Recent progress on cubic defocusing NLS on \mathbb{R}^2

J. Colliander

University of Toronto

Vidéo-séminaire EDP Berkeley/Bonn/Paris-Nord

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1 NLS INITIAL VALUE PROBLEM AND REMARKS

▲ロト ▲母 ト ▲目 ト ▲目 ト → 目 → のへで

2 /-Method/Almost Conservation

- **3** INTERACTION MORAWETZ
- **4** BOOTSTRAP ARGUMENT

Nonlinear Schrödinger Initial Value Problem

Consider the defocusing initial value problem $NLS_3^+(\mathbb{R}^2)$:

$$\begin{cases} (i\partial_t + \Delta)u = +|u|^2 u \\ u(0, x) = u_0(x). \end{cases}$$

Time Invariant Quantities

$$Mass = ||u(t)||_{L^2_x}$$

Momentum = $2\Im \int_{\mathbb{R}^2} \overline{u}(t) \nabla u(t) dx$
Hamiltonian = $H[u(t)] = \frac{1}{2} \int_{\mathbb{R}^2} |\nabla u(t)|^2 dx + \frac{1}{2} |u(t)|^4 dx$

Dilation Invariance $(L^2(\mathbb{R}^2) \text{ critical})$

$$u^{\lambda}(\tau, y) = \lambda^{-1} u(\lambda^{-2}\tau, \lambda^{-1}y)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ● ●

LOCAL-IN-TIME THEORY

[Cazenave-Weissler 90] • $\forall u_0 \in L^2(\mathbb{R}^2) \exists T_{lwp}(u_0)$ determined by $\|e^{it\Delta}u_0\|_{L^4_{tx}([0,T_{lwp}]\times\mathbb{R}^2)}<\frac{1}{100}.$ \exists unique $u \in C([0, T_{lwp}]; L^2) \cap L^4_{tx}([0, T_{lwp}] \times \mathbb{R}^2)$ solving $NLS_{2}^{+}(\mathbb{R}^{2}).$ • $\forall u_0 \in H^s(\mathbb{R}^2), s > 0, T_{lwp} \sim ||u_0||_{H^s}^{-\frac{2}{s}}$ and regularity persists: $u \in C([0, T_{lwn}]; H^{s}(\mathbb{R}^{2})).$ • Define the maximal forward existence time $T^*(u_0)$ by $\|u\|_{L^{4}_{m}([0,T^{*}-\delta]\times\mathbb{R}^{2})} < \infty$ for all $\delta > 0$ but diverges to ∞ as $\delta \searrow 0$. ■ ∃ small data scattering threshold $\mu_0 > 0$

 $\|u_0\|_{L^2} < \mu_0 \implies \|u\|_{L^4_{tx}(\mathbb{R} \times \mathbb{R}^2)} < 2\mu_0.$

GLOBAL-IN-TIME THEORY?

What is the ultimate fate of the local-in-time solutions?

Defocusing Scattering Conjecture: $L^2 \ni u_0 \longmapsto u$ solving $NLS_3^+(\mathbb{R}^2)$ is global-in-time and

$$||u||_{L^4_{t,x}} < C(u_0).$$

Moreover, $\exists \ u_{\pm} \in L^2(\mathbb{R}^2)$ such that

$$\lim_{t\to\pm\infty}\|e^{\pm it\Delta}u_{\pm}-u(t)\|_{L^2(\mathbb{R}^2)}=0.$$

Remarks:

- Known for small data $||u_0||_{L^2(\mathbb{R}^2)} < \mu_0$.
- Known for defocusing L²(ℝ^d)-critical NLS⁺_{1+⁴/d}(ℝ^d) for large radial data, d ≥ 3. [Tao-Visan-Zhang 06]
- GWP for L^2 data \iff Scattering for $L^2_{(D)}$ data.

MAIN RESULT

THEOREM (C-GRILLAKIS-TZIRAKIS 07)

 $NLS_3^+(\mathbb{R}^2)$ is globally well-posed for data in $H^s(\mathbb{R}^2)$ for $\frac{2}{5} < s < 1$. Moreover, the solution satisfies

$$\sup_{t \in [0,T]} \|u(t)\|_{H^{s}(\mathbb{R}^{2})} \leq C(1+T)^{\frac{3s(1-s)}{2(5s-2)}}.$$

regularity	idea	reference
$s > \frac{2}{3}$	high/low frequency decomposition	[Bourgain 98]
$s > \frac{4}{7}$	H(Iu)	[CKSTT 02]
$s > \frac{1}{2}$	resonant cut of 2nd energy	[CKSTT 07]
$s \geq rac{1}{2}$	H(Iu) & Interaction Morawetz	[Fang-Grillakis 05]
$s > \frac{4}{13}$?	resonant cut & I-Morawetz	[]

