RESONANT DECOMPOSITIONS AND THE I-METHOD FOR THE CUBIC NLS ON R^2

J. Colliander

University of Toronto

Séminaire EDP, Université de Paris-Nord 13, Villetaneuse

1 Cubic NLS on \mathbb{R}^2

2 The *I*-method

- **3** Multilinear Corrections
- **4** RESONANT DECOMPOSITION

We consider the initial value problems:

$$\begin{cases} (i\partial_t + \Delta)u = \pm |u|^2 u \\ u(0, x) = u_0(x). \end{cases}$$
 (NLS₃[±](ℝ²))

The + case is called defocusing; - is focusing. NLS_3^{\pm} is ubiquitous in physics. The solution has a dilation symmetry

$$u^{\lambda}(\tau, y) = \lambda^{-1} u(\lambda^{-2}\tau, \lambda^{-1}y).$$

which is invariant in $L^2(\mathbb{R}^2)$. This problem is L^2 -critical.

TIME INVARIANT QUANTITIES

$$\begin{split} \mathsf{Mass} &= \int_{\mathbb{R}^d} |u(t,x)|^2 dx.\\ \mathsf{Momentum} &= 2\Im \int_{\mathbb{R}^2} \overline{u}(t) \nabla u(t) dx.\\ \mathsf{Energy} &= H[u(t)] = \frac{1}{2} \int_{R^2} |\nabla u(t)|^2 dx \pm \frac{1}{2} |u(t)|^4 dx. \end{split}$$

- Mass is L^2 ; Momentum is close to $H^{1/2}$; Energy involves H^1 .
- Dynamics on a sphere in L²; focusing/defocusing energy.
- Local conservation laws express **how** quantity is conserved: e.g., $\partial_t |u|^2 = \nabla \cdot 2\Im(\overline{u}\nabla u)$. Frequency Localizations?

Local-in-time theory for $NLS_3^{\pm}(\mathbb{R}^2)$

■
$$\forall u_0 \in L^2(\mathbb{R}^2) \exists T_{lwp}(u_0)$$
 determined by
 $\|e^{it\Delta}u_0\|_{L^4_{tx}([0,T_{lwp}]\times\mathbb{R}^2)} < \frac{1}{100}$ such that
 $\exists \text{ unique } u \in C([0, T_{lwp}]; L^2) \cap L^4_{tx}([0, T_{lwp}] \times \mathbb{R}^2)$ solving
 $NLS^+_3(\mathbb{R}^2).$
■ $\forall u_0 \in H^s(\mathbb{R}^2), s > 0, T_{lwp} \sim \|u_0\|_{H^s}^{-\frac{2}{s}}$ and regularity persists:
 $u \in C([0, T_{lwp}]; H^s(\mathbb{R}^2)).$

• Define the maximal forward existence time $T^*(u_0)$ by

$$\|u\|_{L^4_{tx}([0,T^*-\delta]\times\mathbb{R}^2)}<\infty$$

for all $\delta > 0$ but diverges to ∞ as $\delta \searrow 0$.

a \exists small data scattering threshold $\mu_0 > 0$

$$||u_0||_{L^2} < \mu_0 \implies ||u||_{L^4_{tx}(\mathbb{R} \times \mathbb{R}^2)} < 2\mu_0.$$

What is the ultimate fate of the local-in-time solutions?

 $\frac{L^2\text{-critical Scattering Conjecture:}}{L^2 \ni u_0 \longmapsto u \text{ solving } NLS_3^+(\mathbb{R}^2) \text{ is global-in-time and}} \|u\|_{L^4_{t,x}} < A(u_0) < \infty.$

Moreover, $\exists \ u_{\pm} \in L^2(\mathbb{R}^2)$ such that

$$\lim_{t\to\pm\infty}\|e^{\pm it\Delta}u_{\pm}-u(t)\|_{L^2(\mathbb{R}^2)}=0.$$

Same statement for focusing $NLS_3^-(\mathbb{R}^2)$ if $||u_0||_{L^2} < ||Q||_{L^2}$. Remarks:

- Known for small data $||u_0||_{L^2(\mathbb{R}^2)} < \mu_0$.
- Known for large radial data [Killip-Tao-Visan 07].

