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1. BLOWUP SOLUTIONS EXIST

We consider the Cauchy problem for L? critical focusing NLS:

(o s, 52

The solution has an L2-invariant dilation symmetry
u M7, y) = A tu(A T2, ALy,

Time invariant conserved quantities:
Mass = lu(t, x)|?dx.
R4

Momentum = 2%/ u(t)Vu(t)dx.
R2

Energy — H{u(t)] = ;/R ]Vu(t)]zdx—%]u(t)]4dx.



NLS; (R?) H'-GWP THEORY

m Weinstein's H'-GWP mass threshold for NLS; (R?):
lwolliz < Qe = H' 3 wo — u, T" = o0,
based on optimal Gagliardo-Nirenberg inequality on R?

2
lullfs < [HQ”z] lullZ= 1V ulf2.
12

m Q is the ground state solution to —Q + AQ = —Q°3.
m The ground state soliton solution to NLS; (R?) is

u(t,x) = e Q(x).



PSEUDOCONFORMAL SYMMETRY

m Pseudoconformal transformation:

1 iw? 1y
PClu)(T,y) = v(T,y) = WT/ze i u <—T, 7_) )

m PC is L?-critical NLS solution symmetry:
Suppose 0 < t; < tp < c0. If

u: [t 2] x R2 — C solves NLSleJr (RY)

4
d

then
PClu] = v : [-t; 1, —t; Y], ¥ Rf, —C

solves
i0rv+ Ay = +|v[*9y.

m PC is an L2-Strichartz isometry:
If % + % = g then

[PCLull LIl ([~ Yty xRY) = | U”L‘jL;([tl,tQ]de)'



ExprLicIT BLOWUP SOLUTIONS

m The pseudoconformal image of ground state soliton eitQ(x),
1 o /x\ 2.
5({'7)() = EQ (?> e "7 +t,

is an explicit blowup solution.

m S has minimal mass:
[1S(=Dlz = 1Rl 12-

All mass in S is conically concentrated into a point.

m Minimal mass H! blowup solution characterization:
up € HY, |luoll 2 = | @Il 2, T*(uo) < oo implies that u= S up
to an explicit solution symmetry. [Merle]



MANY NON-EXPLICIT BLOWUP SOLUTIONS

m Suppose a: R? — R. Form virial weight

= alx U2 X)dax
Vo= [ abaluf(e.0d

and
0:Va = My(t) = [ Va 23(pVe)dx.
]R2

Conservation identities lead to the generalized virial identity

OV, = O:M, = /2(_AAa)\¢\2 + 4apR(pjok) — ajj|ul*dx.
R

m Choosing a(x) = |x|? produces the variance identity
af/ IxP|u(t, x)|2dx = 16H[u].
R2

m Hlup] <0, [ |x[?|uo(x)|?dx < oo blows up.
m How do these solutions blow up?



Mass CONCENTRATION PROPERTY: H! THEORY

H' Theory of Mass Concentration

m H! N {radial} > ug — u, T* < oo implies

Iiminf/ lu(t,x)[Pdx > [|Q||%..
/T Jix|<(T—t)1/2-

[Merle-Tsutsumi]

m H! blowups parabolically concentrate at least the ground
state mass. Explicit blowups S concentrate mass much faster.

m Fantastic recent progress on the H! blowup theory.
[Merle-Raphaél]



MAass CONCENTRATION PROPERTY: L2 THEORY

L? Theory of Mass Concentration
m 23 ugr— u, T < oo implies

lim sup sup /]u(t,x)\zdx > Huo\|Z2M.
t/ T* cubes I side()<(T*—t)t/2J1

[Bourgain]

L2 blowups parabolically concentrate some mass.
m For large L? data, do there exist tiny concentrations?
m Extensions in [Merle-Vega], [Carles-Keraani], [Bégout-Vargas].

m Upgrading limsup into liminf appears challenging.



[? CriTICAL CASE: CONJECTURES/QUESTIONS

Consider focusing NLS; (R?):
m Scattering Below the Ground State Mass

77

uollz < [|Qllz2 = """ up = u with [u| s < oo

(Also, L? solutions of NLS; (R?) satisfy’”’ [ulls < oc.)

