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NONLINEAR SCHRODINGER INITIAL VALUE PROBLEM

We consider the defocusing initial value problem:

{(i8t+A)U= o u (NLS5 (R))

u(0, x) = up(x).

The + case is called defocusing; — is focusing.

[ NLS3i is ubiquitous in physics. NLS;E introduced to explore
interplay between dispersion and strength of nonlinearity.

m The main question about an evolution PDE: What is the
ultimate fate of solutions? We want to understand the
maximal-in-time behavior of the solutions.

m Conservation and invariance properties motivate the study of
NLS;(R?) for low (and minimal) regularity initial data.



TIME INVARIANT QUANTITIES

Mass:/ lu(t, x)|?dx.
Rd

Momentum = 2%/ u(t)Vu(t)dx.
R2

2
Ju(t)| " dx.

1
Energy = H{u(1)] = /R Vo)

m Mass is L2;: Momentum is close to H1/2; Energy involves HL.
= Dynamics on a sphere in L?; focusing/defocusing energy.

m Local conservation laws express how quantity is conserved:
e.g., Or|ul? =V -23(uVu). Space/Frequency Localizations?



DILATION INVARIANCE AND CRITICAL REGULARITY

One solution u generates parametrized family {u*} ¢ of solutions:
u:[0,T) x RY — C solves NLS;(R?)
)
vt 1[0, A°T) x R — C solves NLS;[(Rd)
where

M7, y) = AP (A2 ALy,

Norms which are invariant under u —— uy are critical.



DILATION INVARIANCE AND CRITICAL REGULARITY

In the L2-based Sobolev scale,
D5 (E) 2 = A7 T2 | Dou(t) | 2
The critical Sobolev index for NLS;E(IR") is

d 2
Sci= o — ——.

2 p-1

Scaling/Conservation Criticality

scaling regime
se <0 mass subcritical
s=0 mass critical
0<s. <1 mass super/energy subcritical
se=1 energy critical
1<s.<d/2 energy supercritical




OPTIMAL LOCAL-IN-TIME THEORY

Local-in-time theory for NLS;—L(]R") is essentially complete:

m Pioneering advances on spacetime dispersive estimates
culminated in [Cazenave-Weissler 90] to prove local
well-posedness for s > sp,,,, = max(0, sc).

(discussed in more detail for NLS3(R?) soon.)

m |ll-posedness results for s < sy, have been established.
[Kenig-Ponce-Vega 01], [Christ-C-Tao 03],
[Burg-Gérard-Ibrahim], [Alazard-Carles]

m When s, < 0, the Galilean symmetry obstructs well-posedness
below s = 0.



LOCAL-IN-TIME THEORY FOR NLS;(R?)

We pause to discuss the L?(IR?)-critical case.
m Y ug € L2(R?) 3 Typ(uo) determined by
; 1
itA
||e u0||L?X([07Tpr]XR2) < m such that
3 unique u € C([0, Thwpl; L?) N LE([0, Thwp] x R?) solving
NLSS (R?).
_2
BV uy € H(R?),s > 0, Tjwp ~ ||uol| 4 and regularity persists:
u € C([0, Thpl; H(R?)).
m Define the maximal forward existence time T*(up) by
lull 2 (jo, 7+ —6]xm2) < 00
for all § > 0 but diverges to oo as § \, 0.
m 3 small data scattering threshold pg > 0

uoll2 < po = HU”L‘gX(Rsz) < 2up.



GLOBAL-IN-TIME THEORY?

What is the ultimate fate of the local-in-time solutions?

L2-critical Defocusing Scattering Conjecture:
2 5 up — u solving NLS; (R?) is global-in-time and

s < Aluo) < oo,
Moreover, 3 uy € L?(R?) such that

tﬂ:rpoo HeiitAui - U(t)||L2(R2) =0.
Remarks:

m Known for small data [|uol[r2(r2) < fi0-

m Known [Tao-Visan-Zhang 06] for NLS (]Rd) for large radial

data, d > 3. Same for d = 2 [Killip- Tao Visan 07].
m GWP for L? data <= Scattering for L? data. [Blue-C 06]



CRITICAL REGULARITY SCATTERING CONJECTURE?

