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CaucHY PROBLEM FOR LAGRANGIAN NLS

Consider the initial value problem:

(NLSF (R))

{(i@t + A)u = +F'(Jul*)u
u(0, x) = up(x)

Remarks:
m Assume F’ > 0. The + case is defocusing; — is focusing.
m Generalized NLS with Lagrangian derivation.

m U(1) solution symmetry: u — eu.



TIME INVARIANT (QUANTITIES

The following quantities do not change with time:

Mass = / lu(t, x) % dx.
Rd
Momentum = 2%/ u(t)Vu(t)dx.
R2
Energy = H[u(t)] = ;/ IV u(t)|?dx4F(|u(t)]?)dx.
R2

= a priori conservation controls (defocusing case):

”U||L;>°L§
||VU||L<;°L§

These are very useful bounds but do not give any decay in time.



LocAL CONSERVATION LAWS

We consider an even more general NLS equation.

m Suppose ¢ : [0, T| x RY — C solves generalized NLS
(i0e + A)p =N (GNLS(RY))

for N' = N(t,x,¢) : [0, T] x RY x C — C. Assume ¢ is nice.
m Not necessarily Lagrangian; No U(1) symmetry.

m Express mass & momentum (non)conservation for GNLS.

Write 8de> = 8J¢ = ¢j-



LOCAL MASS/MOMENTUM (NON)CONSERVATION

m mass density: Too = |62
m momentum density/mass current:
Toj = Tjo = 23(¢¢))
m (linear part of the) momentum current:
Lix = Li; = —0;0k|6|* + 4R(;0x)
m mass bracket: {f,g}m = S(fg)
m momentum bracket: {f,g}j = R(f0;g — g0;f)

Local mass (non)conservation identity:

¢ Too + 0; Toj = 2{N, ¢} m

Local momentum (non)conservation identity:

¢ Toj + OklLig = 24N, ¢},



LOCAL MASS/MOMENTUM (NON)CONSERVATION

Consider N = F'(|¢|?)¢ for polynomial F : RT — R.
m We calculate the mass bracket

{F'(1617)$, 0} m = S(F'(|1¢|*)p0) = 0.

Thus mass is conserved for these nonlinearities.

m We calculate the momentum bracket

{F'(|6]*)¢, 0}, = —9;G(|6]*)

where G(z) = zF'(z) — F(z) ~ F(z).
Thus the momentum bracket contributes a divergence and
momentum is conserved for these nonlinearities.



GENERALIZED VIRIAL IDENTITY

Let a: RY — R (virial weight). Form the virial potential

Va(t) = / a(x)|o(t, x)[>dx.
Rd
Form the Morawetz action
M,(t) = Va- 2%($V¢)dx.
Rd

Conservation identities lead to the generalized virial identities

0V, = M, + /Rd SONN, Bhm(t, x)dx,

DM, — /R (BB + 43xR(Bi04) + 25N 6 o



REMARKS ON VIRIAL IDENTITIES

m The virial potential is a weighted average of the mass density
against the virial weight a.

m The Morawetz action is a contraction of the momentum
density against Va. Vector fields not arising as gradients
could also be considered.

m Useful estimates emerge from monotonicity and boundedness
of terms in the virial identities.

m Monotone quantities provide dynamical insights.

m Idea of Morawetz Estimates: Cleverly choose the weight
function a so that 9:M, > 0 but M, < C(¢p) to obtain
spacetime control on ¢. This strategy imposes various
constraints on a which suggest choosing a(x) = |x]|.



VARIANCE IDENTITY

[Glassey], [Vlasov-Petrischev-Talanov]

= Consider GNLS with V' = =|u[*/u. This is the L? critical
focusing equation NLSle+ (R9).

4
a
m Choose a(x) = |x|?. Calculations reveal that

d? /Rd Ix[?|u(t, x)[2dx = 16H[u(t)].

m In the focusing case, we can consider initial data g with
H[uo] < 0 and finite variance. Such data must blow up in
finite time.