= Minimal Mass Blowup Characterization
luoll 2 = || Q|20 — u, T* <00 = " u=S,

modulo a solution symmetry. An intermediate step would
extend characterization of the minimal mass blowup solutions
in H® for s < 1.

m Concentrated mass amounts are quantized
The explicit blowups constructed by pseudoconformally
transforming time periodic solutions with ground and excited
state profiles are the only asymptotic profiles.

m Are there any general upper bounds? limsup vs. liminf ?



[? CRITICAL CASE: PARTIAL RESULTS

m For 0.86 ~ $(1+V/11) < s < 1, H* N {radial} > up —
u, T <oco =

nmsup/ lu(t, x)Pdx > [| Q|
/T x| <(Te =)/

H*-blowup solutions concentrate ground state mass.
[C-Raynor-C.Sulem-Wright]

[ | ||U0”L2 = ”QHL2,U0 EH ~086<s<1,T"<o0o =
Jt, / T*st. u(t,) — Qin H¥®) (mod symmetry sequence).
For H® blowups with [[up||2 > || Q]| 2, u(ts) — V € H (mod
symmetry sequence). [Hmidi-Keraani] This is an H® analog of
an H! result of [Weinstein] which preceded the minimal H?!
blowup solution characterization.



PROGRESS TOWARD CONJECTURES

m Spacetime norm divergence rate

lull 2 (o,gxm2) 2 (T — 1)’

is linked with mass concentration rate

lim sup sup /| (t,x)>dx > ||Uo||,_z .
Zal cubes [,side(1)<(T*—t) %+

sy

[C-Roudenko]



2. GROUND STATE MASS CONCENTRATION FOR H°®

THEOREM (C-RAYNOR-SULEM-WRIGHT)

For 0.86 ~ (1 +V11) < s < 1,H* N {radial} 5 up — u, T* <
="

lim sup/ |U(t,X)|2dX > ||Q||%2
t,/ T J|x|<(T*—t)s/2=

m {radial} removed by concentration compactness. [Tzirakis]
NLS; (R)

= Higher dimension generalization NLS," (RY). [Visan-Zhang]

4
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GROUND STATE MASS CONCENTRATION FOR H!

Recall [Merle-Tsutsumi]. H' N {radial} > ug — u with T* < oo.

m Rescalings (weakly) converge to asymptotic profile.

Consider {u(tn, ) }nen = {un(-)}nen along t, / T*. Form
vn() = A5 tun(A51 ()

with Ay = ||Vl = (T* — t,)"Y/2 so that |V, = 1.
Thus, 3 v € H! such that v, — v in H! along subsequence.

m Compactness and energy of rescaled asymptotic object.

Radial & Rellich Compactness = v, — v strongly in L%,
|Elvall = Ap%E[u(ta)]] = 0 = E[v] <0.
m E[v] <0 = ||v| ;2 > ||Q|2; undo scaling.
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GROUND STATE MASS CONCENTRATION FOR H°®

We imitate the [Merle-Tsutsumi] result using modified energy.

m Blowup Parameter:

A(t) = [[u(t)[[ms; A(t) = sup A(7).
T€[0,t]

m Modified Blowup Parameter:

o(t) = [I{V)u(t)]2; X(t) = Zl[lopt]U(T)-

Recall,
1FllHs < (V) Fll2 < NY72)|F] s,

Thus, E[v] <0 = [lv]2 = [|Q]l 2.



GROUND STATE MASS CONCENTRATION FOR H°®

LEMMA ( MoDIFIED KINETIC > MODIFIED TOTAL ENERGY)

Vs> 0.86 if H° 5 ug — u on maximal [0, T*) then
VT < T* 3 N = N(T) such that

|Elneryu(T)] < GA(T)P
with p(s) <2 and Co = Co(s, T, ||uo||Hs)-

m Modified Kinetic Energy > Modified Total Energy.

p(s)
m N(T)=CAN(T)x1-9.
m Proof based on almost conservation; multilinear analysis.



GROUND STATE MASS CONCENTRATION FOR H°®

Rescale by modified kinetic energy.
Choose any maximizing sequence t, /* T* satisfying
[u(tn)llHs = A(tn). Define va(y) = o, e,y u(tn, opty)
where N(t,) is as in the Lemma.

Weak convergence and L* compactness.
Rescaling = ||[Vp||g1 — 1so v e H sit. v, — v along
subsequence. Radial & Rellich = v,, — v strongly L*.

Energy of asymptotic object.
|Elvall = 02| Ellvun]| < 02N (8) < (A(tn))P) 2 — 0.
Undo the rescaling.
Unravelling scaling using lower bound o, > (T* — t,)~5/2
completes proof.