Consider defocusing case NLS}(RY) with critical Sobolev index

d 2
Se =3 b1

The critical (diagonal) Strichartz index is

—1)(2 2
qc:(p 7)( +d) <:>*+i:g—5c.
2 dc dc 2

H*:-critical defocusing scattering conjecture:
H*(R9) > up — u solving NLS,;*(R") is global-in-time and

[[ull g, < A(uo) < oc.



CRITICAL REGULARITY SCATTERING CONJECTURE?

Present status of the defocusing scattering conjecture

criticality | general data radial data | evidence
sc=0 77 [TVZ],[KTV] | GWP: s, <s< 1
0<sc<l | Vise<s,<s<l1l]|s=s77 v': extra smooth
se=1 [CKSTTL[RV],[V] ,[T] v': Resolved!
1<s.<2|722777 7777 Numerics [BISu]

m Scattering for NLS, under natural threshold? [Kenig-Merle]

m The existence (and value) of s, depends upon p, d.

1

Radial case with s. = 5 may be accessible using Morawetz??
Induction-on-Mass + radial results — s. = 0 accessible???

Lectures series concentrates on NLS;E(]R2) with general data.




2. OUTLINE OF LECTURES

I /-method for Global Well-Posedness Below Energy.
Abstract Scheme
Almost Conservation of H[lu]
Multilinear Correction Terms
Resonant Decompositions
IT Low Regularity Theory for Focusing NLS.

I-method for focusing NLS™ below ground state mass
Mass Concentration Properties of H* Blowup Solutions
Mass Concentration Properties of L2 Blowup Solutions

III The /-method with a Morawetz Bootstrap.
Interaction Morawetz Estimates
H[lu] + Morawetz GWP & Scattering Results
Remarks on [2?-Critical Scattering Conjecture

IV To Be Announced



3. H! vERsuS H° GLOBAL WELL-POSEDNESS

Consider NLSF(IR?) with finite energy data up € H™.
Classical H'-GWP Scheme relies on three inputs:
B LWP lifetime dependence on data norm: Ty, ~ ||uo||H2/s.
A Energy controls data norm: [[u(t)||2, < H[u(t)] + [|u(t)||7
Conservation: H[u(t)] + ||u(t)||?. < C(Energy, Mass).
Fix arbitrary time interval [0, T]. Break [0, T] into subintervals of
uniform size c(Energy, Mass) + LWP iteration —- GWP.

For up € H* with 0 < s < 1, we may have infinite energy. Classical
persistence of regularity from LWP /Duhamel only gives

sup lu(t)llns S 2[|uollHs
tE[O,T/Wp]

and LWP iteration fails due to (possible) doubling.



ABSTRACT /-METHOD SCHEME FOR H°*-GWP

Let H5 5 g — u solve NLS for t € [0, Tiwpl, Tiwp ~ lltoll 2.

Consider two ingredients (to be defined):

m A smoothing operator | = Iy : HS — H!. The NLS
evolution vy — u induces a smooth reference evolution
H > lug — Iu solving I(NLS) equation on [0, Ti).

m A modified energy E[/u] built using the reference evolution.

We postpone how we actually choose these objects.



ABSTRACT /-METHOD SCHEME FOR H°*-GWP

We want /Iy and E chosen to give a progressive H*-GWP scheme:
Lifetime dependence on data norm: Tj,, ~ ||u0||;,§/5./

E controls data norm: 3 ty € [% Tiwp, Thwp] s-t.

lute)lIF < Elu(te)] + [lu(te) |72
Almost Conservation of Modifed Energy:

sup  E[lu(t)] < E[luo] + N~
tE[O,T,Wp]

The scheme advances over K uniform sized time steps of length
O(E[ug] /%) until the modified energy doubles

KN~ ~ E[lug).

This extends to solution for t € [0, NaE[Iuo]l_%] which contains
[0, T] for large enough N provided s > s, with s, < 1.