[LIN-STRAUSS] MORAWETZ IDENTITY

Consider (i0; + A)¢p = F'(|¢|?)¢ with F’ > 0 and x € R3. Choose
a(x) = |x|. Observe that a is weakly convex, Va = % is bounded,
and —AAa = 47dy. From monotonicity 0;M, > 0 and the bound

M| < \/H|[uo] emerges the Lin-Strauss Morawetz identity

.
My(T) — Ma(0) = //47r50(x)|¢)(t,x)|2+(2 0) + 45U g

[x]
0 R3

This implies the spacetime control estimate (centered at x = 0)

(o) 2] ol 2 2 / /

[Morawetz] Reward & Anchor. [Ginibre-Velo] H!-Scattering.

ddt




[BOURGAIN] & [GRILLAKIS| TRUNCATION

m Let xp, denote a smooth cutoff adapted to Bg = {|x| < R}.
m Choose cutoff virial weight a(x) = xg.(x)|x|. and calculate

;
//47r50 |¢tx\2+4/ / |X‘ ddt
0

0 R3 x|<R/2

;
2, | < R™'THJ[u] + RH[ug] => choose R ~ T2 —

)
[ =
0

|x|<T1/2

[Bourgain][Grillakis]: Energy critical bubbles sparse along time axis.



AVERAGING OVER [LIN-STRAUSS] CENTER?

Translation invariance? Weight |x|~* difficult in proofs.
Recenter [L-S] at fixed y € RY. Set a(x) = |x — y|.

Recentered Morawetz action can be expressed

M, [u](t) = /R ﬁi:i‘)zg(uvu)(t,x)dx.

Monotonicity 0;M, [u] > 0: mass is repelled from any y € R€.

m Can we average with respect to center y and obtain new
translation invariant spacetime control?

m Yes, if we average against the natural density |u(t, y)|?.



INTERACTION MORAWETZ VIA AVERAGING

m Define the Morawetz interaction potential

Mlul(e) = [ lu(e. )M, Lul(e)dy.
Ry
It is bounded: ’M[u](t)‘ < lu(t) |3V u(t)]| 2. We calculate

O Mlu] = /Rd |u(t, y)[P{0eMy [u]} + {0:|u(y)|*} My [u]dy.

m Local conservation & [L-S] == monotonicity:
31,11, 11,1V such that I, 1/l > 0 and Il + 1V > 0 and
OtM[u]l =1 + Il + 1ll + IV. Integrating in time gives

]
| [ e ot ast < u(e) 51 Tule) s -



2-PARTICLE INTERACTION MORAWETZ

(Hassell 04)
m Suppose ¢1, ¢2 are two solutions of (i0; + A)é = F'(|¢]?)¢
with F/ >0 and x € R3. The ""2-particle” wave function

W(t, X1, X2) = ¢1(ta Xl)d)2(t7 X2)
satisfies an NLS-type equation on R+
(i0e + A1 + D)W = [F'(|61]?) + F'(|¢2]*)] V.

m Note that [F'(|¢1]?) + F'(|¢2]?)] > 0 so defocusing.

m Reparametrize R® using center-of-mass coordinates (X, y)
with X = %(xl + x2) € R3. Note that y = 0 corresponds to
the diagonal x; = x, = X. Apply the generalized virial identity
with the choice a(x1,x2) = |y|. Dismissing terms with
favorable signs, one obtains...



2-PARTICLE INTERACTION MORAWETZ

[0,T]™x

)
IVallgs el = [ [ (~BoalyD¥ia, o) Pobsdbact

J
- C/ /65{y0}(X1’X2)|¢1(X1)¢2(X2)\2dX1dX2dt
0 R

;
c/o /R3 |p1(t,%)o(t,X)|2dxdt.

Specializing to ¢1 = ¢ gives the 2-particle Morawetz estimate

v

/ . lo(t, x) |4dxdt < CHVuHLoo L2HU0HL2

valid uniformly for all defocusing NLS equations on R3.



"THE” 2-PARTICLE MORAWETZ ESTIMATE

Efforts to extend the L*(R; x R3) interaction Morawetz to the R2
setting led to...