3. CONCENTRATION & STRICHARTZ EXPLOSION

m Ground state soliton u(t,x) = e Q(x) satisfies
lullta(pjjaagexrzy =n = O(1), Vj €N.

L4-isometry & explicit S = PC[e™ Q] ~ |7|71Q(rty)e',

HSHL“([*},fﬂ%]TxIRﬁ) =n, VjeN

Thus, [|S||4((-1,qxr2) ~ 77: Mass concentrated in |y| < [t].

It\
Contrast with [Merle-Tsutsumi], [Bourgain] Concentration:
ullp#((—1,qxr2) /" 00 = Mass concentrated in [y| < [t|

1/2

m Observation?
Strichartz explosion rate = f(concentration window size).



HEURISTIC: WINDOW SIZE & L* EXPLOSION

m When |lul|(f¢,,t,.1]xR2) ~ 71 [Bourgain] essentially shows
parabolic concentration: 3 t* € [t,, t,4+1] and xg € R? where

lut, x)Pdx 2 Juoll 2.
Ix—xo| Sl tn+1—tn[1/2
m In [C-Roudenko], we observe (overstated!):

ull = f(T"—t) Socast / T*

[0, T* —t]xR2
T

sup / u(t, )2 2 [ uol| M

xp€ER?
x—xo| S[-8:F(T*—1)]~1/2

m Why? By first order Taylor approximation, we have
N~ F(T* = thp1) — F(T* = tn) ~ [0 (T* — tn)](tns+1 — tn)-



STRICHARTZ EXPLOSION =—> TIGHT WINDOW

THEOREM (C-ROUDENKO)

Suppose T* < oo and HuH 2942) >(T* —t)P. Then
([0,t] xR9)
im sup sup [t 02 o> ol .
t/Tr cubes J € RY : J

I(J) < (T* — 1)tz

Furthermore, V t € (0, T*) 3 a cube 7(t) C ]Rg of size
53
2

I(r(t)) 2 (T* — 1)~ G+

) such that

lim sup sup /\PT(t)u(t,x)|2dx > || uo|
t/ T cubes J € RY : J

I(J) < (T* — t)2+3



REMARKS ON PROOF (FOLLOW [BOURGAIN])

Decompose [0, T*) into J[tn, tn+1) on which

1
“u“L4([t,,,tn+1]><R2) =n-~ 100°

For t € [tn, ta11), we have u ~ e/(t=t)Ay(t,).

m Strichartz Refinements and the conditions

1fll2 < lluoll2i €™ Flls >

spawn a spacetime tube decomposition of etAf.

m 3 concentration time t} € [t,, tpy1) V n.
Thus, proof is more refined than the lim sup claim.

Taylor expansion connects (t,+1 — t,) with T* — t,.



THICKENED TIME INTERVAL OF CONCENTRATION

LEMMA (FREQUENCY LOCALIZED WAVES PERSIST)
Let f € [2(RY) and spt f C [0,1]? and suppose

/ 1f(x)[?dx > ¢; > 0.
[0.1)¢
Then for |t| < c(c1, ||f||;2) concentration persists

/ A F(x) 2 dx > 2.
[071]d 2

m Frequency localization in conclusion shows concentration
persists for t in an interval containing t* of size (T* — )15,

m Thickened concentration interval may not cover [ty, th11]-



TicHT WINDOW =—> STRICHARTZ EXPLOSION

Let F(t) = ull{s0,qxmrz) and Pty = Pyei<iie-

LEMMA (POINTWISE DERIVATIVE LOWER BOUND)

Suppose 3 o > %, € > 0 such that

lim sup sup / |PL(,:)u(t,x)|2 dx > e.
t/T*  cubes JCRY: “J
I(J) < (T* —t)~
Then 3 t, /" T* such that
Flta) 2 (T — )22,

On thickened concentration time intervals, we integrate the
derivative lower bound get a Strichartz lower bound.



CAuUuTIOUS REMARK CONCERNING lim inf

Consider NLS; (R?) posed at time t = —e with data

¢€(X) — eiefl\x\zeiefl

Q(x).

Dilated explicit solution which blows up at t =0 = T7*!

The parabolic scale related to distance to blowup time is /€.
For 7 a cube of side /¢, observe that ¢, is non-concentrated

/«mzdxs .

Consider data (1 — §)¢e....
Phase oscillations violently influence L? blowup behavior.
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