FIRST VERSION OF THE /-METHOD: E = H[lu]

For s < 1, N > 1 define smooth monotone m : Rg — RT s.t.

1 for [£] < N
mie) = {(',’f,)s_l for |¢| > 2.

—

The associated Fourier multiplier operator, (/u)(£) = m(&)u(§),
satisfies / : HS — H. Note that, pointwise in time, we have

lullme < Mull i S N2l e

Set E[lu(t)] = H[lu(t)]. A detailed multilinear Fourier analysis
establishes that H[/u] is almost conserved with o = 3 for
NLSF(R?) and with a = 1 for NLS; (R3). After some
bookkeeping....



FIRST VERSION OF THE /-METHOD: E = H[lu]

THEOREM (CKSTT:MRLO02)

NLSS (R?) is globally well-posed for data in H*(R?) for 2 < s < 1.

NLS;(]R‘O’) is globally well-posed for data in H*(IR?) for % <s<1.
u(t)lms S (t)ﬁ(s) for appropriate [3(s).

Moreover,

The same result applies for NLS; (R?) provided |lug|| 2 < || Q|| .2
where Q is the ground state, the unique (up to translations)
positive solution of —Q + AQ = Q3.



[2-CRITICAL IN WEIGHTED L2 SPACES

Based on PC transformation & inspired by [Bourgain98], we have:
THEOREM (BLUE-C:CPAAO06)

Fors >0, if NL51++%(Rd) is GWP for H*(R?) initial data then
NLS;;%(R") is GWP and scatters for data satisfying

(-YSuo(-) € L?. The same result applies to the focusing case
provided ||ul| 2 < || Q]| 2-

m Thus, GWP for L? data <= Scattering for L? data.
m H*-GWP improvements imply weighted space improvements.
m PC transformation isometry in L2-admissible Strichartz spaces.



NLS; (R?): PRESENT STATUS

regularity idea reference

s> 2 high/low frequency decomposition | [Bourgain98]

s> é H(lu) [CKSTTO02]

s> 1 resonant cut of 2nd energy [CKSTTO07]

s> % H(lu) & Interaction Morawetz [Fang-Grillakis05]
s>t H(lu) & Interaction /-Morawetz | [CGTz07]

s> 1%? resonant cut & /-Morawetz [-7-]

m Morawetz-based arguments are only for defocusing case.
m Focusing results assume ||upl|;2 < || Q|| 2.
m Unify theory of focusing-under-ground-state and defocusing?



4. Low REGULARITY THEORY FOR FocusiNnGg NLS

Remark:
m The H-GWP scheme is relaxed to an H5-GWP scheme by
replacing the energy H[u] by the modified energy E[/lu].
m The energy plays a basic role in other aspects of the NLS
theory (e.g. soliton stability, properties of blowup).

m Natural idea: Explore whether existing H® theory may be
systematically relaxed to H* by replacing H[u] by E[lu].



[? CRITICAL CASE: BLOWUP SOLUTION PROPERTIES

Explicit Blowup Solutions

m Arise as pseudoconformal image of e Q(x) :

1 X x|
S(t,x) == (7>e_’T+’.
(tx)=2Q (3 e
m S has minimal mass:

IS(=Dllz = 1Rl 2.

All mass in S is conically concentrated into a point.

m Minimal mass H! blowup solution characterization:
up € HY, |luoll 2 = |Qll 2, T*(uo) < oo implies that u= S up
to an explicit solution symmetry. [Merle]



[? CRITICAL CASE: BLOWUP SOLUTION PROPERTIES

Virial Identity —> 3 Many Blowup Solutions
m Integration by parts and the equation yields

af/ x| u(t, x)Pdx = 8H[ug).
R

m Hlup] <0, [ |x[?|uo(x)|?dx < oo blows up.

m How do these solutions blow up?