$NLS_3^{\pm}(\mathbb{R}^2)$: Present Status for General Data

regularity	idea	reference
$s > \frac{2}{3}$	high/low frequency decomposition	[Bourgain98]
$s>rac{4}{7}$	H(lu)	[CKSTT02]
$s > \frac{1}{2}$	resonant cut of 2nd energy	[CKSTT07]
$s \geq \frac{1}{2}$	H(Iu) & Interaction Morawetz	[Fang-Grillakis05]
$s>rac{\overline{2}}{\overline{5}}$	H(Iu) & Interaction I-Morawetz	[CGTz07]
$s > \frac{4}{13}$?	resonant cut & I-Morawetz	[-?-]

- Morawetz-based arguments are only for defocusing case.
- Focusing results assume $||u_0||_{L^2} < ||Q||_{L^2}$.
- Unify theory of focusing-under-ground-state and defocusing?

$NLS_3^{\pm}(\mathbb{R}^2)$: Present Status for General Data

regularity	idea	reference
$s > \frac{2}{3}$	high/low frequency decomposition	[Bourgain98]
$s > \frac{4}{7}$	H(lu)	[CKSTT02]
$s > \frac{1}{2}$	resonant cut of 2nd energy	[CKSTT07]
$s \geq \frac{1}{2}$	H(Iu) & Interaction Morawetz	[Fang-Grillakis05]
$s>rac{2}{5}$	<i>H</i> (<i>Iu</i>) & Interaction <i>I</i> -Morawetz	[CGTz07]
$s > \frac{4}{13}$?	resonant cut & I-Morawetz	[-?-]

- Morawetz-based arguments are only for defocusing case.
- Focusing results assume $||u_0||_{L^2} < ||Q||_{L^2}$.
- Unify theory of focusing-under-ground-state and defocusing?

H^1 Global Well-Posedness Scheme

Consider $NLS_3^{\pm}(\mathbb{R}^2)$ with finite energy data $u_0 \in H^1$. Classical H^1 -GWP Scheme relies on three inputs:

- **1** LWP lifetime dependence on data norm: $T_{lwp} \sim ||u_0||_{H^s}^{-2/s}$.
- **2** Energy controls data norm: $||u(t)||_{H^1}^2 \lesssim H[u(t)] + ||u(t)||_{L^2}^2$.
- **B** Conservation: $H[u(t)] + ||u(t)||_{L^2}^2 \leq C(Energy, Mass).$

Fix arbitrary time interval [0, T]. Break [0, T] into subintervals of uniform size c(Energy, Mass) + LWP iteration \implies GWP.

For $u_0 \in H^s$ with 0 < s < 1, we may have infinite energy. Classical persistence of regularity from LWP/Duhamel only gives

$$\sup_{t\in[0,T_{lwp}]}\|u(t)\|_{H^s}\lesssim 2\|u_0\|_{H^s}$$

and LWP iteration fails due to (possible) doubling. [Bourgain98]

Let $H^s \ni u_0 \longmapsto u$ solve *NLS* for $t \in [0, T_{lwp}], T_{lwp} \sim ||u_0||_{H^s}^{-2/s}$. Consider two ingredients (to be defined):

- A smoothing operator $I = I_N : H^s \mapsto H^1$. The *NLS* evolution $u_0 \mapsto u$ induces a smooth reference evolution $H^1 \ni Iu_0 \mapsto Iu$ solving I(NLS) equation on $[0, T_{Iwp}]$.
- A modified energy $\tilde{E}[lu]$ built using the reference evolution.

We postpone how we actually choose these objects.

For $s < 1, N \gg 1$ define smooth monotone $m : \mathbb{R}^2_{\mathcal{E}} \to \mathbb{R}^+$ s.t.

$$m(\xi) = \begin{cases} 1 & \text{for } |\xi| < N\\ \left(\frac{|\xi|}{N}\right)^{s-1} & \text{for } |\xi| > 2N. \end{cases}$$

The associated Fourier multiplier operator, $(Iu)(\xi) = m(\xi)\hat{u}(\xi)$, satisfies $I : H^s \to H^1$. Note that, pointwise in time, we have

$$\|u\|_{H^{s}} \lesssim \|Iu\|_{H^{1}} \lesssim N^{1-s} \|u\|_{H^{s}}.$$

Set $\widetilde{E}[Iu(t)] = H[Iu(t)]$. Other choices of \widetilde{E} are considered later.

