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Séminaire EDP, Université de Paris-Nord 13, Villetaneuse



1 Blowup Solutions Exist; Properties

2 Ground State Mass Concentration for H s

3 Concentration & Strichartz Explosion



1. Blowup Solutions Exist

We consider the Cauchy problem for L2 critical focusing NLS:{
(i∂t + ∆)u = −|u|2u

u(0, x) = u0(x).
(NLS−3 (R2))

The solution has an L2-invariant dilation symmetry

uλ(τ, y) = λ−1u(λ−2τ, λ−1y).

Time invariant conserved quantities:

Mass =

∫
Rd

|u(t, x)|2dx .

Momentum = 2=
∫

R2

u(t)∇u(t)dx .

Energy = H[u(t)] =
1

2

∫
R2

|∇u(t)|2dx−1

2
|u(t)|4dx .



NLS−3 (R2) H1-GWP Theory

Weinstein’s H1-GWP mass threshold for NLS−3 (R2):

‖u0‖L2 < ‖Q‖L2 =⇒ H1 3 u0 7−→ u,T ∗ =∞,

based on optimal Gagliardo-Nirenberg inequality on R2

‖u‖4
L4 ≤

[
2

‖Q‖2
L2

]
‖u‖2

L2‖∇u‖2
L2 .

Q is the ground state solution to −Q + ∆Q = −Q3.

The ground state soliton solution to NLS−3 (R2) is

u(t, x) = e itQ(x).



Pseudoconformal Symmetry

Pseudoconformal transformation:

PC[u](τ, y) = v(τ, y) =
1

|τ |d/2
e

i|y|2
4τ u

(
−1

τ
,
y

τ

)
,

PC is L2-critical NLS solution symmetry:
Suppose 0 < t1 < t2 <∞. If

u : [t1, t2]× R2
x → C solves NLS±

1+ 4
d

(Rd)

then
PC[u] = v : [−t−1

1 ,−t−1
2 ]τ × R2

y → C
solves

i∂τv + ∆yv = ±|v |4/dv .

PC is an L2-Strichartz isometry:
If 2

q + d
r = d

2 then

‖PC[u]‖Lq
τLr

y ([−t−1
1 ,−t−1

2 ]×Rd ) = ‖u‖Lq
t L

r
x ([t1,t2]×Rd ).



Explicit Blowup Solutions

The pseudoconformal image of ground state soliton e itQ(x),

S(t, x) =
1

t
Q
(x

t

)
e−i |x|

2

4t
+ i

t ,

is an explicit blowup solution.

S has minimal mass:

‖S(−1)‖L2
x

= ‖Q‖L2 .

All mass in S is conically concentrated into a point.

Minimal mass H1 blowup solution characterization:
u0 ∈ H1, ‖u0‖L2 = ‖Q‖L2 , T ∗(u0) <∞ implies that u = S up
to an explicit solution symmetry. [Merle]



Many non-explicit Blowup Solutions

Suppose a : R2 → R. Form virial weight

Va =

∫
R2

a(x)|u|2(t, x)dx

and

∂tVa = Ma(t) =

∫
R2

∇a · 2=(φ∇φ)dx .

Conservation identities lead to the generalized virial identity

∂2
t Va = ∂tMa =

∫
R2

(−∆∆a)|φ|2 + 4ajk<(φjφk)− ajj |u|4dx .

Choosing a(x) = |x |2 produces the variance identity

∂2
t

∫
R2

|x |2|u(t, x)|2dx = 16H[u0].

H[u0] < 0,
∫
|x |2|u0(x)|2dx <∞ blows up.

How do these solutions blow up?



Mass Concentration Property: H1 theory

H1 Theory of Mass Concentration

H1 ∩ {radial} 3 u0 7−→ u,T ∗ <∞ implies

lim inf
t↗T∗

∫
|x |<(T∗−t)1/2−

|u(t, x)|2dx ≥ ‖Q‖2
L2 .

