Resonant decompositions and the l-method for the cubic NLS on R^{2}

J. Colliander
University of Toronto

Séminaire EDP, Université de Paris-Nord 13, Villetaneuse

1 Cubic NLS on \mathbb{R}^{2}

2 The l-method

3 Multilinear Corrections

4 Resonant Decomposition

1. Cubic NLS Initial Value Problem on \mathbb{R}^{2}

We consider the initial value problems:

$$
\left\{\begin{array}{c}
\left(i \partial_{t}+\Delta\right) u= \pm|u|^{2} u \tag{3}\\
u(0, x)=u_{0}(x)
\end{array}\right.
$$

The + case is called defocusing; - is focusing. $N L S_{3}^{ \pm}$is ubiquitous in physics. The solution has a dilation symmetry

$$
u^{\lambda}(\tau, y)=\lambda^{-1} u\left(\lambda^{-2} \tau, \lambda^{-1} y\right)
$$

which is invariant in $L^{2}\left(\mathbb{R}^{2}\right)$. This problem is L^{2}-critical.

Time Invariant Quantities

$$
\begin{aligned}
\text { Mass } & =\int_{\mathbb{R}^{d}}|u(t, x)|^{2} d x . \\
\text { Momentum } & =2 \Im \int_{\mathbb{R}^{2}} \bar{u}(t) \nabla u(t) d x . \\
\text { Energy } & =H[u(t)]=\frac{1}{2} \int_{R^{2}}|\nabla u(t)|^{2} d x \pm \frac{1}{2}|u(t)|^{4} d x .
\end{aligned}
$$

- Mass is L^{2}; Momentum is close to $H^{1 / 2}$; Energy involves H^{1}.
- Dynamics on a sphere in L^{2}; focusing/defocusing energy.
- Local conservation laws express how quantity is conserved: e.g., $\partial_{t}|u|^{2}=\nabla \cdot 2 \Im(\bar{u} \nabla u)$. Frequency Localizations?

LOCAL-IN-TIME THEORY FOR $N L S_{3}^{ \pm}\left(\mathbb{R}^{2}\right)$

- $\forall u_{0} \in L^{2}\left(\mathbb{R}^{2}\right) \exists T_{\text {lwp }}\left(u_{0}\right)$ determined by

$$
\left\|e^{i t \Delta} u_{0}\right\|_{L_{t x}^{4}\left(\left[0, T_{l \text { lvp }]}\right] \times \mathbb{R}^{2}\right)}<\frac{1}{100} \text { such that }
$$

\exists unique $u \in C\left(\left[0, T_{l w p}\right] ; L^{2}\right) \cap L_{t x}^{4}\left(\left[0, T_{l w p}\right] \times \mathbb{R}^{2}\right)$ solving $N L S_{3}^{+}\left(\mathbb{R}^{2}\right)$.

- $\forall u_{0} \in H^{s}\left(\mathbb{R}^{2}\right), s>0, T_{\text {lwp }} \sim\left\|u_{0}\right\|_{H^{s}}^{-\frac{2}{s}}$ and regularity persists: $u \in C\left(\left[0, T_{l w p}\right] ; H^{s}\left(\mathbb{R}^{2}\right)\right)$.
- Define the maximal forward existence time $T^{*}\left(u_{0}\right)$ by

$$
\|u\|_{L_{t x}^{4}\left(\left[0, T^{*}-\delta\right] \times \mathbb{R}^{2}\right)}<\infty
$$

for all $\delta>0$ but diverges to ∞ as $\delta \searrow 0$.
■ \exists small data scattering threshold $\mu_{0}>0$

$$
\left\|u_{0}\right\|_{L^{2}}<\mu_{0} \Longrightarrow\|u\|_{L_{t x}^{4}\left(\mathbb{R} \times \mathbb{R}^{2}\right)}<2 \mu_{0} .
$$

GLOBAL-IN-TIME THEORY?

