Weak Turbulence for a 2D periodic Schrödinger EQUATION

J. Colliander (University of Toronto) and G. Staffilani (MIT)

The NLS Initial Value Problem

We consider the defocusing initial value problem:

$$
\left\{\begin{array}{c}
\left(-i \partial_{t}+\Delta\right) u=|u|^{2} u \tag{2}\\
u(0, x) \stackrel{=}{=} u_{0}(x), \text { where } x \in \mathbb{T}^{2}, \mathbb{R}^{2} .
\end{array}\right.
$$

Smooth solution $u(x, t)$ exists globally and

$$
\begin{aligned}
& \text { Mass }=M(u)=\|u(t)\|^{2}=M(0) \\
& \text { Energy }=E(u)=\int\left(\frac{1}{2}|\nabla u(t, x)|^{2}+\frac{1}{4}|u(x, t)|^{4}\right) d x=E(0)
\end{aligned}
$$

In particular if $f_{t}(\xi)=|\hat{u}(t, \xi)|^{2}$ then the area of the subgraph of $f_{t}(\xi)$ remains constant. On the other hand the shape of the subgraph may change in time, in particular in time most of the area may concentrate on very high.

Informal definition of weak turbulence

Definition

Weak turbulence is the phenomenon that describe the shifting over time of the mass of global solutions into increasingly high frequencies.

This shift is also called forward cascade.

- One way of measuring weak turbulence is to consider the function

$$
g_{s}(t)=\|u(t)\|_{\dot{H}^{s}}^{2}=\int|\hat{u}(t, \xi)|^{2}|\xi|^{2 s} d \xi
$$

and prove that it griws for large times t.

- Weak turbulence is incompatible with scattering and complete integrability.

Explanation of SECOND ITEM

scattering: In this context scattering (at $+\infty$) means that for any global solution $u(t, x) \in H^{s}$ there exists $u_{0}^{+} \in H^{s}$ such that, if $S(t)$ is the linear Schrödinger operator, then

$$
\lim _{t \rightarrow+\infty}\left[u(t, x)-S(t) u_{0}^{+}(x)\right]=0
$$

in H^{s} sense. Since $\left\|S(t) u_{0}^{+}\right\|_{H^{s}}=\left\|u_{0}^{+}\right\|_{H^{s}}$, it follows that $g_{s}(t)=\|u(t)\|_{\dot{H}^{s}}^{2}$ will not grow.
complete integrability: For example the 1d equation

$$
\left(i \partial_{t}+\Delta\right) u=-|u|^{2} u
$$

is integrable in the sense taht it admits infinitely many conservation laws. Combining them in the right way one gets that $g_{s}(t)=\|u(t)\|_{\dot{H}^{s}}^{2} \leq C_{s}$ for all times.

Some numerical Results

Some theoretical results

- Bourgain: (late 90's)

For the periodic IVP $N L S\left(\mathbb{T}^{2}\right)$ one can prove

$$
g_{s}(t)=\|u(t)\|_{\dot{H}^{s}}^{2} \leq C_{s}|t|^{4 s} .
$$

The idea here is to improve the local estimate for $t \in[-1,1]$

$$
\|u(t)\|_{H^{s}} \leq C_{s}\|u(0)\|_{H^{s}}, \quad \text { for } C_{s} \gg 1
$$

to the better one

$$
\|u(t)\|_{H^{s}} \leq 1\|u(0)\|_{H^{s}}+C_{s}\|u(0)\|_{H^{s}}^{1-\delta} \quad \text { for } C_{s} \gg 1
$$

for some $\delta>0$. This last one in fact gives

$$
\|u(t)\|_{H^{s}} \leq C_{s}|t|^{1 / \delta} .
$$

For similar result see also Staffilani, Colliander-Delort-Kenig-Staffilani and a recent result of W.M. Wang.

