote points in our phase space ¥. Can we flow along
S(t) from nearby the origin point 0 to nearby the destination point
D? More generally, suppose O and D are subsets of ¥.

The notion of a target quantifies this question.



TARGETS

m Let M denote a subset of X. Let d be a (pseudo)metric on
>. Let R > 0 be a radius.

m The Target (M,d,R) :={x e X :d(x,M) < R}.

m Given x,y € L.
We say x hits y if y = S(t)x for some t > 0.



COVERING

Given an initial target (M1, d1, R1) and a final target (Ma, da, R2).
We say (M1, d1, R1) can cover (My, da, R2) and write

(M1, d1, R1) = (M2, d2, Ra)

if:

V xo € Mp, 3 x1 € My such that V y; € & with

dl(xl,yl) < Ry dy» € L with d(X2,y2) < Ry such that y; hits y».
m The flowout of (M, di, Ry) is surjective onto (Ma, da, R2).

m Covering also includes a notion of stability.



STRATEGY OF PROOF

m Transitivity of Covering: If (My,d1,n) = (M2, da, 1)
and (MQ,dQ,Q) — (M3,d3,r3)
then (M1, d1,n) = (M3, ds, r3).

mVje3,...,M—2 we define 3 targets close to T}:

= Incoming Target (M, d;",R;")
= Ricochet Target (M}, d?, RP)
= Outgoing Target (M;", d*, R")

mVj=3,...,M—2 with appropriate d; """ R™%*, prove:
— - - 0 40 0
(M, d7 R7) = (M, d}, Rp)

= J20
DR R
= (M4 R7) = (Miy, 4 RiLa)









4. CONSTRUCTION OF RESONANT SET A

The task is to construct a finite set A C Z? satisfying the properties
that led to the Toy Model ODE. We do this in two steps:

Build combinatorial model of A called ¥ ¢ CM-1,
Build a map £ : CM-1 _, R? which gives

f(£)=AcCZ?

satisfying the properties.



CONSTRUCTION OF COMBINATORIAL MODEL X2

m Standard Unit Square: S ={0,1,1+/,i} C C,S=5US;
where 51 = {1,i} and S, = {0,1+ i}

A

iy 1+i

m 72 = 7Z[i]; (n, m) = ny + iny



CONSTRUCTION OF COMBINATORIAL MODEL X2

m We define

Zj = {(21,22,...,2/\//_1) 12Z1,...,Zj—1 € 52,Zj,...,ZM_1 S 51}

with the properties
Y, =5 xS ccMt
m [ =21
m Next, we define
2=X1U---UXpm.

m I = Mm2ML
m X is called a generation.



COMBINATORIAL NUCLEAR FAMILY

m Consider the set F = {Fg, F1, F1+, Fi} C ¥ defined by

FW:(217-"7Zj—17W72j+17"'7Zn)

with z1,...,zi_1 € S5 and zj41,...,z, € Soand w € S.
m The elements Fo, F11; € X ;41 are called children.

m The elements Fi, F; are called parents.
m The four element set F is called a combinatorial nuclear family

connecting the generations ¥ ; and X;;.
m V j 3 2M=2 combinatorial nuclear families connecting

generations 3 ; and X .

m The set ¥ satisfies
m Existence and uniqueness of spouse and children (of sibling

and parents).
m Sibling is never also a spouse.



CONSTRUCTION OF THE PLACEMENT FUNCTION

We need to map ¥ € CM~1 into the frequency lattice Z2.
m We first define f; : X1 — C.

m V1< ;<M and each combinatorial nuclear family F
connecting generations ¥ ; and X1, we associate an angle
0(F) € R/2nZ.

m Given f; and the angles of all the families, we define
placement functions f; : ¥; — C recursively by the rule:
Suppose f; : ¥ ; — C has been defined. We define
f;'+1 . 2j+1 — C:

14 ei0(F) 1 — £if(F)

firi(Fiei) = ———f(R)+———f(F)
14 ei0(F) 1 — if(F)

firi(Fo) = ———fi(F) - ———f(F)

for all combinatorial nuclear families connecting ¥; to ¥ ;.



THEOREM: GOOD PLACEMENT FUNCTION

Let M > 2, s > 1, and let N be a sufficiently large integer
(depending on M). 3 an initial placement function f; : ¥; — C
and choices of angles §(F) for each nuclear family F (and thus an
associated complete placement function f : ¥ — C) with the
following properties:

m (Non-degeneracy) The function f is injective.

m (Integrality) We have f(X) C Z[i].

m (Magnitude) We have C(M)™IN < |f(x)| < C(M)N for all
X € X.

m (Closure/Faithfulness) If x1, x2, x3 are distinct elements of X
are such that f(x1), f(x2), f(x3) form a right-angled triangle,
then x1, x2, x3 belong to a combinatorial nuclear family.

m (Wide Diaspora/Norm Explosion) We have

1
Z ’n’2s>§2(s—1)(M—1) Z ’n’2s_

nEf(Xm) nef(Xy)
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