AC LAW DECAY AND SOBOLEV GWP INDEX

- **1** Modified LWP. Initial v_0 s.t. $\|\nabla I v_0\|_{L^2} \sim 1$ has $T_{Iwp} \sim 1$.
- **2** Goal. $\forall u_0 \in H^s, \forall T > 0$, construct $u : [0, T] \times \mathbb{R}^2 \to \mathbb{C}$.
- **B** \iff **Dilated Goal.** Construct $u^{\lambda} : [0, \lambda^2 T] \times \mathbb{R}^2 \to \mathbb{C}$.
- **4** Rescale Data. $\| I \nabla u_0^{\lambda} \|_{L^2} \lesssim N^{1-s} \lambda^{-s} \| u_0 \|_{H^s} \sim 1$ provided we choose $\lambda = \lambda(N) \sim N^{\frac{1-s}{s}} \iff N^{1-s} \lambda^{-s} \sim 1$.
- **5** Almost Conservation Law. $||I \nabla u(t)||_{L^2} \leq H[Iu(t)]$ and

$$\sup_{t\in[0,T_{lwp}]}H[lu(t)]\leq H[lu(0)]+N^{-\alpha}$$

6 Delay of Data Doubling. Iterate modified LWP N^{α} steps with $T_{lwp} \sim 1$. We obtain rescaled solution for $t \in [0, N^{\alpha}]$.

$$\lambda^2(N)T < N^{lpha} \iff T < N^{lpha + rac{2(s-1)}{s}} ext{ so } s > rac{2}{2+lpha} ext{ suffices}.$$

A Fourier analysis established the almost conservation property of $\tilde{E} = H[Iu]$ with $\alpha = \frac{3}{2}$ which led to...

THEOREM (CKSTT:MRL02)

 $NLS_{3}^{+}(\mathbb{R}^{2})$ is globally well-posed for data in $H^{s}(\mathbb{R}^{2})$ for $\frac{4}{7} < s < 1$. Moreover, $\|u(t)\|_{H^{s}} \lesssim \langle t \rangle^{\beta(s)}$ for appropriate $\beta(s)$.

- Same result for NLS₃⁻(ℝ²) if ||u₀||_{L²} < ||Q||_{L²}. Here Q is the ground state (unique positive solution of −Q + ΔQ = −Q³).
- Fourier analysis leading to $\alpha = \frac{3}{2}$ in fact gives $\alpha = 2$ for most frequency interactions.

Based on PC transformation & inspired by [Bourgain98], we have:

THEOREM (BLUE-C:CPAA06)

For $s \geq 0$, if $NLS_{1+\frac{4}{d}}^+(\mathbb{R}^d)$ is GWP for $H^s(\mathbb{R}^d)$ initial data then $NLS_{1+\frac{4}{d}}^+(\mathbb{R}^d)$ is GWP and scatters for data satisfying $\langle \cdot \rangle^s u_0(\cdot) \in L^2$. The same result applies to the focusing case provided $\|u_0\|_{L^2} < \|Q\|_{L^2}$.

- Thus, GWP for L^2 data \iff Scattering for L^2 data.
- *H^s*-GWP improvements imply weighted space improvements.
- PC transformation isometry in L^2 -admissible Strichartz spaces.

Remarks

The almost conservation property

$$\sup_{t\in[0,\mathcal{T}_{lwp}]}\widetilde{E}[lu(t)]\leq\widetilde{E}[lu_0]+N^{-\alpha}$$

leads to GWP for

$$s > s_{\alpha} = \frac{2}{2+\alpha}.$$

- The *I*-method is a subcritical method. To prove the Scattering Conjecture at s = 0 via the *I*-method would require α = +∞.
- The *I*-method *localizes the conserved density in frequency*. Similar ideas appear in recent critical scattering results.
- There is a *multilinear corrections algorithm* for defining new choices of \tilde{E} which should have a better AC property.

Focusing Case Below the Ground State Mass

- Modified LWP lifetime is controlled by $||I \nabla u_0||_{L^2}$.
- The GWP scheme progresses if $||I \nabla u(t)||_{L^2}^2 \lesssim H[Iu(t)]$.
- Weinstein's optimal Gagliardo-Nirenberg Inequality:

$$\|w\|_{L^4}^4 \leq rac{2}{\|Q\|_{L^2}^2} \|w\|_{L^2}^2 \|\nabla w\|_{L^2}^2.$$

• I has symbol m satisfying $|m| \leq 1$ so $||If||_{L^2} \leq ||f||_{L^2}$. Thus,

$$\|u_0\|_{L^2} < \|Q\|_{L^2} \implies \|Iu_0\|_{L^2} < \|Q\|_{L^2}.$$

The required control then follows:

$$\|u_0\|_{L^2} < \|Q\|_{L^2} \implies \|I \nabla u(t)\|_{L^2}^2 \lesssim H[Iu(t)].$$

