MAXIMAL-IN-TIME ISSUES FOR NONLINEAR SCHRÖDINGER EQUATIONS

J. Colliander
University of Toronto

Séminaire, Université de Paris-Nord 13, Villetaneuse

1 NLS Cauchy Problem; Scattering Conjecture?

2 Outline of Lectures

3 The l-method

4 Low Regularity Theory for Focusing NLS

5 Interaction Morawetz

Nonlinear Schrödinger Initial Value Problem

We consider the defocusing initial value problem:

$$
\left\{\begin{array}{c}
\left(i \partial_{t}+\Delta\right) u= \pm|u|^{p-1} u \tag{p}\\
u(0, x)=u_{0}(x)
\end{array}\right.
$$

The + case is called defocusing; - is focusing.

- $N L S_{3}^{ \pm}$is ubiquitous in physics. $N L S_{p}^{ \pm}$introduced to explore interplay between dispersion and strength of nonlinearity.
- The main question about an evolution PDE: What is the ultimate fate of solutions? We want to understand the maximal-in-time behavior of the solutions.
- Conservation and invariance properties motivate the study of $N L S_{p}^{ \pm}\left(\mathbb{R}^{d}\right)$ for low (and minimal) regularity initial data.

Time Invariant Quantities

$$
\begin{aligned}
\text { Mass } & =\int_{\mathbb{R}^{d}}|u(t, x)|^{2} d x . \\
\text { Momentum } & =2 \Im \int_{\mathbb{R}^{2}} \bar{u}(t) \nabla u(t) d x . \\
\text { Energy } & =H[u(t)]=\frac{1}{2} \int_{R^{2}}|\nabla u(t)|^{2} d x \pm \frac{2}{p+1}|u(t)|^{p+1} d x .
\end{aligned}
$$

- Mass is L^{2}; Momentum is close to $H^{1 / 2}$; Energy involves H^{1}.
- Dynamics on a sphere in L^{2}; focusing/defocusing energy.
- Local conservation laws express how quantity is conserved: e.g., $\partial_{t}|u|^{2}=\nabla \cdot 2 \Im(\bar{u} \nabla u)$. Space/Frequency Localizations?

Dilation Invariance and Critical Regularity

One solution u generates parametrized family $\left\{u^{\lambda}\right\}_{\lambda>0}$ of solutions:

$$
\begin{gathered}
u:[0, T) \times \mathbb{R}_{x}^{d} \rightarrow \mathbb{C} \text { solves } N L S_{p}^{ \pm}\left(\mathbb{R}^{d}\right) \\
\Uparrow \\
u^{\lambda}:\left[0, \lambda^{2} T\right) \times \mathbb{R}_{x}^{d} \rightarrow \mathbb{C} \text { solves } N L S_{p}^{ \pm}\left(\mathbb{R}^{d}\right)
\end{gathered}
$$

where

$$
u^{\lambda}(\tau, y)=\lambda^{-2 /(p-1)} u\left(\lambda^{-2} \tau, \lambda^{-1} y\right)
$$

Norms which are invariant under $u \longmapsto u_{\lambda}$ are critical.

Dilation Invariance and Critical Regularity

In the L^{2}-based Sobolev scale,

$$
\left\|D^{s} u^{\lambda}(t)\right\|_{L^{2}}=\lambda^{-\frac{2}{p-1}-s+\frac{d}{2}}\left\|D^{s} u(t)\right\|_{L^{2}} .
$$

The critical Sobolev index for $\operatorname{NLS} S_{p}^{ \pm}\left(\mathbb{R}^{d}\right)$ is

$$
s_{c}:=\frac{d}{2}-\frac{2}{p-1} .
$$

Scaling/Conservation Criticality

scaling	regime
$s_{c}<0$	mass subcritical
$s=0$	mass critical
$0<s_{c}<1$	mass super/energy subcritical
$s_{c}=1$	energy critical
$1<s_{c}<d / 2$	energy supercritical

Optimal Local-In-Time theory

Local-in-time theory for $N L S_{p}^{ \pm}\left(\mathbb{R}^{d}\right)$ is essentially complete:

- Pioneering advances on spacetime dispersive estimates culminated in [Cazenave-Weissler 90] to prove local well-posedness for $s \geq s_{\text {/wp }}=\max \left(0, s_{c}\right)$. (discussed in more detail for $N L S_{3}\left(\mathbb{R}^{2}\right)$ soon.)
- III-posedness results for $s<s_{\text {/wp }}$ have been established. [Kenig-Ponce-Vega 01], [Christ-C-Tao 03], [Burq-Gérard-Ibrahim], [Alazard-Carles]
- When $s_{c}<0$, the Galilean symmetry obstructs well-posedness below $s=0$.