[Merle-Tsutsumi]

H1 blowups parabolically concentrate at least the ground
state mass. Explicit blowups S concentrate mass much faster.

Fantastic recent progress on the H1 blowup theory.
[Merle-Raphaël]



Mass Concentration Property: L2 Theory

L2 Theory of Mass Concentration

L2 3 u0 7−→ u,T ∗ <∞ implies

lim sup
t↗T∗

sup
cubes I ,side(I )≤(T∗−t)1/2

∫
I
|u(t, x)|2dx ≥ ‖u0‖−M

L2 .

[Bourgain]

L2 blowups parabolically concentrate some mass.

For large L2 data, do there exist tiny concentrations?

Extensions in [Merle-Vega], [Carles-Keraani], [Bégout-Vargas].

Upgrading lim sup into lim inf appears challenging.



L2 Critical Case: Conjectures/Questions

Consider focusing NLS−3 (R2):

Scattering Below the Ground State Mass

‖u0‖L2 < ‖Q‖L2 =⇒ ??? u0 7−→ u with ‖u‖L4
tx
<∞.

(Also, L2 solutions of NLS+
3 (R2) satisfy??? ‖u‖L4

tx
<∞.)

Minimal Mass Blowup Characterization

‖u0‖L2 = ‖Q‖L2 , u0 7−→ u,T ∗ <∞ =⇒ ??? u = S ,

modulo a solution symmetry. An intermediate step would
extend characterization of the minimal mass blowup solutions
in Hs for s < 1.

Concentrated mass amounts are quantized
The explicit blowups constructed by pseudoconformally
transforming time periodic solutions with ground and excited
state profiles are the only asymptotic profiles.

Are there any general upper bounds? lim sup vs. lim inf ?



L2 Critical Case: Partial Results

For 0.86 ∼ 1
5 (1 +

√
11) < s < 1,Hs ∩ {radial} 3 u0 7−→

u,T ∗ <∞ =⇒

lim sup
t↗T∗

∫
|x |<(T∗−t)s/2−

|u(t, x)|2dx ≥ ‖Q‖2
L2 .

Hs -blowup solutions concentrate ground state mass.
[C-Raynor-C.Sulem-Wright]

‖u0‖L2 = ‖Q‖L2 , u0 ∈ Hs ,∼ 0.86 < s < 1,T ∗ <∞ =⇒
∃ tn ↗ T ∗ s.t. u(tn)→ Q in H s̃(s) (mod symmetry sequence).
For Hs blowups with ‖u0‖L2 > ‖Q‖L2 , u(tn) ⇀ V ∈ H1 (mod
symmetry sequence). [Hmidi-Keraani] This is an Hs analog of
an H1 result of [Weinstein] which preceded the minimal H1

blowup solution characterization.



Progress Toward Conjectures

Spacetime norm divergence rate

‖u‖L4
tx ([0,t]×R2) & (T ∗ − t)−β

is linked with mass concentration rate

lim sup
t↗T∗

sup

cubes I ,side(I )≤(T∗−t)
1
2 +

β
2

∫
I
|u(t, x)|2dx ≥ ‖u0‖−M

L2 .

[C-Roudenko]



2. Ground State Mass Concentration for H s

Theorem (C-Raynor-Sulem-Wright)

For 0.86 ∼ 1
5 (1 +

√
11) < s < 1,Hs ∩ {radial} 3 u0 7−→ u,T ∗ <

∞ =⇒

lim sup
t↗T∗

∫
|x |<(T∗−t)s/2−

|u(t, x)|2dx ≥ ‖Q‖2
L2 .

{radial} removed by concentration compactness. [Tzirakis]
NLS−5 (R)

Higher dimension generalization NLS−
1+ 4

d

(Rd). [Visan-Zhang]



Ground State Mass Concentration for H1

Recall [Merle-Tsutsumi]. H1 ∩ {radial} 3 u0 7−→ u with T ∗ <∞.

Rescalings (weakly) converge to asymptotic profile.