THEOREM (C-GRILLAKIS-TZIRAKIS & PLANCHON-VEGA)

Finite energy solutions of any defocusing NLS™(RY) satisfy

3—d
ID7=" w72 < HluollZ [ Vull oz

m Independently & simultaneously by [Planchon-Vegal.

m Gives simple proof of Hl-scattering in mass supercritical case.
[Nakanishi]

m Simplified proof extends to H® for certain s < 1.

m May play a role in resolving the L2 scattering conjecture?



4-PARTICLE MORAWETZ ESTIMATE

(Hassel-Tao) [C-Holmer-Visan-Zhang]

B R* = {x=(x1,%,x3,x4) : x; ER;i =1,2,3,4}
X = center of mass = %(xl + x2 + x3 + Xxa).
Define y = (x1 — X, xo — X, X3 — X, X4 — X).

R* > x = (x1,%,x3,x1) <= (X,y) ERxR3

m The 4-particle wave function

4

V(t,x) =[] ex(t, %)

i=1

satisfies a defocusing NLS equation on R4,
m Choice of virial weight a(x) = |y| spawns

.
| ] ezt < JulTsig Vul iz

m How does this estimate generalize to other dimensions?



3. I-METHOD WITH MORAWETZ BOOTSTRAP

Application: Subcritical scattering for certain NLS; (RY).
[CKSTT], [CHVZ], [Fang-Grillakis], [C-Grillakis-Tzirakis]
m 2-particle Morawetz is an H1/4—critica| input.
4-particle Morawetz is an H'/8_critical input.

= Scaling invariant H* for NLSS(R?):s. = § — %
m When 1/4 <s.<13s, €(sc,1) and V' s > s, the

Hs-solutions of NLS} (R?) scatter.

m We obtain scattering for certain energy subcritcal (sc < 1)
NLS for infinite energy data of subcritical regularity (sc < sy).

m The critical scattering conjecture corresponds to s, = s,.
This is known (for general data) only for s. = 1.



[-METHOD WITH MORAWETZ BOOTSTRAP

Consider NLSS, . ;(R) (nonlinearity +|u|**u) for k = 3,4,. ...
Note that s. = % — %

Define
8k — 16

_ 1.
Ok — 14 °

Sk

THEOREM (C-HOLMER-VISAN-ZHANG)

V s > s, H*(R) > up — u solving NLS;,(H(R) is global in time
and scatters: 3 uy € H*(R) such that

lim |lu(t) — eitAui\|Hs(R) =0.

Proof treats a family of equations; Wish that s, — 1/2 as k — oc.



FINITE ENERGY SCATTERING

The 4-particle L3(R; x R,) estimate may be reexpressed:

)
| e < ozl

= lulle, S lulliperr = Hl-scattering using some
X
interpolation.



LWP: DATA SIZE VERSUS SPACETIME SLABS

m Recall that, based on a Holder-in-time step, subcritical
local-in-time theory gives

_2

s—sc

Tiwp ~ ||uo]| 42

m Bootstrap toward scattering: Holder-in-time is forbidden.



[-METHOD & MORAWETZ: BOOTSTRAP HEURISTIC

Suppose we have almost conservation of modified energy.
RHS of 4-particle < almost conserved modified energy
== LgX controlled on long time interval t € [0, T]

—> spacetime slab decomposition:
[0, T] x R = UL, [tj, tj1) x R such that

1
lullis(tt;,60)<R) =7~ 755

—> almost conserved modified energy on [t;, tj;1]

=

= RHS of 4-particle.... bootstrap loop!



ALMOST CONSERVATION USED IN BOOTSTRAP

LEMMA (ALMOST CONSERVATION ON SLAB)

Let H® 5 uy — u solve NLS}, ;(RY) with s > s,. Suppose we
have a spacetime slab [t_, t;] on which

lullseeixr) S 7

and 3 tg € [t_, t;] such that H[Iyu(tp)] < 1. Then for large N we
have almost conservation:

sup  H[Iyu(t)] = H[Iyu(to)] + O(N~1T).

teft—,ty]

Rescaling and continuity arguments glue it all together.
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