More theoretical results

- Bourgain: (late 90's) Given $m, s \gg 1$ there exists $\tilde{\Delta}$ such that a global solution $u(x, t)$ to the modified wave equation

$$
\left(\partial_{t t}-\tilde{\Delta}\right) u=u^{p}
$$

such that

$$
\|u(t)\|_{H^{s}} \sim|t|^{m}
$$

Conjecture

Solutions to dispersive equations on \mathbb{R}^{d} DO NOT exhibit weak turbulace. Solutions to dispersive equations on \mathbb{T}^{d} DO exhibit weak turbulence. In particular for $N L S\left(\mathbb{T}^{2}\right)$

$$
g_{s}(t)=\|u(t)\|_{\dot{H}^{s}}^{2} \sim \log (t)
$$

Main Theorem

Theorem (Colliander-Keel-Staffilani-Takaoka-Tao)

Let $s>1, k \gg 1$ and $0<\sigma<1$ be given. Then there exists a global smooth solution $u(x, t)$ to

$$
\left\{\begin{array}{c}
\left(-i \partial_{t}+\Delta\right) u=|u|^{2} u \tag{2}\\
u(0, x)=u_{0}(x), \text { where } x \in \mathbb{T}^{2}
\end{array}\right.
$$

and $T>0$ such that

$$
\left\|u_{0}\right\|_{H^{s}} \leq \sigma
$$

and

$$
g_{s}(t)=\|u(t)\|_{\dot{H}^{s}}^{2} \geq K
$$

Ingredients for the proof

- Reduction to a resonant problem
- Construction of a special finite set Δ of frequencies
- Reduction to a resonant, finite dimensional Toy Model
- Arnold diffusion for the Toy Model
- A perturbation lemma
- A scaling argument

Reduction to a Resonant problem

We consider the gauge transformation

$$
v(t, x)=e^{-i 2 G t} u(t, x)
$$

for $G \in \mathbb{R}$. If u solves $\operatorname{NLS}\left(\mathbb{T}^{2}\right)$ above, then v solves the equation

$$
\begin{equation*}
\left(-i \partial_{t}+\Delta\right) v=(2 G+v)|v|^{2} \tag{NLS}
\end{equation*}
$$

We make the ansatz

$$
v(t, x)=\sum_{n \in \mathbb{Z}^{2}} a_{n}(t) e^{i\left(\langle n, x\rangle+|n|^{2} t\right)}
$$

Now the dynamics is all recast trough $a_{n}(t)$:

$$
-i \partial_{t} a_{n}=2 G a_{n}+\sum_{n_{1}-n_{2}+n_{3}=n} a_{n_{1}} a_{n_{2}}^{-} a_{n_{3}} e^{i \omega_{4} t}
$$

where $\omega_{4}=\left|n_{1}\right|^{2}-\left|n_{2}\right|^{2}+\left|n_{3}\right|^{2}-|n|^{2}$.

The FNLS system

By choosing

$$
G=-\|v(t)\|_{L^{2}}^{2}=-\sum_{k}\left|a_{k}(t)\right|^{2}
$$

which is constant from the conservation of the mass, one can rewrite the equation above as

$$
-i \partial_{t} a_{n}=-a_{n}\left|a_{n}\right|^{2}+\sum_{n_{1}, n_{2}, n_{3} \in \Gamma(n)} a_{n_{1}} a_{n_{2}}^{-} a_{n_{3}} e^{i \omega_{4} t}
$$

where

$$
\Gamma(n)=\left\{n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} / n_{1}-n_{2}+n_{3}=n ; n_{1} \neq n ; n_{3} \neq n\right\} .
$$

From now on we will be refering to this system as the FNLS system, with the obvious connection with the original $N L S\left(\mathbb{T}^{2}\right)$ equation.

The RFNLS system

We define the set

$$
\Gamma_{\text {res }}(n)=\left\{n_{1}, n_{2}, n_{3} \in \Gamma(n) / \omega_{4}=0\right\} .
$$

The geometric interpretation for this set is the following: If n_{1}, n_{2}, n_{3} are in $\Gamma_{\text {res }}(n)$, then these four points represent the vertices of a rectangle in \mathbb{Z}^{2}.
We finally define the Resonant Truncation RFNLS to be the system

$$
-i \partial_{t} b_{n}=-b_{n}\left|b_{n}\right|^{2}+\sum_{n_{1}, n_{2}, n_{3} \in \Gamma_{r e s}(n)} b_{n_{1}} \overline{b_{n_{2}}} b_{n_{3}} e^{i \omega_{4} t}
$$

It is time now to define the special set Δ of finite frequencies where we will define the initial data.