Consider {u(tn, ·)}n∈N = {un(·)}n∈N along tn ↗ T ∗. Form

vn(·) = λ−1
n un(λ−1

n (·))

with λn = ‖∇un‖L2 & (T ∗ − tn)−1/2 so that ‖∇vn‖L2 = 1.
Thus, ∃ v ∈ H1 such that vn ⇀ v in H1 along subsequence.

Compactness and energy of rescaled asymptotic object.

Radial & Rellich Compactness =⇒ vn → v strongly in L4.
|E [vn]| = λ−2

n |E [u(tn)]| → 0 =⇒ E [v ] ≤ 0.

E [v ] ≤ 0 =⇒ ‖v‖L2 ≥ ‖Q‖L2; undo scaling.
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Ground State Mass Concentration for H s

We imitate the [Merle-Tsutsumi] result using modified energy.

Blowup Parameter:

λ(t) = ‖u(t)‖Hs ; Λ(t) = sup
τ∈[0,t]

λ(τ).

Modified Blowup Parameter:

σ(t) = ‖I 〈∇〉u(t)‖L2 ; Σ(t) = sup
τ∈[0,t]

σ(τ).

Recall,
‖f ‖Hs ≤ ‖I 〈∇〉f ‖L2 ≤ N1−s‖f ‖Hs .

Thus, E [v ] ≤ 0 =⇒ ‖v‖L2 ≥ ‖Q‖L2 .



Ground State Mass Concentration for H s

Lemma ( Modified Kinetic � Modified Total Energy)

∀ s > 0.86 if Hs 3 u0 7−→ u on maximal [0,T ∗) then
∀T < T ∗ ∃ N = N(T ) such that

|E [IN(T )u(T )]| ≤ C0Λ(T )p(s)

with p(s) < 2 and C0 = C0(s,T ∗, ‖u0‖Hs ).

Modified Kinetic Energy � Modified Total Energy.

N(T ) = CΛ(T )
p(s)

2(1−s) .

Proof based on almost conservation; multilinear analysis.



Ground State Mass Concentration for H s

1 Rescale by modified kinetic energy.
Choose any maximizing sequence tn ↗ T ∗ satisfying
‖u(tn)‖Hs = Λ(tn). Define vn(y) = σ−1

n IN(tn)u(tn, σ
−1
n y)

where N(tn) is as in the Lemma.

2 Weak convergence and L4 compactness.
Rescaling =⇒ ‖∇vn‖H1 → 1 so ∃ v ∈ H1 s.t. vn ⇀ v along
subsequence. Radial & Rellich =⇒ vn → v strongly L4.

3 Energy of asymptotic object.
|E [vn]| = σ−2

n |E [INun]| ≤ σ−2
n Λp(s)(tn) ≤ (Λ(tn))p(s)−2 → 0.

4 Undo the rescaling.
Unravelling scaling using lower bound σn & (T ∗ − tn)−s/2

completes proof.



3. Concentration & Strichartz Explosion

Ground state soliton u(t, x) = e itQ(x) satisfies

‖u‖L4([j ,j+1]t×R2
x ) = η = O(1), ∀ j ∈ N.

L4-isometry & explicit S = PC[e itQ] ∼ |τ |−1Q(τ−1y)e i ...,

‖S‖L4([− 1
j
,− 1

j+1
]τ×R2

y ) = η, ∀ j ∈ N.

Thus, ‖S‖L4([−1,t]×R2) ∼ 1
|t| ; Mass concentrated in |y | . |t|.

Contrast with [Merle-Tsutsumi], [Bourgain] Concentration:
‖u‖L4([−1,t]×R2) ↗∞ =⇒ Mass concentrated in |y | . |t|1/2.

Observation?
Strichartz explosion rate = f (concentration window size).



Heuristic: Window size & L4 Explosion

When ‖u‖L4([tn,tn+1]×R2) ∼ η [Bourgain] essentially shows

parabolic concentration: ∃ t∗n ∈ [tn, tn+1] and x0 ∈ R2 where∫
|x−x0|.|tn+1−tn|1/2

|u(t, x)|2dx & ‖u0‖−M
L2 .