LOCAL-IN-TIME THEORY FOR $N L S_{3}\left(\mathbb{R}^{2}\right)$

We pause to discuss the $L^{2}\left(\mathbb{R}^{2}\right)$-critical case.

- $\forall u_{0} \in L^{2}\left(\mathbb{R}^{2}\right) \exists T_{\text {lwp }}\left(u_{0}\right)$ determined by

$$
\left\|e^{i t \Delta} u_{0}\right\|_{L_{t x}^{4}\left(\left[0, T_{l \text { lvp }]}\right] \times \mathbb{R}^{2}\right)}<\frac{1}{100} \text { such that }
$$

\exists unique $u \in C\left(\left[0, T_{l w p}\right] ; L^{2}\right) \cap L_{t x}^{4}\left(\left[0, T_{l w p}\right] \times \mathbb{R}^{2}\right)$ solving $N L S_{3}^{+}\left(\mathbb{R}^{2}\right)$.

- $\forall u_{0} \in H^{s}\left(\mathbb{R}^{2}\right), s>0, T_{\text {lwp }} \sim\left\|u_{0}\right\|_{H^{\frac{2}{s}}}^{-\frac{2}{s}}$ and regularity persists: $u \in C\left(\left[0, T_{\text {lwp }}\right] ; H^{s}\left(\mathbb{R}^{2}\right)\right)$.
- Define the maximal forward existence time $T^{*}\left(u_{0}\right)$ by

$$
\|u\|_{L_{t x}^{4}\left(\left[0, T^{*}-\delta\right] \times \mathbb{R}^{2}\right)}<\infty
$$

for all $\delta>0$ but diverges to ∞ as $\delta \searrow 0$.
■ \exists small data scattering threshold $\mu_{0}>0$

$$
\left\|u_{0}\right\|_{L^{2}}<\mu_{0} \Longrightarrow\|u\|_{L_{t x}^{4}\left(\mathbb{R} \times \mathbb{R}^{2}\right)}<2 \mu_{0} .
$$

GLOBAL-IN-TIME THEORY?

What is the ultimate fate of the local-in-time solutions?
L^{2}-critical Defocusing Scattering Conjecture:
$L^{2} \ni u_{0} \longmapsto u$ solving $N L S_{3}^{+}\left(\mathbb{R}^{2}\right)$ is global-in-time and

$$
\|u\|_{L_{t, x}^{4}}<A\left(u_{0}\right)<\infty
$$

Moreover, $\exists u_{ \pm} \in L^{2}\left(\mathbb{R}^{2}\right)$ such that

$$
\lim _{t \rightarrow \pm \infty}\left\|e^{ \pm i t \Delta} u_{ \pm}-u(t)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}=0
$$

Remarks:

- Known for small data $\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}<\mu_{0}$.
- Known [Tao-Visan-Zhang 06] for $N L S_{1+\frac{4}{d}}^{+}\left(\mathbb{R}^{d}\right)$ for large radial data, $d \geq 3$. Same for $d=2$ [Killip-Tao-Visan 07].
- GWP for L^{2} data \Longleftrightarrow Scattering for L^{2} data. [Blue-C 06]

Critical Regularity Scattering Conjecture?

Consider defocusing case $N L S_{p}^{+}\left(\mathbb{R}^{d}\right)$ with critical Sobolev index

$$
s_{c}=\frac{d}{2}-\frac{2}{p-1} .
$$

The critical (diagonal) Strichartz index is

$$
q_{c}=\frac{(p-1)(2+d)}{2} \Longleftrightarrow \frac{2}{q_{c}}+\frac{d}{q_{c}}=\frac{d}{2}-s_{c} .
$$

$H^{s^{s_{c}} \text { critical defocusing scattering conjecture: }}$
$H^{s_{c}}\left(\mathbb{R}^{d}\right) \ni u_{0} \longmapsto u$ solving $N L S_{p}^{+}\left(\mathbb{R}^{d}\right)$ is global-in-time and

$$
\|u\|_{L t, x}^{q_{c}}<A\left(u_{0}\right)<\infty .
$$

Critical Regularity Scattering Conjecture?