3. Multilinear Correction Terms

(Inspired by [Coifman-Meyer]; following [CKSTT:KdV]) **1** For $k \in \mathbb{N}$, define the *convolution hypersurface*

$$\Sigma_k := \{(\xi_1,\ldots,\xi_k) \in (\mathbb{R}^2)^k : \xi_1 + \ldots + \xi_k = 0\} \subset (\mathbb{R}^2)^k.$$

2 For $M : \Sigma_k \to \mathbb{C}$ and u_1, \ldots, u_k nice, define *k*-linear functional

$$\Lambda_k(M; u_1, \ldots, u_k) := c_k \, \Re \int_{\Sigma_k} M(\xi_1, \ldots, \xi_k) \widehat{u_1}(\xi_1) \ldots \widehat{u_k}(\xi_k).$$

B For $k \in 2\mathbb{N}$ abbreviate $\Lambda_k(M; u) = \Lambda_k(M; u, \overline{u}, \dots, \overline{u})$.

4 $\Lambda_k(M; u)$ invariant under interchange of even/odd arguments,

$$M(\xi_1,\xi_2,\ldots,\xi_{k-1},\xi_k)\mapsto \overline{M}(\xi_2,\xi_1,\ldots,\xi_k,\xi_{k-1}).$$

5 We can define a symmetrization rule via group orbit.

EXAMPLES

$\int u\overline{u}u\overline{u}dx = \int (\int e^{ix\cdot\xi_1}\widehat{u}(\xi_1)d\xi_1)\dots(\int e^{ix\cdot\xi_4}\widehat{\overline{u}}(\xi_4)d\xi_4)dx$ $= \int_{\xi_1,\ldots,\xi_4} \left[\int_{x} e^{ix \cdot (\xi_1 + \xi_2 + \xi_3 + \xi_4)} dx \right] \widehat{u}(\xi_1) \widehat{\overline{u}}(\xi_2) \widehat{u}(\xi_3) \widehat{\overline{u}}(\xi_4) d\xi_{1,\ldots,4}$ $=\int \widehat{u}(\xi_1)\widehat{\overline{u}}(\xi_2)\widehat{u}(\xi_3)\widehat{\overline{u}}(\xi_4)=\Lambda_4(1;u).$ $\Lambda_2(-\xi_1 \cdot \xi_2; u) = \|\nabla u\|_{L^2}^2$

Thus, $H[u] = \Lambda_2(-\xi_1 \cdot \xi_2; u) \pm \Lambda_4(\frac{1}{2}; u).$

Suppose *u* nicely solves $NLS_3^+(\mathbb{R}^2)$; *M* is time independent, symmetric. Calculations produce the *time differentiation formula*

$$\partial_t \Lambda_k(M; u(t)) = \Lambda_k(iM\alpha_k; u(t)) - \Lambda_{k+2}(ikX(M); u(t)) = \Lambda_k(iM\alpha_k; u(t)) - \Lambda_{k+2}([ikX(M)]_{sym}; u(t)).$$

Here

$$\alpha_k(\xi_1,\ldots,\xi_k) := -|\xi_1|^2 + |\xi_2|^2 - \ldots - |\xi_{k-1}|^2 + |\xi_k|^2$$

(so $\alpha_2 = 0$ on Σ_2) and

$$X(M)(\xi_1,\ldots,\xi_{k+2}) := M(\xi_{123},\xi_4,\ldots,\xi_{k+2}).$$

We use the notation $\xi_{ab} := \xi_a + \xi_b$, $\xi_{abc} := \xi_a + \xi_b + \xi_c$, etc.