A special set of frequencies Δ

We call this set $\Delta \subset \mathbb{Z}^{2}$ and we ask for it several properties. In particular $\Delta=\Delta_{1} \cup \Delta_{2} \cup \ldots \cup \Delta_{M}$, that is M generations of nuclear families Δ_{j}. If $n_{1}, n_{2}, n_{3}, n_{4} \in \Delta$, then they represent the vertices of a rectangle such that n_{1} and n_{3} are in Δ_{j} ("parents") and n_{2}, n_{4} are in Δ_{j+1} ("children"). The interactions among these families follow the these rules:

■ Existence and uniqueness of spouse and children: For any $1 \leq j<M$ and $n_{1} \in \Delta_{j}$ there exist a unique $n_{3} \in \Delta_{j}$ and $n_{2}, n_{4} \in \Delta_{j+1}$ (up to permutations).

- Existence and uniqueness of siblings and parents: For any $1<j \leq M$ and $n_{2} \in \Delta_{j}$ there exist a unique $n_{4} \in \Delta_{j}$ and $n_{1}, n_{3} \in \Delta_{j-1}$ (up to permutations).
- No incest: The sibling at frequency n is never equal to its spouse.
- Faithfulness: Apart from nuclear families Δ does not contain other rectangles.

More properties for the set Δ

- Given $\sigma \ll 1$ and $K \gg 1$, there exist M and $\Delta=\Delta_{1} \cup \ldots \cup \Delta_{M}$ as above and a)

$$
\sum_{n \in \Delta_{M}}|n|^{2 s} \geq \frac{K^{2}}{\sigma^{2}} \sum_{n \in \Delta_{1}}|n|^{2 s}
$$

b) If $N=N(\sigma, K)$ is large enough then Δ consists of $M \times 2^{M-1}$ disjoint frequencies n with $|n|>N=N(\sigma, K)$ and the last frequency in Δ_{M} is of size $C(M) N$ with the first in Δ_{1} is of size N. We call N the Inner Radius of Δ.

The system RFNLS $_{\Delta}$

The final propriety that we ask for the set Δ is that
■ Δ is closed under resonant interactions:

$$
n_{1}, n_{2}, n_{3} \in \Delta \cap \Gamma_{r e s}(n) \Longrightarrow n \in \Delta .
$$

REMARK

If Δ is closed under resonant interaction and if $b_{n}(0)$ has support in Δ, then the solution $b_{n}(t)$ of (RFNLS) on $[0, T]$ has also support in Δ. To see this one just uses Gronwall's estimate on $\sum_{n \notin \Delta}\left|b_{n}(t)\right|^{2}$.

We can then define the finite dimension resonant truncated system

$$
-i \partial_{t} b_{n}=-b_{n}\left|b_{n}\right|^{2}+\sum_{n_{1}, n_{2}, n_{3} \in \Delta \cap \Gamma_{r e s}(n)} b_{n_{1}} b_{n_{2}} b_{n_{3}} . \quad\left(\left(R F N L S_{\Delta}\right)\right)
$$

The ODE system (Toy Model)

Remark

If we go back to (RFNLS) one can easily see that $b_{n}(t)=b_{m}(t)$, for any $m, n \in \Delta_{j}$. We call this the "Intergenerational equality".

Using all these properties for Δ we can identify

$$
\left(b_{n}(t)\right)_{\left\{n \in \mathbb{Z}^{2}\right\}}=\left(b_{j}(t)\right)_{\{j=1, \ldots, M\}}
$$

and reduce $\left(R F N L S_{\Delta}\right)$ to the the system

$$
\left.\left.-i \partial_{t} b_{j}(t)=-b_{j}(t)\left|b_{j}(t)\right|^{2}-2 b_{j-1}(t)^{2} b_{j} \overline{(} t\right)-2 b_{j+1}(t)^{2} b_{j} \overline{(} t\right)
$$