Present status of the defocusing scattering conjecture

criticality	general data	radial data	evidence
$s_{c}=0$	$? ? ?$	$[\mathrm{TVZ}],[\mathrm{KTV}]$	GWP: $s_{*}<s<1$
$0<s_{c}<1$	$\checkmark: s_{c}<s_{*}<s<1$	$s=s_{c} ? ?$	$\checkmark:$ extra smooth
$s_{c}=1$	[CKST]],[RV],[V]	[B99], [T]	$\checkmark:$ Resolved!
$1<s_{c}<\frac{d}{2}$?????	????	Numerics [BISu]

■ Scattering for $N L S_{p}^{-}$under natural threshold? [Kenig-Merle]

- The existence (and value) of s_{*} depends upon p, d.
- Radial case with $s_{c}=\frac{1}{2}$ may be accessible using Morawetz??

■ Induction-on-Mass + radial results $\rightarrow s_{c}=0$ accessible???
■ Lectures series concentrates on $N L S_{3}^{ \pm}\left(\mathbb{R}^{2}\right)$ with general data.

2. Outline of Lectures

I I-method for Global Well-Posedness Below Energy.
1 Abstract Scheme
2 Almost Conservation of $H[/ u]$
3 Multilinear Correction Terms
4 Resonant Decompositions
II Low Regularity Theory for Focusing NLS.
1 I-method for focusing NLS- below ground state mass
2 Mass Concentration Properties of H^{5} Blowup Solutions
3 Mass Concentration Properties of L^{2} Blowup Solutions
III The I-method with a Morawetz Bootstrap.
1 Interaction Morawetz Estimates
$2 H[l u]+$ Morawetz GWP \& Scattering Results
3 Remarks on L^{2}-Critical Scattering Conjecture
IV To Be Announced

3. H^{1} versus H^{s} Global Well-Posedness

Consider $N L S_{3}^{ \pm}\left(\mathbb{R}^{2}\right)$ with finite energy data $u_{0} \in H^{1}$. Classical H^{1}-GWP Scheme relies on three inputs:
1 LWP lifetime dependence on data norm: $T_{\text {/wp }} \sim\left\|u_{0}\right\|_{H^{s}}^{-2 / s}$.
2 Energy controls data norm: $\|u(t)\|_{H^{1}}^{2} \lesssim H[u(t)]+\|u(t)\|_{L^{2}}^{2}$.
3 Conservation: $H[u(t)]+\|u(t)\|_{L^{2}}^{2} \leq C($ Energy, Mass $)$.
Fix arbitrary time interval $[0, T]$. Break $[0, T]$ into subintervals of uniform size $c($ Energy, Mass $)+$ LWP iteration \Longrightarrow GWP.

For $u_{0} \in H^{s}$ with $0<s<1$, we may have infinite energy. Classical persistence of regularity from LWP/Duhamel only gives

$$
\sup _{t \in\left[0, \boldsymbol{T}_{\text {lwp }}\right]}\|u(t)\|_{H^{s}} \lesssim 2\left\|u_{0}\right\|_{H^{s}}
$$

and LWP iteration fails due to (possible) doubling. [Bourgain98]

Abstract l-method Scheme for H^{s}-GWP

Let $H^{s} \ni u_{0} \longmapsto u$ solve $N L S$ for $t \in\left[0, T_{\text {lwp }}\right], T_{\text {lwp }} \sim\left\|u_{0}\right\|_{H^{s}}^{-2 / s}$.
Consider two ingredients (to be defined):
■ A smoothing operator $I=I_{N}: H^{s} \longmapsto H^{1}$. The NLS evolution $u_{0} \longmapsto u$ induces a smooth reference evolution $H^{1} \ni l u_{0} \longmapsto l u$ solving $I(N L S)$ equation on $\left[0, T_{\text {lwp }}\right]$.

- A modified energy $\widetilde{E}[l u]$ built using the reference evolution.

We postpone how we actually choose these objects.