[? CRITICAL CASE: MASS CONCENTRATION

H' Theory of Mass Concentration

m H! N {radial} > up — u, T* < oo implies

Iiminf/ lu(t, x)[Pdx > || Q|7
/T Jix|<(T =t/

[Merle-Tsutsumi]

m H! blowups parabolically concentrate at least the ground
state mass. Explicit blowups S concentrate mass much faster.

m Fantastic recent progress on the H! blowup theory.
[Merle-Raphaél]



[? CRITICAL CASE: MASS CONCENTRATION

L? Theory of Mass Concentration
m %3 ug— u, T* < oo implies

im sup sup [ lutePase = w2
t/ T* cubes I side()<(T*—t)t/2J1

[Bourgain98|

L2 blowups parabolically concentrate some mass.
m Extensions in [Merle-Vega], [Carles-Keraani], [Bégout-Vargas].

m For large L? data, do there exist tiny concentrations?
([TVZ], [KTV]: No, for radial data.)



TYPICAL BLOWUPS LEAVE AN L2 STAIN AT TIME T*

[Merle-Raphaél]:

HE Ol Qllez < lluolliz < [[Qll2 + "} 5 to — u solving
NLS; (R?) on [0, T*) (maximal) with T* < oo.
3 A(t), x(t),0(t) € RY,R? R/(27Z) and u* such that

u(t) = A(t)1Q <X ;();)(t)> et

strongly in L?(R?). Typically, u*¢H® U LP for s > 0, p > 2!



[? CriTICAL CASE: CONJECTURES/QUESTIONS

Consider focusing NLS; (R?):
m Scattering Below the Ground State Mass. ([KTV]:v)

77

uollz < [|Qllz2 = ™" up = u with [u| s < oo

(Also, L? solutions of NLS; (R?) satisfy’”’ [ulls < oc.)

= Minimal Mass Blowup Characterization.
luoll 2 = || Q| 2y o — u, T* <00 = " u=S,

modulo a solution symmetry. An intermediate step would
extend characterization of the minimal mass blowup solutions
in H® for s < 1.

m Concentrated mass amounts are quantized.
The explicit blowups constructed by pseudoconformally
transforming time periodic solutions with ground and excited
state profiles are the only asymptotic profiles.

m Are there any general upper bounds?



[? CRITICAL CASE: PARTIAL RESULTS

m For 0.86 ~ $(1+V/11) < s < 1, H* N {radial} > up —
u, T" <oo =

imsupy 7. [ ut,x)Pex > Q2.
x| <(T*—t)s/2~

H?*-blowup solutions concentrate ground state mass.
[C-Raynor-C.Sulem-Wright]

m |ull2 = ||Q2,u0 € H5,~ 086 <s<1,T"<o0o =
Jt, / T*st. u(ty) — Qin H¥S) (mod symmetry sequence).
For H® blowups with [|ug||;2 > ||Q]|;2, u(t,) — V € H (mod
symmetry sequence). [Hmidi-Keraani] This is an H® analog of
an H' result of [Weinstein] which preceded the minimal H?!
blowup solution characterization.

m Same results for NLS;H(R") in H®, s > %. [Visan-Zhang]
d



[? CRITICAL CASE: PARTIAL RESULTS

[C-Roudenko]
Spacetime norm divergence rate

lull 2 (o, <2y Z (TF = £) 7"

is linked with mass concentration rate

lim sup sup /| (t,x)[2dx > ||u0|]L2 .
e cubes I,side(1)<(T*— t)7+7



5. INTERACTION MORAWETZ: LOCAL CONSERVATION

Suppose ¢ : [0, T] x RY — C solves generalized NLS
for some N = N (t,x,u) : [0, T] x R? x C — C. Assume ¢ is nice.

We introduce notation to compactly express mass and momentum
(non)conservation for solutions of generalized NLS.

Write aqub = @gf) = qu.