• Abbreviate $m(\xi_j)$ as m_j . Define σ_2 s.t. $\|I \nabla u\|_{L^2}^2 = \Lambda_2(\sigma_2; u)$:

$$\sigma_2(\xi_1,\xi_2) := -\frac{1}{2}\xi_1 m_1 \cdot \xi_2 m_2 = \frac{1}{2}|\xi_1|^2 m_1^2$$

• With $\tilde{\sigma}_4$ (symmetric, time independent) to be determined, set

$$\widetilde{E} := \Lambda_2(\sigma_2; u) + \Lambda_4(\widetilde{\sigma}_4; u).$$

Using the time differentiation formula, we calculate

$$\partial_t \tilde{E} = \Lambda_4(\{i\tilde{\sigma}_4\alpha_4 - i2[X(\sigma_2)]_{sym}\}; u) - \Lambda_6([i4X(\tilde{\sigma}_4)]_{sym}; u).$$

We'd like to define $\tilde{\sigma}_4$ to cancel away the Λ_4 contribution.

SMALL DIVISOR PROBLEM

Resonant interactions obstruct the natural choice:

$$\tilde{\sigma}_4 = \frac{[2iX(\sigma_2)]_{sym}}{i\alpha_4}$$

On $\Sigma_4,$ we can reexpress $\alpha_4=-|\xi_1|^2+|\xi_2|^2-|\xi_3|^2+|\xi_4|^2$ as

$$\alpha_4 = -2\xi_{12} \cdot \xi_{14} = -2|\xi_{12}||\xi_{14}| \cos \angle (\xi_{12}, \xi_{14}),$$

and

$$[2iX(\sigma_2)]_{sym} = rac{1}{4}(-m_1^2|\xi_1|^2+m_2^2|\xi_2|^2-m_3^2|\xi_3|^2+m_4^2|\xi_4|^2).$$

When all the $m_j = 1$ (so max_j $|\xi_j| < N$), $\tilde{\sigma}_4$ is well-defined. However, α_4 can also vanish when ξ_{12} and ξ_{14} are orthogonal. For $NLS_3^+(\mathbb{R})$, the resonant obstruction disappears. Thus,

$$\widetilde{E}^1 = \Lambda_2(\sigma_2) + \Lambda_4(\widetilde{\sigma}_4);$$

 $\partial_t \widetilde{E}^1 = -\Lambda_6([i4X(\widetilde{\sigma}_4)]_{sym}).$

We can then define, with $\tilde{\sigma}_6$ to be determined,

$$\widetilde{E}^2 = \widetilde{E}^1 + \Lambda_6(ilde{\sigma}_6);$$

 $\partial_t \tilde{E}^2 = \Lambda_6(\{i\tilde{\sigma}_6\alpha_6 - [i4X(\tilde{\sigma}_4)]_{sym}\}) + \Lambda_8([i6X(\tilde{\sigma}_6)]_{sym}).$ Let's define

$$\tilde{\sigma}_6 = \frac{[i4X(\tilde{\sigma}_4)]_{sym}}{i\alpha_6}.$$

Thus, we formally obtain a continued-fraction-like algorithm.

$$\tilde{\sigma}_{6} = \frac{\left[i4X\left(\frac{[2iX(\sigma_{2})]_{sym}}{i\alpha_{4}}\right)\right]_{sym}}{i\alpha_{6}},$$

$$\tilde{\sigma}_{8} = \frac{\left[i6X\left(\frac{\left[i4X\left(\frac{[2iX(\sigma_{2})]_{sym}}{i\alpha_{4}}\right)\right]_{sym}}{i\alpha_{6}}\right)\right]_{sym}}{i\alpha_{8}}, \dots$$

Each step gains two derivatives but costs two more factors.

Conjecture: The multipliers $\tilde{\sigma}_6, \tilde{\sigma}_8, \ldots$ are well defined and lead to better AC properties. Same for other integrable systems.

4. RESONANT DECOMPOSITION

We return to $NLS_3^+(\mathbb{R}^2)$. Since the natural choice is not well-defined, we choose

$$ilde{\sigma}_4 := rac{[2iX(\sigma_2)]_{sym}}{ilpha_4} \ \chi_{\Omega_{nr}}$$

where the non-resonant set $\Omega_{nr} \subset \Sigma_4$ such that

$$\Omega_{nr} := \{ \max_{1 \le j \le 4} |\xi_j| \le N \} \cup \{ |\cos \angle (\xi_{12}, \xi_{14})| \ge \theta_0 \}.$$

Eventually, we choose θ_0 to balance the 4-linear and 6-linear contributions to the modified energy increment. We have

$$\partial_t \widetilde{E} = \Lambda_4(\{i\widetilde{\sigma}_4\alpha_4 - i2[X(\sigma_2)]_{sym}\}; u) - \Lambda_6([i4X(\widetilde{\sigma}_4)]_{sym}; u).$$

The 4-linear contribution is constrained to the resonant set Ω_{nr}^{C} .