Abstract $/$-method Scheme for H^{s}-GWP

We want I_{N} and \widetilde{E} chosen to give a progressive H^{s}-GWP scheme:
1 Lifetime dependence on data norm: $T_{\text {lwp }} \sim\left\|u_{0}\right\|_{H^{s}}^{-2 / s} . \checkmark$
$2 \widetilde{E}$ controls data norm: $\exists t_{g} \in\left[\frac{1}{2} T_{\text {lwp }}, T_{\text {lwp }}\right]$ s.t.

$$
\left\|u\left(t_{g}\right)\right\|_{H^{s}}^{2} \lesssim \widetilde{E}\left[l u\left(t_{g}\right)\right]+\left\|u\left(t_{g}\right)\right\|_{L^{2}}^{2} .
$$

3 Almost Conservation of Modifed Energy:

$$
\sup _{t \in\left[0, T_{\text {lwp }}\right]} \widetilde{E}[l u(t)] \leq \widetilde{E}\left[/ u_{0}\right]+N^{-\alpha} .
$$

The scheme advances over K uniform sized time steps of length $O\left(\widetilde{E}\left[u_{0}\right]^{-1 / s}\right)$ until the modified energy doubles

$$
K N^{-\alpha} \sim \tilde{E}\left[l u_{0}\right] .
$$

This extends to solution for $t \in\left[0, N^{\alpha} E\left[l u_{0}\right]^{1-\frac{1}{s}}\right]$ which contains $[0, T]$ for large enough N provided $s>s_{\alpha}$ with $s_{\alpha}<1$.

First Version of the $/$-method: $\widetilde{E}=H[/ u]$

For $s<1, N \gg 1$ define smooth monotone $m: \mathbb{R}_{\xi}^{2} \rightarrow \mathbb{R}^{+}$s.t.

$$
m(\xi)=\left\{\begin{array}{cc}
1 & \text { for }|\xi|<N \\
\left(\frac{|\xi|}{N}\right)^{s-1} & \text { for }|\xi|>2 N
\end{array}\right.
$$

The associated Fourier multiplier operator, $\widehat{(l u)}(\xi)=m(\xi) \widehat{u}(\xi)$, satisfies $I: H^{s} \rightarrow H^{1}$. Note that, pointwise in time, we have

$$
\|u\|_{H^{s}} \lesssim\|l u\|_{H^{1}} \lesssim N^{1-s}\|u\|_{H^{s}} .
$$

Set $\widetilde{E}[l u(t)]=H[l u(t)]$. A detailed multilinear Fourier analysis establishes that $H[l u]$ is almost conserved with $\alpha=\frac{3}{2}$ for $N L S_{3}^{ \pm}\left(\mathbb{R}^{2}\right)$ and with $\alpha=1$ for $N L S_{3}^{ \pm}\left(\mathbb{R}^{3}\right)$. After some bookkeeping....

First Version of the $/$-method: $\widetilde{E}=H[/ u]$

Theorem (CKSTT:MRL02)

$N L S_{3}^{+}\left(\mathbb{R}^{2}\right)$ is globally well-posed for data in $H^{s}\left(\mathbb{R}^{2}\right)$ for $\frac{4}{7}<s<1$. $N L S_{3}^{+}\left(\mathbb{R}^{3}\right)$ is globally well-posed for data in $H^{s}\left(\mathbb{R}^{2}\right)$ for $\frac{5}{6}<s<1$. Moreover, $\|u(t)\|_{H^{s}} \lesssim\langle t\rangle^{\beta(s)}$ for appropriate $\beta(s)$.

The same result applies for $N L S_{3}^{-}\left(\mathbb{R}^{2}\right)$ provided $\left\|u_{0}\right\|_{L^{2}}<\|Q\|_{L^{2}}$ where Q is the ground state, the unique (up to translations) positive solution of $-Q+\Delta Q=Q^{3}$.

L^{2}-Critical in Weighted L^{2} Spaces

Based on PC transformation \& inspired by [Bourgain98], we have:

Theorem (Blue-C:CPAA06)

For $s \geq 0$, if $N L S_{1+\frac{4}{d}}^{+}\left(\mathbb{R}^{d}\right)$ is GWP for $H^{s}\left(\mathbb{R}^{d}\right)$ initial data then $N L S_{1+\frac{4}{d}}^{+}\left(\mathbb{R}^{d}\right)$ is GWP and scatters for data satisfying
$\langle\cdot\rangle^{s} u_{0}(\cdot) \in L^{2}$. The same result applies to the focusing case provided $\left\|u_{0}\right\|_{L^{2}}<\|Q\|_{L^{2}}$.

- Thus, GWP for L^{2} data \Longleftrightarrow Scattering for L^{2} data.
- H^{s}-GWP improvements imply weighted space improvements.
- PC transformation isometry in L^{2}-admissible Strichartz spaces.