What is the ultimate fate of the local-in-time solutions?
L^{2}-critical Scattering Conjecture:
$L^{2} \ni u_{0} \longmapsto u$ solving $N L S_{3}^{+}\left(\mathbb{R}^{2}\right)$ is global-in-time and

$$
\|u\|_{L_{t, x}^{4}}<A\left(u_{0}\right)<\infty
$$

Moreover, $\exists u_{ \pm} \in L^{2}\left(\mathbb{R}^{2}\right)$ such that

$$
\lim _{t \rightarrow \pm \infty}\left\|e^{ \pm i t \Delta} u_{ \pm}-u(t)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}=0
$$

Same statement for focusing $N L S_{3}^{-}\left(\mathbb{R}^{2}\right)$ if $\left\|u_{0}\right\|_{L^{2}}<\|Q\|_{L^{2}}$. Remarks:

- Known for small data $\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}<\mu_{0}$.
- Known for large radial data [Killip-Tao-Visan 07].

$N L S_{3}^{ \pm}\left(\mathbb{R}^{2}\right)$: Present Status for General Data

regularity	idea	reference
$s>\frac{2}{3}$	high/low frequency decomposition	[Bourgain98]
$s>\frac{4}{7}$	$H(l u)$	[CKSTT02]
$s>\frac{1}{2}$	resonant cut of 2nd energy	[CKSTT07]
$s \geq \frac{1}{2}$	$H(l u) \&$ Interaction Morawetz	[Fang-Grillakis05]
$s>\frac{2}{5}$	$H(l u) \&$ Interaction $/$-Morawetz	[CGTz07]
$s>\frac{4}{13} ?$	resonant cut \& $/$-Morawetz	$[-?-]$

- Morawetz-based arguments are only for defocusing case.

■ Focusing results assume $\left\|u_{0}\right\|_{L^{2}}<\|Q\|_{L^{2}}$.
■ Unify theory of focusing-under-ground-state and defocusing?

$N L S_{3}^{ \pm}\left(\mathbb{R}^{2}\right)$: Present Status for General Data

regularity	idea	reference
$s>\frac{2}{3}$	high/low frequency decomposition	[Bourgain98]
$s>\frac{4}{7}$	$H(l u)$	[CKSTT02]
$s>\frac{1}{2}$	resonant cut of 2nd energy	[CKSTT07]
$s \geq \frac{1}{2}$	$H(l u) \&$ Interaction Morawetz	[Fang-Grillakis05]
$s>\frac{2}{5}$	$H(l u) \&$ Interaction $/$-Morawetz	[CGTz07]
$s>\frac{4}{13} ?$	resonant cut \& $/$-Morawetz	$[-?-]$

- Morawetz-based arguments are only for defocusing case.

■ Focusing results assume $\left\|u_{0}\right\|_{L^{2}}<\|Q\|_{L^{2}}$.
■ Unify theory of focusing-under-ground-state and defocusing?

H^{1} Global Well-Posedness Scheme

Consider $N L S_{3}^{ \pm}\left(\mathbb{R}^{2}\right)$ with finite energy data $u_{0} \in H^{1}$. Classical H^{1}-GWP Scheme relies on three inputs:
1 LWP lifetime dependence on data norm: $T_{\text {lwp }} \sim\left\|u_{0}\right\|_{H^{s}}^{-2 / s}$.
2 Energy controls data norm: $\|u(t)\|_{H^{1}}^{2} \lesssim H[u(t)]+\|u(t)\|_{L^{2}}^{2}$.
3 Conservation: $H[u(t)]+\|u(t)\|_{L^{2}}^{2} \leq C($ Energy, Mass).
Fix arbitrary time interval $[0, T]$. Break $[0, T]$ into subintervals of uniform size c (Energy, Mass) + LWP iteration \Longrightarrow GWP.

