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1. CuBic NLS INITIAL VALUE PROBLEM ON R?

We consider the initial value problems:

{(fat+A)u= +|ufPu (NLS5 (R2))

u(0, x) = up(x).

The + case is called defocusing; — is focusing. NLS;E is ubiquitous
in physics. The solution has a dilation symmetry

u)‘(T,y) = )\_1u()\_27'7 A_ly).

which is invariant in L2(IR?). This problem is [2-critical.



TIME INVARIANT QUANTITIES

Mass:/ lu(t, x)|?dx.
Rd

Momentum = 2%/ u(t)Vu(t)dx.
R2

1 1
Energy = H{u(1)] = ; /R Vu(t) Pt 5 u(2)

m Mass is L2: Momentum is close to H1/2; Energy involves HL.
= Dynamics on a sphere in L?; focusing/defocusing energy.

m Local conservation laws express how quantity is conserved:
e.g., Orlul? =V -23(uVu). Frequency Localizations?



LOCAL-IN-TIME THEORY FOR NLS; (IR?)

m Y ug € L2(R?) 3 Tyyp(uo) determined by
; 1
lle tAUOHL;‘X([O,T,Wp]xW) <100 such that
3 unique u € C([0, Thwpl; L2) N LE([O, Thwp] x R?) solving
NLSS (R?).
_2
BV uy € H(R?),s > 0, Tjwp ~ ||uol| 4 and regularity persists:
u € C([0, Tiwp]; HS(R?)).
m Define the maximal forward existence time T*(up) by
[ull2a (o, 7+—s)xr2) <
for all § > 0 but diverges to oo as § \, 0.
m 3 small data scattering threshold g > 0

|uwollz < po = HU”L‘gX(Rsz) < 2up.



GLOBAL-IN-TIME THEORY?

What is the ultimate fate of the local-in-time solutions?

L?-critical Scattering Conjecture:
L2 5 up — u solving NLS (R?) is global-in-time and

||u||th17X < A(up) < 0.
Moreover, 3 uy € L?(R?) such that

lim

H e:l:itA
t—+o0

uy — u(t)||L2(R2) =0.

Same statement for focusing NLS; (R?) if ||uol/;2 < || Q]| 2-
Remarks:

m Known for small data [|uo|[z2(r2) < fi0-
m Known for large radial data [Killip-Tao-Visan 07].



NLS$"(R?): PRESENT STATUS FOR GENERAL DATA

regularity idea reference

s> 2 high/low frequency decomposition | [Bourgain98]

s> é H(lu) [CKSTTO02]

s> 1 resonant cut of 2nd energy [CKSTTO07]

s> % H(lu) & Interaction Morawetz [Fang-Grillakis05]
s>t H(lu) & Interaction /-Morawetz | [CGTz07]

s> 1%? resonant cut & /-Morawetz [-7-]

m Morawetz-based arguments are only for defocusing case.
m Focusing results assume ||upl|;2 < || Q|| 2.
m Unify theory of focusing-under-ground-state and defocusing?
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H' GLOBAL WELL-POSEDNESS SCHEME

Consider NLSF(IR?) with finite energy data up € H™.
Classical H'-GWP Scheme relies on three inputs:
B LWP lifetime dependence on data norm: Ty, ~ ||uo||H2/s.
A Energy controls data norm: [[u(t)||2, < H[u(t)] + [|u(t)||7
Conservation: H[u(t)] + ||u(t)||?. < C(Energy, Mass).
Fix arbitrary time interval [0, T]. Break [0, T] into subintervals of
uniform size c(Energy, Mass) + LWP iteration —- GWP.

For up € H* with 0 < s < 1, we may have infinite energy. Classical
persistence of regularity from LWP /Duhamel only gives

sup lu(t)llns S 2[|uollHs
tE[O,T/Wp]

and LWP iteration fails due to (possible) doubling.



2. ABSTRACT [-METHOD SCHEME FOR H°*-GWP

Let H5 5 g — u solve NLS for t € [0, Tiwpl, Tiwp ~ lltoll 2.
Consider two ingredients (to be defined):

m A smoothing operator | = Iy : HS — H!. The NLS
evolution vy — u induces a smooth reference evolution
H > lug — Iu solving I(NLS) equation on [0, Ti).

m A modified energy E[/u] built using the reference evolution.

We postpone how we actually choose these objects.



FIRST VERSION OF THE /-METHOD: E = H[lu]

For s <1, N > 1 define smooth monotone m : Rg — RT s.t.

1 for [£] < N
m($) = {('ﬁ,)s_l for €] > 2NV,

—

The associated Fourier multiplier operator, (/u)(§) = m(&)u(§),
satisfies | : HS — H. Note that, pointwise in time, we have

lullme < Mull i S N2 e

Set E[lu(t)] = H[lu(t)]. Other choices of E are considered later.



AC Law DEcAY AND SOBOLEV GWP INDEX

Modified LWP. Initial vy s.t. ||V/vl[;2 ~ 1 has Ty, ~ 1.

Goal. ¥V ug € H°, ¥ T > 0, construct v : [0, T] x R2 - C.

