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1. Generalized Virial Identities



Cauchy Problem for Lagrangian NLS

Consider the initial value problem:{
(i∂t + ∆)u = ±F ′(|u|2)u

u(0, x) = u0(x)
(NLS±F (Rd))

Remarks:

Assume F ′ ≥ 0. The + case is defocusing; − is focusing.

Generalized NLS with Lagrangian derivation.

U(1) solution symmetry: u → e iθu.



Time Invariant Quantities

The following quantities do not change with time:

Mass =

∫
Rd

|u(t, x)|2dx .

Momentum = 2=
∫

R2

u(t)∇u(t)dx .

Energy = H[u(t)] =
1

2

∫
R2

|∇u(t)|2dx±F (|u(t)|2)dx .

=⇒ a priori conservation controls (defocusing case):

‖u‖L∞t L2
x
≤ ‖u0‖L2

‖∇u‖L∞t L2
x
≤ E [u0].

These are very useful bounds but do not give any decay in time.



Local Conservation Laws

We consider an even more general NLS equation.

Suppose φ : [0,T ]× Rd → C solves generalized NLS

(i∂t + ∆)φ = N (GNLS(Rd))

for N = N (t, x , φ) : [0,T ]× Rd × C → C. Assume φ is nice.

Not necessarily Lagrangian; No U(1) symmetry.

Express mass & momentum (non)conservation for GNLS .

Write ∂xj φ = ∂jφ = φj .



Local mass/momentum (non)conservation

mass density: T00 = |φ|2

momentum density/mass current:
T0j = Tj0 = 2=(φφj)

(linear part of the) momentum current:
Ljk = Lkj = −∂j∂k |φ|2 + 4<(φjφk)

mass bracket: {f , g}m = =(f g)

momentum bracket: {f , g}j
p = <(f ∂jg − g∂j f )

Local mass (non)conservation identity:

∂tT00 + ∂jT0j = 2{N , φ}m

Local momentum (non)conservation identity:

∂tT0j + ∂kLkj = 2{N , φ}j
p



Local mass/momentum (non)conservation

Consider N = F ′(|φ|2)φ for polynomial F : R+ → R.

We calculate the mass bracket

{F ′(|φ|2)φ, φ}m = =(F ′(|φ|2)φφ) = 0.

Thus mass is conserved for these nonlinearities.

We calculate the momentum bracket

{F ′(|φ|2)φ, φ}j
p = −∂jG (|φ|2)

where G (z) = zF ′(z)− F (z) ∼ F (z).
Thus the momentum bracket contributes a divergence and
momentum is conserved for these nonlinearities.



Generalized Virial Identity

Let a : Rd → R (virial weight). Form the virial potential

Va(t) =

∫
Rd

a(x)|φ(t, x)|2dx .

Form the Morawetz action

Ma(t) =

∫
Rd

∇a · 2=(φ∇φ)dx .

Conservation identities lead to the generalized virial identities

∂tVa = Ma +

∫
Rd

a(x){N , φ}m(t, x)dx ,

∂tMa =

∫
Rd

(−∆∆a)|φ|2 + 4ajk<(φjφk) + 2aj{N , φ}j
pdx .



Remarks on Virial Identities

The virial potential is a weighted average of the mass density
against the virial weight a.

The Morawetz action is a contraction of the momentum
density against ∇a. Vector fields not arising as gradients
could also be considered.

Useful estimates emerge from monotonicity and boundedness
of terms in the virial identities.

Monotone quantities provide dynamical insights.

Idea of Morawetz Estimates: Cleverly choose the weight
function a so that ∂tMa ≥ 0 but Ma ≤ C (φ0) to obtain
spacetime control on φ. This strategy imposes various
constraints on a which suggest choosing a(x) = |x |.



Variance Identity

[Glassey], [Vlasov-Petrischev-Talanov]

Consider GNLS with N = ±|u|4/du. This is the L2 critical
focusing equation NLS±

1+ 4
d

(Rd).

Choose a(x) = |x |2. Calculations reveal that

∂2
t

∫
Rd

|x |2|u(t, x)|2dx = 16H[u(t)].

In the focusing case, we can consider initial data u0 with
H[u0] < 0 and finite variance. Such data must blow up in
finite time.



2. A Priori Spacetime Estimates



[Lin-Strauss] Morawetz identity

Consider (i∂t + ∆)φ = F ′(|φ|2)φ with F ′ ≥ 0 and x ∈ R3. Choose
a(x) = |x |. Observe that a is weakly convex, ∇a = x

|x | is bounded,
and −∆∆a = 4πδ0. From monotonicity ∂tMa ≥ 0 and the bound
|Ma| ≤

√
H[u0] emerges the Lin-Strauss Morawetz identity

Ma(T )−Ma(0) =

T∫
0

∫
R3

4πδ0(x)|φ(t, x)|2 + (≥ 0) + 4
G (|φ|2)
|x |

dxdt.