For $u_{0} \in H^{s}$ with $0<s<1$, we may have infinite energy. Classical persistence of regularity from LWP/Duhamel only gives

$$
\sup _{t \in\left[0, T_{\text {lup }]}\right]}\|u(t)\|_{H^{s}} \lesssim 2\left\|u_{0}\right\|_{H^{s}}
$$

and LWP iteration fails due to (possible) doubling. [Bourgain98]

2. Abstract $/$-method Scheme for H^{s}-GWP

Let $H^{s} \ni u_{0} \longmapsto u$ solve $N L S$ for $t \in\left[0, T_{\text {lwp }}\right], T_{\text {lwp }} \sim\left\|u_{0}\right\|_{H^{s}}^{-2 / s}$.
Consider two ingredients (to be defined):
■ A smoothing operator $I=I_{N}: H^{s} \longmapsto H^{1}$. The NLS evolution $u_{0} \longmapsto u$ induces a smooth reference evolution $H^{1} \ni l u_{0} \longmapsto l u$ solving $I(N L S)$ equation on $\left[0, T_{l w p}\right]$.

- A modified energy $\widetilde{E}[l u]$ built using the reference evolution.

We postpone how we actually choose these objects.

First Version of the $/$-method: $\widetilde{E}=H[/ u]$

For $s<1, N \gg 1$ define smooth monotone $m: \mathbb{R}_{\xi}^{2} \rightarrow \mathbb{R}^{+}$s.t.

$$
m(\xi)=\left\{\begin{array}{cc}
1 & \text { for }|\xi|<N \\
\left(\frac{|\xi|}{N}\right)^{s-1} & \text { for }|\xi|>2 N
\end{array}\right.
$$

The associated Fourier multiplier operator, $\widehat{(I u)}(\xi)=m(\xi) \widehat{u}(\xi)$, satisfies I: $H^{s} \rightarrow H^{1}$. Note that, pointwise in time, we have

$$
\|u\|_{H^{s}} \lesssim\|l u\|_{H^{1}} \lesssim N^{1-s}\|u\|_{H^{s}}
$$

Set $\widetilde{E}[l u(t)]=H[l u(t)]$. Other choices of \widetilde{E} are considered later.

AC Law Decay and Sobolev GWP index

1 Modified LWP. Initial v_{0} s.t. $\left\|\nabla / v_{0}\right\|_{L^{2}} \sim 1$ has $T_{\text {lwp }} \sim 1$.
2 Goal. $\forall u_{0} \in H^{s}, \forall T>0$, construct $u:[0, T] \times \mathbb{R}^{2} \rightarrow \mathbb{C}$.
$3 \Longleftrightarrow$ Dilated Goal. Construct $u^{\lambda}:\left[0, \lambda^{2} T\right] \times \mathbb{R}^{2} \rightarrow \mathbb{C}$.
4 Rescale Data. $\left\|I \nabla u_{0}^{\lambda}\right\|_{L^{2}} \lesssim N^{1-s} \lambda^{-s}\left\|u_{0}\right\|_{H^{s}} \sim 1$ provided we choose $\lambda=\lambda(N) \sim N^{\frac{1-s}{s}} \Longleftrightarrow N^{1-s} \lambda^{-s} \sim 1$.
5 Almost Conservation Law. $\|/ \nabla u(t)\|_{L^{2}} \lesssim H[/ u(t)]$ and

$$
\sup _{t \in\left[0, T_{\text {lwp }]}\right.} H[l u(t)] \leq H[l u(0)]+N^{-\alpha} .
$$

6 Delay of Data Doubling. Iterate modified LWP N^{α} steps with $T_{l w p} \sim 1$. We obtain rescaled solution for $t \in\left[0, N^{\alpha}\right]$.

$$
\lambda^{2}(N) T<N^{\alpha} \Longleftrightarrow T<N^{\alpha+\frac{2(s-1)}{s}} \text { so } s>\frac{2}{2+\alpha} \text { suffices. }
$$

First Version of the $/$-method: $\widetilde{E}=H[/ u]$

A Fourier analysis established the almost conservation property of $\widetilde{E}=H[l u]$ with $\alpha=\frac{3}{2}$ which led to...

Theorem (CKSTT:MRL02)

$N L S_{3}^{+}\left(\mathbb{R}^{2}\right)$ is globally well-posed for data in $H^{s}\left(\mathbb{R}^{2}\right)$ for $\frac{4}{7}<s<1$. Moreover, $\|u(t)\|_{H^{s}} \lesssim\langle t\rangle^{\beta(s)}$ for appropriate $\beta(s)$.