<= Dilated Goal. Construct v : [0,\*T] x R? — C.

Rescale Data. ||/Vu)||2 < NYSA75||ug s ~ 1 provided we
choose A = A(N) ~ N'5° <= N5\~ ~ 1.

Almost Conservation Law. |[/Vu(t)|;2 < H[lu(t)] and

sup  H[lu(t)] < H[lu(0)] + N~
t€[0, Tiwp)

Delay of Data Doubling. Iterate modified LWP N steps
with T, ~ 1. We obtain rescaled solution for t € [0, N*].

2(s—1)

2
M(NT <N <= T <N 5 sos> 5 suffices.




FIRST VERSION OF THE /-METHOD: E = H[lu]

A Fourier analysis established the almost conservation property of
E = H[lu] with o = 3 which led to...

THEOREM (CKSTT:MRLO02)

NLSS (R?) is globally well-posed for data in H*(R?) for 3 <'s < 1.

Moreover, ||u(t)||s < (t)20) for appropriate 3(s).

m Same result for NLS; (R?) if |lug 2 < || Q]| 2. Here Q is the
ground state (unique positive solution of —Q + AQ = —Q3).

m Fourier analysis leading to oo = % in fact gives o = 2 for most
frequency interactions.



[2-CRITICAL IN WEIGHTED L2 SPACES

Based on PC transformation & inspired by [Bourgain98], we have:
THEOREM (BLUE-C:CPAAO06)

Fors >0, if NL51++%(Rd) is GWP for H*(R?) initial data then
NLS;;%(R") is GWP and scatters for data satisfying

(-YSuo(-) € L?. The same result applies to the focusing case
provided ||ul| 2 < || Q]| 2-

m Thus, GWP for L? data <= Scattering for L? data.
m H*-GWP improvements imply weighted space improvements.
m PC transformation isometry in L2-admissible Strichartz spaces.



REMARKS

m The almost conservation property

sup  E[lu(t)] < Ellug] + N~
tG[O,T/Wp]

leads to GWP for

s>sa:2+a.

m The /-method is a subcritical method. To prove the Scattering
Conjecture at s = 0 via the /-method would require o = 4.

m The /-method localizes the conserved density in frequency.
Similar ideas appear in recent critical scattering results.

m There is a multilinear corrections algorithm for defining new
choices of E which should have a better AC property.



FocusiNGg CASE BELOW THE GROUND STATE MASS

Modified LWP lifetime is controlled by ||/Vug]|,2.
The GWP scheme progresses if ||[/Vu(t)|[7, < H[lu(t)].
Weinstein's optimal Gagliardo-Nirenberg Inequality:

WL Vwl.

wlla < |
‘ HQH2

I has symbol m satisfying |[m| <1 so ||/f||;2 <||f||;2. Thus,

luolle < [IQll2 = [Huoll 2 < 1Q[ -

The required control then follows:

lwollz < 1Rl 2 = 11Vu(t)[f2 S Hlu(t)].



3. MULTILINEAR CORRECTION TERMS

(Inspired by [Coifman-Meyer]; following [CKSTT:KdV])
For k € N, define the convolution hypersurface

Seo={(&, &) € R &+ ...+ & =0} C (RD)X

For M : ¥y — C and u1,..., ug nice, define k-linear functional

AAMm,wwy:q%/MQVWQMQﬁ”@@)
pays

For k € 2N abbreviate A (M; u) = Ae(M; u, 4, . .., T).

Ak(M; u) invariant under interchange of even/odd arguments,

M(&1,6, . &k, &k) — M(&2, &1, - -k, Eket)-

We can define a symmetrization rule via group orbit.



EXAMPLES

/ yTTidx = / ( / X9V der) . / X6 (£,)dea) dx

X

_ / { / eix-(§1+£z+€3+f4)dX] a(gl)ﬁ(@)ﬁ(gg,)ﬁ(&)dgl 77777 4

- [a@)i@nEE) - Asio)

P

No(—1 - &5 u) = || V|| 7o
Thus, H[u] = Aa(—&1 - &5 u) £ Aa(35 u).



TIME DEPENDENCE OF MULTILINEAR FORMS

Suppose u nicely solves NLS; (R?); M is time independent,
symmetric. Calculations produce the time differentiation formula

OtN(M; u(t)) = Ne(iMay; u(t)) — Ao (ikX (M); u(t))
= Me(iMevi; u(t)) = Mg 2([I-X (M)]sym; u(t))-

Here

ar(ér, . &) = —laP + &P — ... — &1 + &I

(so ag =0 on X») and

X(M) (&1, Ekg2) = M(&123, 84, - - - Ekt2)-

We use the notation &, = &5 4 &p, Eape 1= &a + &b + &¢, etc.



AC QUANTITIES VIA MULTILINEAR CORRECTIONS

m Abbreviate m(&;) as m;. Define o7 s.t. ||IVu||2, = Ay(o2; u) :

02(£1,62) = —%§1m1 “omyp = %\51’2'"%

m With 64 (symmetric, time independent) to be determined, set
E = /\2(0‘2; u) + /\4(54; U).
m Using the time differentiation formula, we calculate

8tE = /\4({/5‘4()(4 — IQ[X(O’Q)]Sym}; u) — /\6([/4X(5'4)]5ym; U).