$N L S_{3}^{+}\left(\mathbb{R}^{2}\right)$: Present Status

regularity	idea	reference
$s>\frac{2}{3}$	high/low frequency decomposition	[Bourgain98]
$s>\frac{4}{7}$	$H(l u)$	[CKSTT02]
$s>\frac{1}{2}$	resonant cut of 2nd energy	[CKSTT07]
$s \geq \frac{1}{2}$	$H(l u) \&$ Interaction Morawetz	[Fang-Grillakis05]
$s>\frac{2}{5}$	$H(l u) \&$ Interaction $/$-Morawetz	[CGTz07]
$s>\frac{4}{13} ?$	resonant cut \& $/$-Morawetz	$[-?-]$

- Morawetz-based arguments are only for defocusing case.

■ Focusing results assume $\left\|u_{0}\right\|_{L^{2}}<\|Q\|_{L^{2}}$.
■ Unify theory of focusing-under-ground-state and defocusing?

4. Low Regularity Theory for Focusing NLS

Remark:

- The H^{1}-GWP scheme is relaxed to an H^{5}-GWP scheme by replacing the energy $H[u]$ by the modified energy $\widetilde{E}[/ u]$.
- The energy plays a basic role in other aspects of the NLS theory (e.g. soliton stability, properties of blowup).
- Natural idea: Explore whether existing H^{1} theory may be systematically relaxed to H^{s} by replacing $H[u]$ by $\widetilde{E}[I u]$.

L^{2} Critical Case: Blowup Solution Properties

Explicit Blowup Solutions

- Arise as pseudoconformal image of $e^{i t} Q(x)$:

$$
S(t, x)=\frac{1}{t} Q\left(\frac{x}{t}\right) e^{-i \frac{|x|^{2}}{4 t}+\frac{i}{t}} .
$$

- S has minimal mass:

$$
\|S(-1)\|_{L_{x}^{2}}=\|Q\|_{L^{2}} .
$$

All mass in S is conically concentrated into a point.

- Minimal mass H^{1} blowup solution characterization: $u_{0} \in H^{1},\left\|u_{0}\right\|_{L^{2}}=\|Q\|_{L^{2}}, T^{*}\left(u_{0}\right)<\infty$ implies that $u=S$ up to an explicit solution symmetry. [Merle]

L^{2} Critical Case: Blowup Solution Properties

Virial Identity $\Longrightarrow \exists$ Many Blowup Solutions

- Integration by parts and the equation yields

$$
\partial_{t}^{2} \int_{\mathbb{R}_{x}^{2}}|x|^{2}|u(t, x)|^{2} d x=8 H\left[u_{0}\right] .
$$

- $H\left[u_{0}\right]<0, \int|x|^{2}\left|u_{0}(x)\right|^{2} d x<\infty$ blows up.
- How do these solutions blow up?

L^{2} Critical Case: Mass Concentration

H^{1} Theory of Mass Concentration

■ $H^{1} \cap\{$ radial $\} \ni u_{0} \longmapsto u, T^{*}<\infty$ implies

$$
\liminf _{t / T^{*}} \int_{|x|<\left(T^{*}-t\right)^{1 / 2-}}|u(t, x)|^{2} d x \geq\|Q\|_{L^{2}}^{2}
$$

[Merle-Tsutsumi]

- H^{1} blowups parabolically concentrate at least the ground state mass. Explicit blowups S concentrate mass much faster.
- Fantastic recent progress on the H^{1} blowup theory. [Merle-Raphaël]

L^{2} Critical Case: Mass Concentration

L^{2} Theory of Mass Concentration

- $L^{2} \ni u_{0} \longmapsto u, T^{*}<\infty$ implies

$$
\limsup _{t \nearrow T^{*}} \sup _{\text {cubes } I, \text { side }(I) \leq\left(T^{*}-t\right)^{1 / 2}} \int_{I}|u(t, x)|^{2} d x \geq\left\|u_{0}\right\|_{L^{2}}^{-M} .
$$

[Bourgain98]
L^{2} blowups parabolically concentrate some mass.
■ Extensions in [Merle-Vega], [Carles-Keraani], [Bégout-Vargas].

- For large L^{2} data, do there exist tiny concentrations? ([TVZ], [KTV]: No, for radial data.)