((ODE))
with the boundary condition

$$
\begin{equation*}
b_{0}(t)=b_{M+1}(t)=0 \tag{BC}
\end{equation*}
$$

Conservation laws for the ODE system

The following are conserved quantities for (ODE)

$$
\begin{aligned}
& \text { Mass } \sum_{j}\left|b_{j}(t)\right|^{2}=C_{0} \\
& \text { Momentum } \sum_{j}\left|b_{j}(t)\right|^{2} \sum_{n \in \Delta_{j}} n=C_{1},
\end{aligned}
$$

and if

$$
\begin{aligned}
& \text { Kinetic Energy }=\sum_{j}\left|b_{j}(t)\right|^{2} \sum_{n \in \Delta_{j}}|n|^{2} \\
& \text { Potential Energy }=\frac{1}{2} \sum_{j}\left|b_{j}(t)\right|^{4}+\sum_{j}\left|b_{j}(t)\right|^{2}\left|b_{j+1}(t)\right|^{2}
\end{aligned}
$$

then

$$
\text { Energy }=\text { Kinetic Energy }+ \text { Potential Energy }=C_{2} .
$$

Arnold Diffusion for ODE: The set up

Global well-posedness for $O D E$ is not an issue. We define

$$
\Sigma=\left\{x \in \mathbb{C}^{M} /|x|^{2}=1\right\} \text { and } W(t): \Sigma \rightarrow \Sigma
$$

where $W(t) b\left(t_{0}\right)=b\left(t+t_{0}\right)$ for any solution $b(t)$ of $O D E$. It is easy to see that for any $b \in \Sigma$

$$
\partial_{t}\left|b_{j}\right|^{2}=4 \Re\left(i \bar{b}_{j}^{2}\left(b_{j-1}^{2}+b_{j+1}^{2}\right)\right) \leq 4\left|b_{j}\right|^{2}
$$

So if

$$
b_{j}(0)=0 \Longrightarrow b_{j}(t)=0, \quad \text { for all } t \in[0, T] .
$$

If moreover we define the torus

$$
\Pi_{j}=\left\{\left(b_{1}, \ldots ., b_{M}\right) \in \Sigma /\left|b_{j}\right|=1, b_{k}=0, k \neq j\right\}
$$

then

$$
W(t) \Pi_{j}=\Pi_{j} \text { for all } j=1, \ldots ., M
$$

(Π_{j} is invariant).

Arnold Diffusion for ODE

Theorem

(Arnold Diffusion)
Let $M \geq 6$. Given $\epsilon>0$ there exist x_{3} within ϵ of Π_{3} and x_{M-2} within ϵ of Π_{M-2} and a time t such that

$$
W(t) x_{3}=x_{M-2} .
$$

Remark

$W(t) x_{3}$ is a solution of total mass 1 arbitrarily concentrated at mode $j=3$ at some time t_{0} and then arbitrarily concentrated at mode $j=M-2$ at later time t.

Intuition

Consider $M=2$. Then $O D E$ is of the form

$$
\begin{aligned}
\partial_{t} b_{1} & =-i\left|b_{1}\right|^{2} b_{1}+2 i \overline{b_{1}} b_{2}^{2} \\
\partial_{t} b_{2} & =-i\left|b_{2}\right|^{2} b_{2}+2 i \overline{b_{2}} b_{1}^{2}
\end{aligned}
$$

This system has explicit solution

$$
b_{1}(t)=\frac{e^{-i t}}{\sqrt{1+e^{2 \sqrt{3} t}}} \omega b_{2}(t)=\frac{e^{-i t}}{\sqrt{1+e^{-2 \sqrt{3} t}}} \omega^{2}
$$

where $\omega=e^{2 i \pi / 3}$ (cube root of unity). Since

$$
\lim _{t \rightarrow+\infty}\left|b_{1}(t)\right|=0 \text { and } \lim _{t \rightarrow+\infty}\left|b_{2}(t)\right|=1
$$

and

$$
\lim _{t \rightarrow-\infty}\left|b_{2}(t)\right|=0 \text { and } \lim _{t \rightarrow-\infty}\left|b_{1}(t)\right|=1
$$

More Intuition

It follows that $\left(b_{1}, b_{2}\right) \in \Pi_{2}$ at $t=+\infty$ and $\left(b_{1}, b_{2}\right) \in \Pi_{1}$ at $t=-\infty$. So with an infinite amount of time one can go from Π_{1} to Π_{2} and viceversa. A suitable perturbation of Π_{i} replacing the tori Π_{i} will be the key in proving diffusion in finite time:
A picture here?