■ Same result for $N L S_{3}^{-}\left(\mathbb{R}^{2}\right)$ if $\left\|u_{0}\right\|_{L^{2}}<\|Q\|_{L^{2}}$. Here Q is the ground state (unique positive solution of $-Q+\Delta Q=-Q^{3}$).

- Fourier analysis leading to $\alpha=\frac{3}{2}$ in fact gives $\alpha=2$ for most frequency interactions.

L^{2}-Critical in Weighted L^{2} Spaces

Based on PC transformation \& inspired by [Bourgain98], we have:

Theorem (Blue-C:CPAA06)

For $s \geq 0$, if $N L S_{1+\frac{4}{d}}^{+}\left(\mathbb{R}^{d}\right)$ is GWP for $H^{s}\left(\mathbb{R}^{d}\right)$ initial data then $N L S_{1+\frac{4}{d}}^{+}\left(\mathbb{R}^{d}\right)$ is GWP and scatters for data satisfying
$\langle\cdot\rangle^{s} u_{0}(\cdot) \in L^{2}$. The same result applies to the focusing case provided $\left\|u_{0}\right\|_{L^{2}}<\|Q\|_{L^{2}}$.

- Thus, GWP for L^{2} data \Longleftrightarrow Scattering for L^{2} data.
- H^{s}-GWP improvements imply weighted space improvements.
- PC transformation isometry in L^{2}-admissible Strichartz spaces.

Remarks

- The almost conservation property

$$
\sup _{t \in\left[0, T_{l w p}\right]} \tilde{E}[l u(t)] \leq \widetilde{E}\left[l u_{0}\right]+N^{-\alpha}
$$

leads to GWP for

$$
s>s_{\alpha}=\frac{2}{2+\alpha} .
$$

- The I-method is a subcritical method. To prove the Scattering Conjecture at $s=0$ via the I-method would require $\alpha=+\infty$.
- The I-method localizes the conserved density in frequency. Similar ideas appear in recent critical scattering results.
- There is a multilinear corrections algorithm for defining new choices of \widetilde{E} which should have a better AC property.

Focusing Case Below the Ground State Mass

- Modified LWP lifetime is controlled by $\left\|I \nabla u_{0}\right\|_{L^{2}}$.

■ The GWP scheme progresses if $\|I \nabla u(t)\|_{L^{2}}^{2} \lesssim H[I u(t)]$.
■ Weinstein's optimal Gagliardo-Nirenberg Inequality:

$$
\|w\|_{L^{4}}^{4} \leq \frac{2}{\|Q\|_{L^{2}}^{2}}\|w\|_{L^{2}}^{2}\|\nabla w\|_{L^{2}}^{2} .
$$

- I has symbol m satisfying $|m| \leq 1$ so $\|I f\|_{L^{2}} \leq\|f\|_{L^{2}}$. Thus,

$$
\left\|u_{0}\right\|_{L^{2}}<\|Q\|_{L^{2}} \Longrightarrow\left\|/ u_{0}\right\|_{L^{2}}<\|Q\|_{L^{2}} .
$$

- The required control then follows:

$$
\left\|u_{0}\right\|_{L^{2}}<\|Q\|_{L^{2}} \Longrightarrow\|I \nabla u(t)\|_{L^{2}}^{2} \lesssim H[l u(t)] .
$$

3. Multilinear Correction Terms

(Inspired by [Coifman-Meyer]; following [CKSTT:KdV])
1 For $k \in \mathbb{N}$, define the convolution hypersurface

$$
\Sigma_{k}:=\left\{\left(\xi_{1}, \ldots, \xi_{k}\right) \in\left(\mathbb{R}^{2}\right)^{k}: \xi_{1}+\ldots+\xi_{k}=0\right\} \subset\left(\mathbb{R}^{2}\right)^{k}
$$