Typical blowups leave an L^{2} stain at time T^{*}

[Merle-Raphaël]:
$H^{1} \cap\left\{\|Q\|_{L^{2}}<\left\|u_{0}\right\|_{L^{2}}<\|Q\|_{L^{2}}+\alpha^{*}\right\} \ni u_{0} \longmapsto u$ solving $N L S_{3}^{-}\left(\mathbb{R}^{2}\right)$ on $\left[0, T^{*}\right)$ (maximal) with $T^{*}<\infty$.
$\exists \lambda(t), x(t), \theta(t) \in \mathbb{R}^{+}, \mathbb{R}^{2}, \mathbb{R} /(2 \pi \mathbb{Z})$ and u^{*} such that

$$
u(t)-\lambda(t)^{-1} Q\left(\frac{x-x(t)}{\lambda(t)}\right) e^{i \theta(t)} \rightarrow u^{*}
$$

strongly in $L^{2}\left(\mathbb{R}^{2}\right)$. Typically, $u^{*} \notin H^{s} \cup L^{p}$ for $s>0, p>2$!

L^{2} Critical Case: Conjectures/Questions

Consider focusing $\mathrm{NLS}_{3}^{-}\left(\mathbb{R}^{2}\right)$:

- Scattering Below the Ground State Mass. ([KTV]: \checkmark)

$$
\left\|u_{0}\right\|_{L^{2}}<\|Q\|_{L^{2}} \Longrightarrow ? ? ? u_{0} \longmapsto u \text { with }\|u\|_{L_{t x}^{4}}<\infty .
$$

(Also, L^{2} solutions of $N L S_{3}^{+}\left(\mathbb{R}^{2}\right)$ satisfy ${ }^{\text {? ? }}\|u\|_{L_{t x}^{4}}<\infty$.)
■ Minimal Mass Blowup Characterization.

$$
\left\|u_{0}\right\|_{L^{2}}=\|Q\|_{L^{2}}, u_{0} \longmapsto u, T^{*}<\infty \Longrightarrow ? ? ?
$$

modulo a solution symmetry. An intermediate step would extend characterization of the minimal mass blowup solutions in H^{s} for $s<1$.

- Concentrated mass amounts are quantized. The explicit blowups constructed by pseudoconformally transforming time periodic solutions with ground and excited state profiles are the only asymptotic profiles.
- Are there any general upper bounds?

L^{2} Critical Case: Partial Results

■ For $0.86 \sim \frac{1}{5}(1+\sqrt{11})<s<1, H^{s} \cap\{$ radial $\} \ni u_{0} \longmapsto$ $u, T^{*}<\infty \Longrightarrow$

$$
\limsup _{t} \nearrow T^{*} \int_{|x|<\left(T^{*}-t\right)^{s / 2-}}|u(t, x)|^{2} d x \geq\|Q\|_{L^{2}}^{2}
$$

H^{s}-blowup solutions concentrate ground state mass.
[C-Raynor-C.Sulem-Wright]

- $\left\|u_{0}\right\|_{L^{2}}=\|Q\|_{L^{2}}, u_{0} \in H^{s}, \sim 0.86<s<1, T^{*}<\infty \Longrightarrow$ $\exists t_{n} \nearrow T^{*}$ s.t. $u\left(t_{n}\right) \rightarrow Q$ in $H^{\tilde{s}(s)}$ (mod symmetry sequence). For H^{s} blowups with $\left\|u_{0}\right\|_{L^{2}}>\|Q\|_{L^{2}}, u\left(t_{n}\right) \rightharpoonup V \in H^{1}(\bmod$ symmetry sequence). [Hmidi-Keraani] This is an H^{s} analog of an H^{1} result of [Weinstein] which preceded the minimal H^{1} blowup solution characterization.
- Same results for $N L S_{\frac{4}{d}+1}^{-}\left(\mathbb{R}^{d}\right)$ in $H^{s}, s>\frac{d+8}{d+10}$. [Visan-Zhang]

L^{2} Critical Case: Partial Results

[C-Roudenko]
Spacetime norm divergence rate

$$
\|u\|_{L_{t x}^{4}\left([0, t] \times \mathbb{R}^{2}\right)} \gtrsim\left(T^{*}-t\right)^{-\beta}
$$

is linked with mass concentration rate

$$
\limsup _{t \nearrow T^{*}} \sup _{\text {cubes } I, \text { side }(I) \leq\left(T^{*}-t\right)^{\frac{1}{2}+\frac{\beta}{2}}} \int_{I}|u(t, x)|^{2} d x \geq\left\|u_{0}\right\|_{L^{2}}^{-M} .
$$

5. Interaction Morawetz: Local Conservation

Suppose $\phi:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{C}$ solves generalized NLS

$$
\left(i \partial_{t}+\Delta\right) \phi=\mathcal{N}
$$

for some $\mathcal{N}=\mathcal{N}(t, x, u):[0, T] \times \mathbb{R}^{d} \times \mathbb{C} \rightarrow \mathbb{C}$. Assume ϕ is nice.