In [C-Roudenko], we observe (overstated!):

‖u‖L4
[0,T∗−t]×R2

:= f (T ∗ − t)↗∞ as t ↗ T ∗

m

sup
x0∈R2

∫
|x−x0|.[−∂t f (T∗−t)]−1/2

|u(t, x)|2dx & ‖u0‖−M
L2

Why? By first order Taylor approximation, we have
η ∼ f (T ∗ − tn+1)− f (T ∗ − tn) ∼ [−∂t f (T ∗ − tn)](tn+1 − tn).



Strichartz Explosion =⇒ Tight Window

Theorem (C-Roudenko)

Suppose T ∗ <∞ and ‖u‖
L

2(d+2)
d ([0,t]×Rd )

& (T ∗ − t)−β. Then

lim sup
t↗T∗

sup
cubes J ∈ Rd :

l(J) < (T ∗ − t)
1
2

+β
2

∫
J
|u(t, x)|2 dx ≥ ‖u0‖−c(d)

L2 .

Furthermore, ∀ t ∈ (0,T ∗) ∃ a cube τ(t) ⊆ Rd
ξ of size

l(τ(t)) & (T ∗ − t)−( 1
2

+β
2

) such that

lim sup
t↗T∗

sup
cubes J ∈ Rd :

l(J) < (T ∗ − t)
1
2

+β
2

∫
J
|Pτ(t)u(t, x)|2 dx ≥ ‖u0‖−c(d)

L2 .



Remarks on Proof (follow [Bourgain])

Decompose [0,T ∗) into
⋃

[tn, tn+1) on which

‖u‖L4([tn,tn+1]×R2) = η ∼
1

100
.

For t ∈ [tn, tn+1), we have u ∼ e i(t−tn)∆u(tn).

Strichartz Refinements and the conditions

‖f ‖L2 < ‖u0‖L2 ; ‖e it∆f ‖L4 > η

spawn a spacetime tube decomposition of e it∆f .

∃ concentration time t∗n ∈ [tn, tn+1) ∀ n.
Thus, proof is more refined than the lim sup claim.

Taylor expansion connects (tn+1 − tn) with T ∗ − tn.



Thickened Time Interval of Concentration

Lemma (Frequency localized waves persist)

Let f ∈ L2
x(Rd) and spt f̂ ⊂ [0, 1]d and suppose∫

[0,1]d
|f (x)|2 dx ≥ c1 > 0.

Then for |t| < c(c1, ‖f ‖L2) concentration persists∫
[0,1]d

|e it∆f (x)|2 dx ≥ c1

2
.

Frequency localization in conclusion shows concentration
persists for t in an interval containing t∗n of size (T ∗ − t)1+β.

Thickened concentration interval may not cover [tn, tn+1].



Tight Window =⇒ Strichartz Explosion

Let F (t) = ‖u‖4
L4([0,t]×R2) and PL(t) = P{|ξ|≤L(t)}.

Lemma (Pointwise Derivative Lower Bound)

Suppose ∃ α ≥ 1
2 , ε > 0 such that

lim sup
t↗T∗

sup
cubes J ⊂ Rd :

l(J) < (T ∗ − t)α

∫
J
|PL(t)u(t, x)|2 dx ≥ ε.

Then ∃ tn ↗ T ∗ such that

F ′(tn) & (T ∗ − tn)−2α.

On thickened concentration time intervals, we integrate the
derivative lower bound get a Strichartz lower bound.



Cautious Remark Concerning lim inf

Consider NLS−3 (R2) posed at time t = −ε with data

φε(x) = e iε−1|x |2e iε−1
Q(x).

Dilated explicit solution which blows up at t = 0 = T ∗!

The parabolic scale related to distance to blowup time is
√
ε.

For τ a cube of side
√
ε, observe that φε is non-concentrated∫
τ
|φε|2dx . ε.

Consider data (1− δ)φε....
Phase oscillations violently influence L2 blowup behavior.
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