This implies the spacetime control estimate (centered at x = 0)

(H[u0])
1/2‖u0‖L2 &

T∫
0

∫
R3

G (|φ|2)
|x |

dxdt.

[Morawetz] Reward & Anchor. [Ginibre-Velo] H1-Scattering.



[Bourgain] & [Grillakis] truncation

Let χBR
denote a smooth cutoff adapted to BR = {|x | < R}.

Choose cutoff virial weight a(x) = χBR
(x)|x |. and calculate

Ma

∣∣∣T
0
≥

T∫
0

∫
R3

4πδ0(x)|φ(t, x)|2 + 4

T∫
0

∫
|x |<R/2

G (|φ|2)
|x |

dxdt

|Ma

∣∣∣T
0
| ≤ R−1TH[u0] + RH[u0] =⇒ choose R ∼ T 1/2 =⇒

T∫
0

∫
|x |<T 1/2

G (|φ|2)
|x |

dx . T 1/2‖∇u‖2
L∞

[0,T ]
L2

x
.

[Bourgain][Grillakis]: Energy critical bubbles sparse along time axis.



Averaging over [Lin-Strauss] center?

Translation invariance? Weight |x |−1 difficult in proofs.

Recenter [L-S] at fixed y ∈ Rd . Set a(x) = |x − y |.
Recentered Morawetz action can be expressed

My [u](t) =

∫
Rd

(x − y)

|x − y |
2=(u∇u)(t, x)dx .

Monotonicity ∂tMy [u] ≥ 0: mass is repelled from any y ∈ Rd .

Can we average with respect to center y and obtain new
translation invariant spacetime control?

Yes, if we average against the natural density |u(t, y)|2.



Interaction Morawetz via Averaging

Define the Morawetz interaction potential

M[u](t) =

∫
Rd

y

|u(t, y)|2My [u](t)dy .

It is bounded:
∣∣∣M[u](t)

∣∣∣ . ‖u(t)‖3
L2

x
‖∇u(t)‖L2

x
. We calculate

∂tM[u] =

∫
Rd

y

|u(t, y)|2{∂tMy [u]}+ {∂t |u(y)|2}My [u]dy .

Local conservation & [L-S] =⇒ monotonicity:
∃ I , II , III , IV such that I , III ≥ 0 and II + IV ≥ 0 and
∂tM[u] = I + II + III + IV . Integrating in time gives∫ T

0

∫
R3

|u(t, x)|4dxdt . ‖u(t)‖3
L∞T L2

x
‖∇u(t)‖L∞T L2

x
.



2-particle interaction Morawetz

(Hassell 04)

Suppose φ1, φ2 are two solutions of (i∂t + ∆)φ = F ′(|φ|2)φ
with F ′ ≥ 0 and x ∈ R3. The “2-particle” wave function

Ψ(t, x1, x2) = φ1(t, x1)φ2(t, x2)

satisfies an NLS-type equation on R1+6

(i∂t + ∆1 + ∆2)Ψ = [F ′(|φ1|2) + F ′(|φ2|2)]Ψ.

Note that [F ′(|φ1|2) + F ′(|φ2|2)] ≥ 0 so defocusing.

Reparametrize R6 using center-of-mass coordinates (x , y)
with x = 1

2(x1 + x2) ∈ R3. Note that y = 0 corresponds to
the diagonal x1 = x2 = x . Apply the generalized virial identity
with the choice a(x1, x2) = |y |. Dismissing terms with
favorable signs, one obtains...



2-particle interaction Morawetz

‖∇u‖L∞
[0,T ]

L2
x
‖u0‖3

L2 ≥
∫ T

0

∫
R6

(−∆6∆6|y |)|Ψ(x1, x2)|2dx1dx2dt

≥ c

∫ T

0

∫
R6

δ{y=0}(x1, x2)|φ1(x1)φ2(x2)|2dx1dx2dt

≥ c

∫ T

0

∫
R3

|φ1(t, x)φ2(t, x)|2dxdt.

Specializing to φ1 = φ2 gives the 2-particle Morawetz estimate∫ T

0

∫
R3

|φ(t, x)|4dxdt ≤ C‖∇u‖L∞
[0,T ]

L2
x
‖u0‖3

L2
x

valid uniformly for all defocusing NLS equations on R3.



”The” 2-particle Morawetz Estimate

Efforts to extend the L4(Rt × R3
x) interaction Morawetz to the R2

x

setting led to...