We introduce notation to compactly express mass and momentum (non)conservation for solutions of generalized NLS.

Write $\partial_{x_{j}} \phi=\partial_{j} \phi=\phi_{j}$.

LOCAL MASS/MOMENTUM (NON)CONSERVATION

- mass density: $T_{00}=|\phi|^{2}$
- momentum density/mass current:

$$
T_{0 j}=T_{j 0}=2 \Im\left(\bar{\phi} \phi_{j}\right)
$$

- (linear part of the) momentum current:

$$
L_{j k}=L_{k j}=-\partial_{j} \partial_{k}|\phi|^{2}+4 \Re\left(\overline{\phi_{j}} \phi_{k}\right)
$$

- mass bracket: $\{f, g\}_{m}=\Im(f \bar{g})$
- momentum bracket: $\{f, g\}_{p}^{j}=\Re\left(f \partial_{j} \bar{g}-g \partial_{j} \bar{f}\right)$

Local mass (non)conservation identity:

$$
\partial_{t} T_{00}+\partial_{j} T_{0 j}=2\{\mathcal{N}, \phi\}_{m}
$$

Local momentum (non)conservation identity:

$$
\partial_{t} T_{0 j}+\partial_{k} L_{k j}=2\{\mathcal{N}, \phi\}_{p}^{j}
$$

LOCAL MASS/MOMENTUM (NON)CONSERVATION

Consider $\mathcal{N}=F^{\prime}\left(|\phi|^{2}\right) \phi$ for polynomial $F: \mathbb{R}^{+} \rightarrow \mathbb{R}$.

- We calculate the mass bracket

$$
\left\{F^{\prime}\left(|\phi|^{2}\right) \phi, \phi\right\}_{m}=\Im\left(F^{\prime}\left(|\phi|^{2}\right) \phi \bar{\phi}\right)=0
$$

Thus mass is conserved for these nonlinearities.

- We calculate the momentum bracket

$$
\left\{F^{\prime}\left(|\phi|^{2}\right) \phi, \phi\right\}_{p}^{j}=-\partial_{j} G\left(|\phi|^{2}\right)
$$

where $G(z)=z F^{\prime}(z)-F(z) \sim F(z)$.
Thus the momentum bracket contributes a divergence and momentum is conserved for these nonlinearities.

Generalized Virial Identity

Suppose $a: \mathbb{R}^{d} \rightarrow \mathbb{R}$. Form the Morawetz Action

$$
M_{a}(t)=\int_{\mathbb{R}^{d}} \nabla a \cdot 2 \Im(\bar{\phi} \nabla \phi) d x
$$

Conservation identities lead to the generalized virial identity

$$
\partial_{t} M_{a}=\int_{\mathbb{R}^{d}}(-\Delta \Delta a)|\phi|^{2}+4 a_{j k} \Re\left(\overline{\phi_{j}} \phi_{k}\right)+2 a_{j}\{\mathcal{N}, \phi\}_{p}^{j} d x .
$$

Idea of Morawetz Estimates: Cleverly choose the weight function a so that $\partial_{t} M_{a} \geq 0$ but $M_{a} \leq C\left(\phi_{0}\right)$ to obtain spacetime control on ϕ. This strategy imposes various constraints on a which suggest choosing $a(x)=|x|$.

Example: [Lin-Strauss 78] Morawetz identity

Consider $\left(i \partial_{t}+\Delta\right) \phi=F^{\prime}\left(|\phi|^{2}\right) \phi$ with $F^{\prime} \geq 0$ and $x \in \mathbb{R}^{3}$. Choose $a(x)=|x|$. Observe that a is weakly convex, $\nabla a=\frac{x}{|x|}$ is bounded, and $-\Delta \Delta a=4 \pi \delta_{0}$. One gets the Lin-Strauss Morawetz identity

$$
M_{a}(T)-M_{a}(0)=\int_{0}^{T} \int_{\mathbb{R}^{3}} 4 \pi \delta_{0}(x)|\phi(t, x)|^{2}+(\geq 0)+4 \frac{G\left(|\phi|^{2}\right)}{|x|} d x d t
$$

which implies the spacetime control estimate

$$
\left(H\left[u_{0}\right]\right)^{1 / 2}\left\|u_{0}\right\|_{L^{2}} \gtrsim \int_{0}^{T} \int_{\mathbb{R}^{3}} \frac{G\left(|\phi|^{2}\right)}{|x|} d x d t
$$