2 For $M: \Sigma_{k} \rightarrow \mathbb{C}$ and u_{1}, \ldots, u_{k} nice, define k-linear functional

$$
\Lambda_{k}\left(M ; u_{1}, \ldots, u_{k}\right):=c_{k} \Re \int_{\Sigma_{k}} M\left(\xi_{1}, \ldots, \xi_{k}\right) \widehat{u_{1}}\left(\xi_{1}\right) \ldots \widehat{u_{k}}\left(\xi_{k}\right) .
$$

3 For $k \in 2 \mathbb{N}$ abbreviate $\Lambda_{k}(M ; u)=\Lambda_{k}(M ; u, \bar{u}, \ldots, \bar{u})$.
$4 \Lambda_{k}(M ; u)$ invariant under interchange of even/odd arguments,

$$
M\left(\xi_{1}, \xi_{2}, \ldots, \xi_{k-1}, \xi_{k}\right) \mapsto \bar{M}\left(\xi_{2}, \xi_{1}, \ldots, \xi_{k}, \xi_{k-1}\right)
$$

5 We can define a symmetrization rule via group orbit.

Examples

$$
\begin{gathered}
\int_{x} u \bar{u} u \bar{u} d x=\int\left(\int e^{i x \cdot \xi_{1}} \widehat{u}\left(\xi_{1}\right) d \xi_{1}\right) \ldots\left(\int e^{i x \cdot \xi_{4}} \widehat{\widehat{u}}\left(\xi_{4}\right) d \xi_{4}\right) d x \\
=\int_{\xi_{1}, \ldots, \xi_{4}}\left[\int_{x} e^{i x \cdot\left(\xi_{1}+\xi_{2}+\xi_{3}+\xi_{4}\right)} d x\right] \widehat{u}\left(\xi_{1}\right) \widehat{\bar{u}}\left(\xi_{2}\right) \widehat{u}\left(\xi_{3}\right) \widehat{\bar{u}}\left(\xi_{4}\right) d \xi_{1, \ldots, 4} \\
=\int_{\Sigma_{4}} \widehat{u}\left(\xi_{1}\right) \widehat{\bar{u}}\left(\xi_{2}\right) \widehat{u}\left(\xi_{3}\right) \widehat{\bar{u}}\left(\xi_{4}\right)=\Lambda_{4}(1 ; u) . \\
\Lambda_{2}\left(-\xi_{1} \cdot \xi_{2} ; u\right)=\|\nabla u\|_{L^{2}}^{2} .
\end{gathered}
$$

Thus, $H[u]=\Lambda_{2}\left(-\xi_{1} \cdot \xi_{2} ; u\right) \pm \Lambda_{4}\left(\frac{1}{2} ; u\right)$.

Time Dependence of Multilinear Forms

Suppose u nicely solves $N L S_{3}^{+}\left(\mathbb{R}^{2}\right) ; M$ is time independent, symmetric. Calculations produce the time differentiation formula

$$
\begin{aligned}
\partial_{t} \Lambda_{k}(M ; u(t)) & =\Lambda_{k}\left(i M \alpha_{k} ; u(t)\right)-\Lambda_{k+2}(i k X(M) ; u(t)) \\
& =\Lambda_{k}\left(i M \alpha_{k} ; u(t)\right)-\Lambda_{k+2}\left([i k X(M)]_{\text {sym }} ; u(t)\right) .
\end{aligned}
$$

Here

$$
\alpha_{k}\left(\xi_{1}, \ldots, \xi_{k}\right):=-\left|\xi_{1}\right|^{2}+\left|\xi_{2}\right|^{2}-\ldots-\left|\xi_{k-1}\right|^{2}+\left|\xi_{k}\right|^{2}
$$

(so $\alpha_{2}=0$ on Σ_{2}) and

$$
X(M)\left(\xi_{1}, \ldots, \xi_{k+2}\right):=M\left(\xi_{123}, \xi_{4}, \ldots, \xi_{k+2}\right)
$$

We use the notation $\xi_{a b}:=\xi_{a}+\xi_{b}, \xi_{a b c}:=\xi_{a}+\xi_{b}+\xi_{c}$, etc.