LOCAL MASS/MOMENTUM (NON)CONSERVATION

m mass density: Too = |62
m momentum density/mass current:
Toj = Tjo = 23(¢¢))
m (linear part of the) momentum current:
Lix = Li; = —0;0k|6|* + 4R(;0x)
m mass bracket: {f,g}m = S(fg)
m momentum bracket: {f,g}j = R(f0;g — g0;f)

Local mass (non)conservation identity:

¢ Too + 0; Toj = 2{N, ¢} m

Local momentum (non)conservation identity:

O¢ Toj + OklLig = 24N, ¢},



LOCAL MASS/MOMENTUM (NON)CONSERVATION

Consider N' = F'(|¢|?)¢ for polynomial F : RT — R.
m We calculate the mass bracket

{F'(1617)$, o}m = S(F'(|1¢|*)p0) = 0.

Thus mass is conserved for these nonlinearities.

m We calculate the momentum bracket

{F'(|6]*)¢, 0}, = —9;G(|6]*)

where G(z) = zF'(z) — F(z) ~ F(z).
Thus the momentum bracket contributes a divergence and
momentum is conserved for these nonlinearities.



GENERALIZED VIRIAL IDENTITY

Suppose a : RY — R. Form the Morawetz Action
M,(t) = Va-23(¢Ve)dx.
Rd

Conservation identities lead to the generalized virial identity

oM, = [ (~D8a)I6R + 4apR(F0n) + 23, {N. 6.

Idea of Morawetz Estimates: Cleverly choose the weight
function a so that 9:M, > 0 but M, < C(¢g) to obtain spacetime
control on ¢. This strategy imposes various constraints on a which
suggest choosing a(x) = |x|.



EXAMPLE: [LIN-STRAUSS 78] MORAWETZ IDENTITY

Consider (i0; + A)¢ = F'(|¢|?)¢ with F/ > 0 and x € R3. Choose
a(x) = |x|. Observe that a is weakly convex, Va = % is bounded,

and —AAa = 471dg. One gets the Lin-Strauss Morawetz identity

M,(T) — M,(0) = //47750()()‘(;5(,;)()2 (>0 +4G(||f||2)dxdt
0 R3

which implies the spacetime control estimate

(Huo)2lluoll 2 2 / /

0 R3

ddt



ExXAMPLE: L*(R; x R3) INTERACTION MORAWETZ

[CKSTT 04] (Hassell 04)
m Suppose ¢1, ¢2 are two solutions of (i0; + A)é = F'(|¢]?)¢
with F/ >0 and x € R3. The ""2-particle” wave function

W(t, X1, X2) = ¢1(ta Xl)d)2(t7 X2)
satisfies an NLS-type equation on R+
(i0e + A1 + D)W = [F'(|61]?) + F'(62]*)] V.

m Note that [F'(|¢1]?) + F'(|¢2]?)] > 0 so defocusing.

m Reparametrize R® using center-of-mass coordinates (X, y)
with X = %(xl + x2) € R3. Note that y = 0 corresponds to
the diagonal x; = x = X. Apply the generalized virial identity
with the choice a(x1,x2) = |y|. Dismissing terms with
favorable signs, one obtains...



ExXAMPLE: L*(R; x R3) INTERACTION MORAWETZ

)
IVulligpelenll = [ [ (-Bonalyl)Wix. ) Poadbadt
0 R6

v

.
C/ /65{yo}(Xl,Xz)|¢1(X1)¢2(X2)\2dX1dX2dt
o Jr

;
c/o /R3 |p1(t,%)o(t,X)|2dxdt.

Specializing to ¢1 = ¢» gives the interaction Morawetz estimate

v

/ . lo(t, x) |4dxdt < CHVuHLoo L2HU0HL2

valid uniformly for all defocusing NLS equations on R3.



"THE” INTERACTION MORAWETZ ESTIMATE

Efforts to extend the L*(R; x R3) interaction Morawetz to the R2
setting led to...

THEOREM (C-GRILLAKIS-TZIRAKIS)

Finite energy solutions of any defocusing NLS™(RY) satisfy

3=d, 12,2 3
1D ulllz S lluollzz [ Vull oo iz

m Independently and simultaneously obtained by
[Planchon-Vegal].

m Gives simple proof of Hl-scattering in mass supercritical case.
[Nakanishi]

m Simplified proof extends to H* for certain s < 1.
m May play a role in resolving the L? scattering conjecture?
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