Example: $L^{4}\left(\mathbb{R}_{t} \times \mathbb{R}_{x}^{3}\right)$ Interaction Morawetz

[CKSTT 04] (Hassell 04)
■ Suppose ϕ_{1}, ϕ_{2} are two solutions of $\left(i \partial_{t}+\Delta\right) \phi=F^{\prime}\left(|\phi|^{2}\right) \phi$ with $F^{\prime} \geq 0$ and $x \in \mathbb{R}^{3}$. The "2-particle" wave function

$$
\Psi\left(t, x_{1}, x_{2}\right)=\phi_{1}\left(t, x_{1}\right) \phi_{2}\left(t, x_{2}\right)
$$

satisfies an NLS-type equation on \mathbb{R}^{1+6}

$$
\left(i \partial_{t}+\Delta_{1}+\Delta_{2}\right) \Psi=\left[F^{\prime}\left(\left|\phi_{1}\right|^{2}\right)+F^{\prime}\left(\left|\phi_{2}\right|^{2}\right)\right] \Psi .
$$

- Note that $\left[F^{\prime}\left(\left|\phi_{1}\right|^{2}\right)+F^{\prime}\left(\left|\phi_{2}\right|^{2}\right)\right] \geq 0$ so defocusing.

■ Reparametrize \mathbb{R}^{6} using center-of-mass coordinates (\bar{x}, y) with $\bar{x}=\frac{1}{2}\left(x_{1}+x_{2}\right) \in \mathbb{R}^{3}$. Note that $y=0$ corresponds to the diagonal $x_{1}=x_{2}=\bar{x}$. Apply the generalized virial identity with the choice $a\left(x_{1}, x_{2}\right)=|y|$. Dismissing terms with favorable signs, one obtains...

Example: $L^{4}\left(\mathbb{R}_{t} \times \mathbb{R}_{x}^{3}\right)$ Interaction Morawetz

$$
\begin{aligned}
\|\nabla u\|_{L_{[0, T]}^{\infty}} L_{\mathbb{x}}^{2}\left\|u_{0}\right\|_{L^{2}}^{3} & \geq \int_{0}^{T} \int_{\mathbb{R}^{6}}\left(-\Delta_{6} \Delta_{6}|y|\right)\left|\Psi\left(x_{1}, x_{2}\right)\right|^{2} d x_{1} d x_{2} d t \\
& \geq c \int_{0}^{T} \int_{\mathbb{R}^{6}} \delta_{\{y=0\}}\left(x_{1}, x_{2}\right)\left|\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right)\right|^{2} d x_{1} d x_{2} d t \\
& \geq c \int_{0}^{T} \int_{\mathbb{R}^{3}}\left|\phi_{1}(t, \bar{x}) \phi_{2}(t, \bar{x})\right|^{2} d \bar{x} d t .
\end{aligned}
$$

Specializing to $\phi_{1}=\phi_{2}$ gives the interaction Morawetz estimate

$$
\int_{0}^{T} \int_{\mathbb{R}^{3}}|\phi(t, x)|^{4} d x d t \leq C\|\nabla u\|_{L_{[0, T]}^{\infty} L_{x}^{2}}\left\|u_{0}\right\|_{L_{x}^{2}}^{3}
$$

valid uniformly for all defocusing NLS equations on \mathbb{R}^{3}.

"The" Interaction Morawetz Estimate

Efforts to extend the $L^{4}\left(\mathbb{R}_{t} \times \mathbb{R}_{x}^{3}\right)$ interaction Morawetz to the \mathbb{R}_{x}^{2} setting led to...

Theorem (C-Grillakis-Tzirakis)

Finite energy solutions of any defocusing $N L S^{+}\left(\mathbb{R}^{d}\right)$ satisfy

$$
\left\|D^{\frac{3-d}{2}}|u|^{2}\right\|_{L_{t, x}^{2}}^{2} \lesssim\left\|u_{0}\right\|_{L_{x}^{2}}^{3}\|\nabla u\|_{L_{t}^{\infty} L_{x}^{2}} .
$$

■ Independently and simultaneously obtained by [Planchon-Vega].

- Gives simple proof of H^{1}-scattering in mass supercritical case. [Nakanishi]
- Simplified proof extends to H^{s} for certain $s<1$.
- May play a role in resolving the L^{2} scattering conjecture?