AC Quantities via Multilinear Corrections

■ Abbreviate $m\left(\xi_{j}\right)$ as m_{j}. Define σ_{2} s.t. $\|I \nabla u\|_{L^{2}}^{2}=\Lambda_{2}\left(\sigma_{2} ; u\right)$:

$$
\sigma_{2}\left(\xi_{1}, \xi_{2}\right):=-\frac{1}{2} \xi_{1} m_{1} \cdot \xi_{2} m_{2}=\frac{1}{2}\left|\xi_{1}\right|^{2} m_{1}^{2}
$$

- With $\tilde{\sigma}_{4}$ (symmetric, time independent) to be determined, set

$$
\widetilde{E}:=\Lambda_{2}\left(\sigma_{2} ; u\right)+\Lambda_{4}\left(\tilde{\sigma}_{4} ; u\right) .
$$

- Using the time differentiation formula, we calculate

$$
\partial_{t} \widetilde{E}=\Lambda_{4}\left(\left\{i \tilde{\sigma}_{4} \alpha_{4}-i 2\left[X\left(\sigma_{2}\right)\right]_{s y m}\right\} ; u\right)-\Lambda_{6}\left(\left[i 4 X\left(\tilde{\sigma}_{4}\right)\right]_{\text {sym }} ; u\right) .
$$

We'd like to define $\tilde{\sigma}_{4}$ to cancel away the Λ_{4} contribution.

Small Divisor Problem

Resonant interactions obstruct the natural choice:

$$
\tilde{\sigma}_{4}=? \frac{\left[2 i X\left(\sigma_{2}\right)\right]_{\text {sym }}}{i \alpha_{4}}
$$

On Σ_{4}, we can reexpress $\alpha_{4}=-\left|\xi_{1}\right|^{2}+\left|\xi_{2}\right|^{2}-\left|\xi_{3}\right|^{2}+\left|\xi_{4}\right|^{2}$ as

$$
\alpha_{4}=-2 \xi_{12} \cdot \xi_{14}=-2\left|\xi_{12}\right|\left|\xi_{14}\right| \cos \angle\left(\xi_{12}, \xi_{14}\right)
$$

and

$$
\left[2 i X\left(\sigma_{2}\right)\right]_{\text {sym }}=\frac{1}{4}\left(-m_{1}^{2}\left|\xi_{1}\right|^{2}+m_{2}^{2}\left|\xi_{2}\right|^{2}-m_{3}^{2}\left|\xi_{3}\right|^{2}+m_{4}^{2}\left|\xi_{4}\right|^{2}\right)
$$

When all the $m_{j}=1$ (so $\max _{j}\left|\xi_{j}\right|<N$), $\tilde{\sigma}_{4}$ is well-defined. However, α_{4} can also vanish when ξ_{12} and ξ_{14} are orthogonal.

Remark: Integrable Systems Conjecture

For $\mathrm{NLS}_{3}^{+}(\mathbb{R})$, the resonant obstruction disappears. Thus,

$$
\begin{aligned}
\widetilde{E}^{1} & =\Lambda_{2}\left(\sigma_{2}\right)+\Lambda_{4}\left(\tilde{\sigma}_{4}\right) ; \\
\partial_{t} \widetilde{E}^{1} & =-\Lambda_{6}\left(\left[i 4 X\left(\tilde{\sigma}_{4}\right)\right]_{\text {sym }}\right) .
\end{aligned}
$$

We can then define, with $\tilde{\sigma}_{6}$ to be determined,

$$
\begin{gathered}
\widetilde{E}^{2}=\widetilde{E}^{1}+\Lambda_{6}\left(\tilde{\sigma}_{6}\right) ; \\
\partial_{t} \widetilde{E}^{2}=\Lambda_{6}\left(\left\{i \tilde{\sigma}_{6} \alpha_{6}-\left[i 4 X\left(\tilde{\sigma}_{4}\right)\right]_{s y m}\right\}\right)+\Lambda_{8}\left(\left[i 6 X\left(\tilde{\sigma}_{6}\right)\right]_{s y m}\right) .
\end{gathered}
$$