A perturbation lemma

LEMMA

Let $\Delta \subset \mathbb{Z}^{2}$ introduced above. Let $B \gg 1$ and $\delta>0$ small and fixed. Let $t \in[0, T]$ and $T \sim B^{2} \log B$. Suppose there exists $b(t) \in I^{1}(\Delta)$ solving $R F N L S_{\Delta}$ such that

$$
\|b(t)\|_{1^{1}} \lesssim B^{-1}
$$

Then there exists a solution $a(t) \in I^{1}\left(\mathbb{Z}^{2}\right)$ of RFNLS such that

$$
a(0)=b(0), \quad \text { and } \quad\|a(t)-b(t)\|_{r^{1}\left(\mathbb{Z}^{2}\right)} \lesssim B^{-1-\delta}
$$

for any $t \in[0, T]$.

Proof.

This is a standard perturbation lemma proved by checking that the "non resonant" part of the nonlinearity remains small enough.

RECASting THE MAIN THEOREM

With all the notations and reductions introduced we can now recast the main theorem in the following way:

Theorem

For any $0<\sigma \ll 1$ and $K \gg 1$ there exists a complex sequence $\left(a_{n}\right)$ such that

$$
\left(\sum_{n \in \mathbb{Z}^{2}}\left|a_{n}\right|^{2}|n|^{2 s}\right)^{1 / 2} \lesssim \sigma
$$

and a solution $\left(a_{n}(t)\right)$ of (FNLS) and $T>0$ such that

$$
\left(\sum_{n \in \mathbb{Z}^{2}}\left|a_{n}(T)\right|^{2}|n|^{2 s}\right)^{1 / 2}>K
$$

Scaling Argument

In order to be able to use the Arnold Diffusion to move mass from lower frequencies to higher ones and start with a small data we ned to introduce scaling. Consider in $[0, t]$ the solution $b(t)$ of the system $R F N L S_{\Delta}$ with initial datum b_{0}. Then the rescaled function

$$
b^{\lambda}(t)=\lambda^{-1} b\left(\frac{t}{\lambda^{2}}\right)
$$

solves the same system with datum $b_{0}^{\lambda}=\lambda^{-1} b_{0}$.
We then first pick the complex vector $b(0)$ that was found in the theorem on Arnold Diffusion. For simplicity let's assume here that $b_{j}(0)=1-\epsilon$ if $j=3$ and $b_{j}(0)=\epsilon$ if $j \neq 3$ and then we fix

$$
a_{n}(0)=\left\{\begin{aligned}
b_{j}^{\lambda}(0) & \text { for any } n \in \Lambda_{j} \\
0 & \text { otherwise } .
\end{aligned}\right.
$$

Estimating the size of $(a(0))$

By definition

$$
\left(\sum_{n \in \Delta}\left|a_{n}(0)\right|^{2}|n|^{2 s}\right)^{1 / 2}=\lambda^{-1}\left(\sum_{j=1}^{M}\left|b_{j}(0)\right|^{2}\left(\sum_{n \in \Delta_{j}}|n|^{2 s}\right)\right)^{1 / 2}=\lambda^{-1} Q_{3},
$$

where the last equality follows from defining

$$
\sum_{n \in \Delta_{j}}|n|^{2 s}=Q_{j}
$$

and the definition of $a_{n}(0)$ given above. At this point we use the proprieties of the set Δ to estimate $Q_{3}=C(M) N$, where N is the inner radius of Δ. We then conclude that

$$
\left(\sum_{n \in \Delta}\left|a_{n}(0)\right|^{2}|n|^{2 s}\right)^{1 / 2}=\lambda^{-1} C(M) N^{s} \sim \sigma
$$

Estimating the size of $(a(T))$

By using the perturbation lemma with $B=\lambda$ and $T=\lambda^{2} t$ we have

$$
\|a(T)\|_{H^{s}} \geq\left\|b^{\lambda}(T)\right\|_{H^{s}}-\left\|a(T)-b^{\lambda}(T)\right\|_{H^{s}}=I_{1}-I_{2}
$$