Lemma

If $||u_0||_{L^2_x(\mathbb{R}^2)} \leq A$; $E(|u_0|) \leq 1$; u is a nice solution of $NLS^+_3(\mathbb{R}^2)$ on a time interval $[0, t_0]$, then if $t_0 = t_0(A)$ is small enough,

$$\begin{vmatrix} \int_{0}^{t_{0}} \Lambda_{4}([-2iX(\sigma_{2})]_{sym} + i\tilde{\sigma}_{4}\alpha_{4}; u(t)) dt \end{vmatrix}$$

+
$$\begin{vmatrix} \int_{0}^{t_{0}} \Lambda_{6}([4iX(\tilde{\sigma}_{4})]_{sym}; u(t)) dt \end{vmatrix}$$

$$\lesssim C(A)[N^{-2+} + \theta_{0}^{1/2}N^{-3/2+} + \theta_{0}^{-1}N^{-3+}].$$

The choice $\theta_0 = N^{-1}$ produces the AC property with $\alpha = 2$.

OVERVIEW AND DELICATE CASE OF PROOF

The 4-linear contribution has multiplier

$$([-2iX(\sigma_2)]_{sym} + i\tilde{\sigma}_4\alpha_4)(\xi) = [-2iX(\sigma_2)]_{sym}\chi_{\Omega_r}$$

where the *resonant set* $\Omega_r = \Omega_{nr}^C \subset \Sigma_4$,

$$\Omega_r := \{\max(|\xi_1|, |\xi_2|, |\xi_3|, |\xi_4|) > N; | \cos \angle (\xi_{12}, \xi_{14}) | < \theta_0 \}.$$

We wish to bound the associated energy incremement

$$\int_0^{T_{lwp}} \Lambda_4([-2iX(\sigma_2)]_{sym}\chi_{\Omega_r};u)dt.$$

- The 4 factors u are dyadically decomposed. The integral is studied case-by-case based on dyadic frequency sizes.
- On Σ_4 , the two largest frequencies are comparable.

OVERVIEW AND DELICATE CASE OF PROOF

Let |ξ_j| ~ N_j ∈ 2^ℤ. Symmetry properties and the Ω_r constraint allow to assume

$$N_1 \sim N_2 \gtrsim N, N_2 \gtrsim N_3 \gtrsim N_4 \gtrsim 1.$$

For most cases, suffices to use enhanced [CKSTT:MRL] and

Lemma

 $\forall (\xi_1,\xi_2,\xi_3,\xi_4) \in \Sigma_4$,

 $|[2iX(\sigma_2)]_{sym}| \lesssim \min(m_1, m_2, m_3, m_4)^2 |\xi_{12}| |\xi_{14}|.$

This follows from the mean value theorem.

OVERVIEW AND DELICATE CASE OF PROOF

The most delicate case occurs in Ω_r and when

Angle constraint in Ω_r gives better estimates based on two effects:

• Cancellation with $[X(\sigma_2)]_{sym}$,

Angular refinement of Bilinear Strichartz.

We use a refinement exploiting spherical symmetry of m.

Lemma

Let N_1, \ldots, N_4 be in the delicate case with $(\xi_1, \xi_2, \xi_3, \xi_4) \in \Omega_r$. Then

$$|[X(\sigma_2)]_{sym}| \lesssim m(N_1)^2 N_1 N_3 \theta_0 + m(N_3)^2 N_3^2$$

LEMMA (ANGLE REFINED BILINEAR STRICHARTZ)

Let $0 < N_1 \le N_2$ and $0 < \theta < \frac{1}{50}$. Then for any $v_1, v_2 \in X^{0,1/2+}$ with spatial frequencies N_1, N_2 respectively, the spacetime function

$$F(t,x) := \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} e^{i(t(\tau_1 + \tau_2) + x \cdot (\xi_1 + \xi_2))} \\ \times \chi_{\{|\cos \angle (\xi_1, \xi_2)| \le \theta\}} \tilde{v}_1(\tau_1, \xi_1) \tilde{v}_2(\tau_2, \xi_2) \ d\xi_1 d\xi_2$$

obeys the bound

$$\|F\|_{L^2_{t,x}} \lesssim \theta^{1/2} \|v_1\|_{X^{0,1/2+}} \|v_2\|_{X^{0,1/2+}}.$$