Let's define

$$
\tilde{\sigma}_{6}=\frac{\left[i 4 X\left(\tilde{\sigma}_{4}\right)\right]_{\text {sym }}}{i \alpha_{6}} .
$$

Remark: Integrable Systems Conjecture

Thus, we formally obtain a continued-fraction-like algorithm.

$$
\begin{gathered}
\tilde{\sigma}_{6}=\frac{\left[i 4 X\left(\frac{\left[2 i X\left(\sigma_{2}\right)\right]_{\text {sym }}}{i \alpha_{4}}\right)\right]_{\text {sym }}}{i \alpha_{6}}, \\
\tilde{\sigma}_{8}=\frac{\left[i 6 X\left(\frac{\left[i 4 X\left(\frac{\left[2 i X\left(\sigma_{2}\right)\right)_{s y m}}{i \alpha_{4}}\right)\right]_{\text {sym }}}{i \alpha_{6}}\right)\right]_{s y m}}{i \alpha_{8}}, \ldots
\end{gathered}
$$

Each step gains two derivatives but costs two more factors.
Conjecture: The multipliers $\tilde{\sigma}_{6}, \tilde{\sigma}_{8}, \ldots$ are well defined and lead to better AC properties. Same for other integrable systems.

4. Resonant Decomposition

We return to $\mathrm{NLS}_{3}^{+}\left(\mathbb{R}^{2}\right)$.
Since the natural choice is not well-defined, we choose

$$
\tilde{\sigma}_{4}:=\frac{\left[2 i X\left(\sigma_{2}\right)\right]_{\text {sym }}}{i \alpha_{4}} \chi_{\Omega_{n r}}
$$

where the non-resonant set $\Omega_{n r} \subset \Sigma_{4}$ such that

$$
\Omega_{n r}:=\left\{\max _{1 \leq j \leq 4}\left|\xi_{j}\right| \leq N\right\} \cup\left\{\left|\cos \angle\left(\xi_{12}, \xi_{14}\right)\right| \geq \theta_{0}\right\}
$$

Eventually, we choose θ_{0} to balance the 4 -linear and 6 -linear contributions to the modified energy increment. We have

$$
\partial_{t} \widetilde{E}=\Lambda_{4}\left(\left\{i \tilde{\sigma}_{4} \alpha_{4}-i 2\left[X\left(\sigma_{2}\right)\right]_{\text {sym }}\right\} ; u\right)-\Lambda_{6}\left(\left[i 4 X\left(\tilde{\sigma}_{4}\right)\right]_{\text {sym }} ; u\right) .
$$

The 4-linear contribution is constrained to the resonant set $\Omega_{n r}^{C}$.

Improved Almost Conservation Property

LEMMA

If $\left\|u_{0}\right\|_{L_{x}^{2}\left(\mathbb{R}^{2}\right)} \leq A ; E\left(I u_{0}\right) \leq 1 ; u$ is a nice solution of $N L S_{3}^{+}\left(\mathbb{R}^{2}\right)$ on a time interval $\left[0, t_{0}\right]$, then if $t_{0}=t_{0}(A)$ is small enough,

$$
\begin{aligned}
& \left|\int_{0}^{t_{0}} \Lambda_{4}\left(\left[-2 i X\left(\sigma_{2}\right)\right]_{\text {sym }}+i \tilde{\sigma}_{4} \alpha_{4} ; u(t)\right) d t\right| \\
& \quad\left|\int_{0}^{t_{0}} \Lambda_{6}\left(\left[4 i X\left(\tilde{\sigma}_{4}\right)\right]_{\text {sym }} ; u(t)\right) d t\right| \\
& \lesssim C(A)\left[N^{-2+}+\theta_{0}^{1 / 2} N^{-3 / 2+}+\theta_{0}^{-1} N^{-3+}\right] .
\end{aligned}
$$

The choice $\theta_{0}=N^{-1}$ produces the AC property with $\alpha=2$.