Theorem (C-Grillakis-Tzirakis & Planchon-Vega)

Finite energy solutions of any defocusing NLS+(Rd) satisfy

‖D
3−d

2 |u|2‖2
L2

t,x
. ‖u0‖3

L2
x
‖∇u‖L∞t L2

x
.

Independently & simultaneously by [Planchon-Vega].

Gives simple proof of H1-scattering in mass supercritical case.
[Nakanishi]

Simplified proof extends to Hs for certain s < 1.

May play a role in resolving the L2 scattering conjecture?



4-particle Morawetz Estimate

(Hassel-Tao) [C-Holmer-Visan-Zhang]

R4 = {x = (x1, x2, x3, x4) : xi ∈ R; i = 1, 2, 3, 4}
x = center of mass = 1

4(x1 + x2 + x3 + x4).
Define y = (x1 − x , x2 − x , x3 − x , x4 − x).
R4 3 x = (x1, x2, x3, x4) ⇐⇒ (x , y) ∈ R× R3

The 4-particle wave function

Ψ(t, x) =
4∏

i=1

φ1(t, xi )

satisfies a defocusing NLS equation on R1+4.

Choice of virial weight a(x) = |y | spawns∫ T

0

∫
R
|u|8dxdt . ‖u‖7

L∞T L2
x
‖∇u‖L∞T L2

x
.

How does this estimate generalize to other dimensions?



3. I -Method with Morawetz Bootstrap

Application: Subcritical scattering for certain NLS+
p (Rd).

[CKSTT], [CHVZ], [Fang-Grillakis], [C-Grillakis-Tzirakis]

2-particle Morawetz is an Ḣ1/4-critical input.
4-particle Morawetz is an Ḣ1/8-critical input.

Scaling invariant Hs for NLS+
p (Rd) : sc = d

2 −
2

p−1

When 1/4 < sc < 1 ∃ s∗ ∈ (sc , 1) and ∀ s ≥ s∗ the
Hs -solutions of NLS+

p (Rd) scatter.

We obtain scattering for certain energy subcritcal (sc < 1)
NLS for infinite energy data of subcritical regularity (sc < s∗).

The critical scattering conjecture corresponds to sc = s∗.
This is known (for general data) only for sc = 1.



I -Method with Morawetz Bootstrap

Consider NLS+
2k+1(R) (nonlinearity +|u|2ku) for k = 3, 4, . . . .

Note that sc = 1
2 −

1
k .

Define

sk =
8k − 16

9k − 14
< 1.

Theorem (C-Holmer-Visan-Zhang)

∀ s > sk , Hs(R) 3 u0 7−→ u solving NLS+
2k+1(R) is global in time

and scatters: ∃ u± ∈ Hs(R) such that

lim
t→±∞

‖u(t)− e it∆u±‖Hs(R) = 0.

Proof treats a family of equations; Wish that sk → 1/2 as k →∞.



Finite Energy Scattering

The 4-particle L8(Rt × Rx) estimate may be reexpressed:∫ T

0

∫
R
|u|8dxdt . ‖u‖6

L∞T L2
x
‖u‖

L∞T Ḣ
1/2
x

,

=⇒ ‖u‖L8
t,x

. ‖u‖L∞t H1
x

=⇒ H1-scattering using some

interpolation.



LWP: Data size versus Spacetime slabs

Recall that, based on a Hölder-in-time step, subcritical
local-in-time theory gives

Tlwp ∼ ‖u0‖
− 2

s−sc
Hs .

Bootstrap toward scattering: Hölder-in-time is forbidden.



I -Method & Morawetz: Bootstrap Heuristic

Suppose we have almost conservation of modified energy.

1 RHS of 4-particle . almost conserved modified energy

2 =⇒ L8
t,x controlled on long time interval t ∈ [0,T ]

3 =⇒ spacetime slab decomposition:
[0,T ]× R = ∪J

j=1[tj , tj+1)× R such that

‖u‖L8([tj ,tj+1)×R) = η ∼
1

100

4 =⇒ almost conserved modified energy on [tj , tj+1]

5 =⇒ RHS of 4-particle.... bootstrap loop!



Almost Conservation Used In Bootstrap

Lemma (Almost Conservation on Slab)

Let Hs 3 u0 → u solve NLS+
2k+1(R

d) with s > sk . Suppose we
have a spacetime slab [t−, t+] on which

‖u‖L8([t−,t+]×R) . η

and ∃ t0 ∈ [t−, t+] such that H[INu(t0)] ≤ 1. Then for large N we
have almost conservation:

sup
t∈[t−,t+]

H[INu(t)] = H[INu(t0)] + O(N−1+).

Rescaling and continuity arguments glue it all together.
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