We want $I_{2} \ll 1$ and $I_{1}>K$. For the first

$$
I_{2} \leq\left\|a(T)-b^{\lambda}(T)\right\|_{I^{1}\left(\mathbb{Z}^{2}\right)}\left(\sum_{n \in \Delta}|n|^{2 s}\right)^{1 / 2} \lesssim \lambda^{-1-\delta}\left(\sum_{n \in \Delta}|n|^{2 s}\right)^{1 / 2}
$$

As above

$$
I_{2} \lesssim \lambda^{-1-\delta} C(M) N^{s}
$$

At this point we need to pick λ and N so that

$$
\|a(0)\|_{H^{s}}=\lambda^{-1} C(M) N^{s} \sim \sigma \text { and } I_{2} \lesssim \lambda^{-1-\delta} C(M) N^{s} \ll 1
$$

and thanks to the presence of $\delta>0$ this can be achieved by taking λ and N large enough.

Estimating I_{1}

It is important here that at time zero one starts with a fixed non zero datum, namely $\|a(0)\|_{H^{s}}=\left\|b^{\lambda}(0)\right\|_{H^{s}} \sim \sigma>0$. In fact we will show that

$$
I_{1}^{2}=\left\|b^{\lambda}(T)\right\|_{H^{s}}^{2} \geq \frac{K^{2}}{\sigma^{2}}\left\|b^{\lambda}(0)\right\|_{H^{s}}^{2} \sim K^{2}
$$

If we define for $T=\lambda^{2} t$

$$
R=\frac{\sum_{n \in \Delta}\left|b_{n}^{\lambda}\left(\lambda^{2} t\right)\right|^{2}|n|^{2 s}}{\sum_{n \in \Delta}\left|b_{n}^{\lambda}(0)\right|^{2}|n|^{2 s}}
$$

then we are reduce to showing that $R \gtrsim K^{2} / \sigma^{2}$. Now recall the notation

$$
\Delta=\Delta_{1} \cup \ldots . . \cup \Delta_{M} \quad \text { and } \quad \sum_{n \in \Delta_{j}}|n|^{2 s}=Q_{j}
$$

More on Estimating I_{1}

Using the fact that by the theorem on Arnold Diffusion (approximately) one obtains $b_{j}(T)=1-\epsilon$ if $j=M-2$ and $b_{j}(T)=\epsilon$ if $j \neq M-2$, it follows that

$$
\begin{aligned}
R & =\frac{\sum_{i=1}^{M} \sum_{n \in \Delta_{i}}\left|b_{i}^{\lambda}\left(\lambda^{2} t\right)\right|^{2}|n|^{2 s}}{\sum_{i=1}^{M} \sum_{n \in \Delta_{i}}\left|b_{i}^{\lambda}(0)\right|^{2}|n|^{2 s}} \\
& \geq \frac{Q_{M-2}(1-\epsilon)}{(1-\epsilon) Q_{3}+\epsilon Q_{1}+\ldots .+\epsilon Q_{M}} \sim \frac{Q_{M-2}(1-\epsilon)}{Q_{M-2}\left[(1-\epsilon) \frac{Q_{3}}{Q_{M-2}}+\ldots .+\epsilon\right]} \\
& \gtrsim \frac{(1-\epsilon)}{(1-\epsilon) \frac{Q_{3}}{Q_{M-2}}}=\frac{Q_{M-2}}{Q_{3}}
\end{aligned}
$$

and the conclusion follows from one the properties of the sets Δ_{j} :

$$
Q_{M-2}=\sum_{n \in \Delta_{M-2}}|n|^{2 s} \gtrsim \frac{K^{2}}{\sigma^{2}} \sum_{n \in \Delta_{3}}|n|^{2 s}=\frac{K^{2}}{\sigma^{2}} Q_{3}
$$

Conclusions

Can one obtain a stronger result? We believe that by "concatenating" infinitely many solutions like the one described above one may be able to obtain a solution u for $N L S\left(\mathbb{T}^{2}\right)$ such that

$$
\|u(t)\|_{H}^{s} \sim C_{s} \log (|t|), \quad \text { as } \quad t \rightarrow \pm \infty
$$