We'd like to define G4 to cancel away the A4 contribution.



SMALL DIVISOR PROBLEM

Resonant interactions obstruct the natural choice:

. 2 [2iX(02)]sym
04 = —— .
104

On T4, we can reexpress agq = —|&1[2 + [&]? — |€3]2 + [&a]? as
g = —2812 - &14 = —2|&12]|€14] cos Z(&12, E14),

and

1
J(mil&n? + m3lef® — ma|&s | + mil&al?).

X (o2)lom =

When all the m; =1 (so max; || < N), G4 is well-defined.
However, a4 can also vanish when &1 and &34 are orthogonal.



REMARK: INTEGRABLE SYSTEMS CONJECTURE

For NLS; (R), the resonant obstruction disappears. Thus,
E' = Ay(02) 4 Aa(54);
OEr = —Ng([i4X(54)]sym)-
We can then define, with &4 to be determined,
E? = E' + No(56);

O.E? = Ne({iGecvs — [i4X(54)|sym}) + Ne([16X(F6)]sym)-

Let's define o
. _ [14X(5a)]sym
0 = ——————.
i



REMARK: INTEGRABLE SYSTEMS CONJECTURE

Thus, we formally obtain a continued-fraction-like algorithm.

(),

06 = p s
10g

ox < [,4x(l2xtfi>lwn)}ym>]
~ sym

0g = - e
iag

Each step gains two derivatives but costs two more factors.

Conjecture: The multipliers G¢, 73, . . . are well defined and lead
to better AC properties. Same for other integrable systems.



4. RESONANT DECOMPOSITION

We return to NLS (R?).
Since the natural choice is not well-defined, we choose

oom X

104

where the non-resonant set Q,, C 24 such that
Qpnr = { max [§] < N} U {]cos £(&12,&14)| = 0o}
1<j<4

Eventually, we choose 6y to balance the 4-linear and 6-linear
contributions to the modified energy increment. We have

8tE = /\4({[&40&4 - iz[X(U2)]5ym}; U) - /\6([i4x(&4)]5ym; U).

The 4-linear contribution is constrained to the resonant set Q,.



IMPROVED ALMOST CONSERVATION PROPERTY

If luoll 22y < A; E(luo) < 1; u is a nice solution of NLSS (R?) on
a time interval [0, to], then if to = to(A) is small enough,

f Na([—2iX(02)]sym + iGacua; u(t)) dt'

29/\6([40((&4)]5}/"7; U(t)) dt

< C(A)N=2F + Y2 N-3/2+ 4 g5 1N-3+].

The choice 6 = N1 produces the AC property with a = 2.



OVERVIEW AND DELICATE CASE OF PROOF

m The 4-linear contribution has multiplier

([_2iX(U2)]Sym + I'5'4054)(§) = [_2iX(U2)]SmeQr

where the resonant set Q, = QS C ¥,

Q= {max(|&1], [€2], €3] |€a]) > N; | cos £(&12,€14)| < Oo}-

m We wish to bound the associated energy incremement

lep .
| Ml-2X(@2)lomua, ).
0

m The 4 factors u are dyadically decomposed. The integral is
studied case-by-case based on dyadic frequency sizes.

m On X4, the two largest frequencies are comparable.



OVERVIEW AND DELICATE CASE OF PROOF

m Let [§] ~ N; € 22, Symmetry properties and the Q,
constraint allow to assume

Ni~ N2 2 NNy 2 N3 2 Ny 21

m For most cases, suffices to use enhanced [CKSTT:MRL] and

V (£1,£2,83,8) € X4,

|[2iX (02)]sym| S min(my, m2, m3, ma)?|€12][614-

This follows from the mean value theorem.



OVERVIEW AND DELICATE CASE OF PROOF

The most delicate case occurs in €2, and when

NlNN2>>N,N3>>N421.

-— )
xi_2 xi_1




Angle constraint in €, gives better estimates based on two effects:
m Cancellation with [X(02)]sym.
m Angular refinement of Bilinear Strichartz.

We use a refinement exploiting spherical symmetry of m.

LEMMA

Let Ny, ..., Ny be in the delicate case with (£1,&2,83,84) € Q.
Then

[X(02)]sym| < m(N1)* Ny N3bo + m(N3)>N3.



ANGULAR REFINEMENT OF BILINEAR STRICHARTZ

LEMMA (ANGLE REFINED BILINEAR STRICHARTZ)

Let 0 < Ny < N and 0 < 6 < &. Then for any vi, v, € X%1/2+
with spatial frequencies N1, N, respectively, the spacetime function

F(t, x) ;:// el (t(m+m)+x-(61462))
R2 JRR2

X X{] cos £(¢1,62)| <0} V1 (71, €1) V272, §2) d€1dEr

obeys the bound

IFll.z, S 62 [Ivallxonr2s lIvallxoas
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