Overview and Delicate Case of Proof

- The 4-linear contribution has multiplier

$$
\left(\left[-2 i X\left(\sigma_{2}\right)\right]_{\text {sym }}+i \tilde{\sigma}_{4} \alpha_{4}\right)(\xi)=\left[-2 i X\left(\sigma_{2}\right)\right]_{\text {sym }} \chi_{\Omega_{r}}
$$

where the resonant set $\Omega_{r}=\Omega_{n r}^{C} \subset \Sigma_{4}$,

$$
\Omega_{r}:=\left\{\max \left(\left|\xi_{1}\right|,\left|\xi_{2}\right|,\left|\xi_{3}\right|,\left|\xi_{4}\right|\right)>N ;\left|\cos \angle\left(\xi_{12}, \xi_{14}\right)\right|<\theta_{0}\right\} .
$$

- We wish to bound the associated energy incremement

$$
\int_{0}^{T_{l w p}} \Lambda_{4}\left(\left[-2 i X\left(\sigma_{2}\right)\right]_{\text {sym }} \chi_{\Omega_{r}} ; u\right) d t
$$

- The 4 factors u are dyadically decomposed. The integral is studied case-by-case based on dyadic frequency sizes.
- On Σ_{4}, the two largest frequencies are comparable.

Overview and Delicate Case of Proof

- Let $\left|\xi_{j}\right| \sim N_{j} \in 2^{\mathbb{Z}}$. Symmetry properties and the Ω_{r} constraint allow to assume

$$
N_{1} \sim N_{2} \gtrsim N, N_{2} \gtrsim N_{3} \gtrsim N_{4} \gtrsim 1 .
$$

- For most cases, suffices to use enhanced [CKSTT:MRL] and

LEMMA

$$
\begin{aligned}
& \forall\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right) \in \Sigma_{4} \\
& \qquad\left|\left[2 i X\left(\sigma_{2}\right)\right]_{\text {sym }}\right| \lesssim \min \left(m_{1}, m_{2}, m_{3}, m_{4}\right)^{2}\left|\xi_{12}\right|\left|\xi_{14}\right| .
\end{aligned}
$$

This follows from the mean value theorem.

Overview and Delicate Case of Proof

The most delicate case occurs in Ω_{r} and when

$$
N_{1} \sim N_{2} \gg N, N_{3} \gg N_{4} \gtrsim 1 .
$$

Angle constraint in Ω_{r} gives better estimates based on two effects:

- Cancellation with $\left[X\left(\sigma_{2}\right)\right]_{\text {sym }}$,
- Angular refinement of Bilinear Strichartz.

We use a refinement exploiting spherical symmetry of m.

LEMMA

Let N_{1}, \ldots, N_{4} be in the delicate case with $\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right) \in \Omega_{r}$. Then

$$
\left|\left[X\left(\sigma_{2}\right)\right]_{\text {sym }}\right| \lesssim m\left(N_{1}\right)^{2} N_{1} N_{3} \theta_{0}+m\left(N_{3}\right)^{2} N_{3}^{2} .
$$

Angular Refinement of Bilinear Strichartz

Lemma (Angle Refined Bilinear Strichartz)

Let $0<N_{1} \leq N_{2}$ and $0<\theta<\frac{1}{50}$. Then for any $v_{1}, v_{2} \in X^{0,1 / 2+}$ with spatial frequencies N_{1}, N_{2} respectively, the spacetime function

$$
\begin{aligned}
& F(t, x):=\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \quad e^{i\left(t\left(\tau_{1}+\tau_{2}\right)+x \cdot\left(\xi_{1}+\xi_{2}\right)\right)} \\
& \times \chi_{\left\{\left|\cos \angle\left(\xi_{1}, \xi_{2}\right)\right| \leq \theta\right\}} \tilde{v}_{1}\left(\tau_{1}, \xi_{1}\right) \tilde{v}_{2}\left(\tau_{2}, \xi_{2}\right) d \xi_{1} d \xi_{2}
\end{aligned}
$$

obeys the bound

$$
\|F\|_{L_{t, x}^{2}} \lesssim \theta^{1 / 2}\left\|v_{1}\right\|_{X^{0,1 / 2+}}\left\|v_{2}\right\|_{X^{0,1 / 2+}}
$$