Proof follows [FG 05] ([CKSTT 04] scheme) with two new inputs: Interaction Morawetz estimate of [FG 05]:

$$\|u\|_{L^{4}([0,T] imes \mathbb{R}^{2})}^{4} \lesssim T^{rac{1}{2}} \sup_{t \in [0,T]} \|
abla u(t)\|_{L^{2}(\mathbb{R}^{2})} \|u_{0}\|_{L^{2}(\mathbb{R}^{2})}^{3}$$

versus the improvement

$$\|u\|_{L^4([0,T] imes \mathbb{R}^2)}^4 \lesssim \mathcal{T}^{rac{1}{3}}(\sup_{t\in[0,T]}\|
abla u(t)\|_{L^2(\mathbb{R}^2)}\|u_0\|_{L^2(\mathbb{R}^2)}^3 + \|u_0\|_{L^2(\mathbb{R}^2)}^4).$$

2 Interaction Morawetz for a regularized reference evolution Iu: $\|Iu\|_{L^{4}([0,T]\times\mathbb{R}^{2})}^{4} \lesssim T^{\frac{1}{3}} [\sup_{t\in[0,T]} \|\nabla Iu(t)\|_{L^{2}(\mathbb{R}^{2})} \|Iu_{0}\|_{L^{2}(\mathbb{R}^{2})}^{3} + \|Iu_{0}\|_{L^{2}(\mathbb{R}^{2})}^{4} + \operatorname{Error}(\mathsf{T})]$

MAIN INGREDIENTS IN PROOF

I-method/Almost Conservation of H[Iu]

- Finite energy reference evolution Iu, $I = I_N : H^s \to H^1$ is a smoothing operator of order 1 s.
- Local well-posedness of $I(NLS_3^+(\mathbb{R}^2))$ initial value problem.
- Hamiltonian increment quantification:

$$|H[Iu](T_{Iwp}) - H[Iu](0)| \lesssim N^{-\alpha} ||Iu(0)||^4_{H^1(\mathbb{R}^2)}.$$

- Interaction Morawetz Estimate
 - Improved interaction Morawetz; Morawetz for $I(NLS_3^+(\mathbb{R}^2))$.
 - Morawetz error increment quantification:

$$|\operatorname{Error}(T_{lwp}) - \operatorname{Error}(0)| \lesssim N^{-\beta} ||Iu(0)||_{H^1}^4$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Bootstrap argument

For $s < 1, N \gg 1$ define smooth monotone $m : \mathbb{R}^2_{\xi} \to \mathbb{R}^+$ s.t.

$$m(\xi) = \begin{cases} 1 & \text{for } |\xi| < N\\ \left(\frac{|\xi|}{N}\right)^{s-1} & \text{for } |\xi| > 2N. \end{cases}$$

The associated Fourier multiplier operator, $(Iu)(\xi) = m(\xi)\hat{u}(\xi)$, satisfies $I : H^s \to H^1$. Note that

$$\|u\|_{H^s} \lesssim \|Iu\|_{H^1} \lesssim N^{1-s} \|u\|_{H^s}.$$

Idea of the *I*-method: NLS_3^+ evolution $u_0 \mapsto u(t)$ induces finite energy reference evolution $Iu_0 \mapsto Iu(t)$. (Almost) conservation of energy H(Iu(t)) provides control on $||u(t)||_{H^s}$. Iu satisfies the initial value problem $I(NLS_3^+(\mathbb{R}^2))$:

$$\begin{cases} (i\partial_t + \Delta)Iu = +I(|u|^2u)\\ Iu(0, x) = Iu_0(x). \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\widehat{(\langle D \rangle u)}(\xi) := (1 + |\xi|^2)^{1/2} \widehat{u}(\xi).$$

- An ordered pair (q, r) is admissible if $\frac{1}{q} + \frac{1}{r} = 1$ and $2 < q \le \infty$.
- $\mu([0, T]) := \int_0^T \int_{\mathbb{R}^2} |Iu(t, x)|^4 dx dt.$

Classical arguments establish...

Modified Local Well-posedness

Lemma

If $\mu([0, T]) < \mu_0$ (universal constant) then $\forall s > 0$ the initial value problem $I(NLS_3^+(\mathbb{R}^2))$ is locally well-posed and

 $Z_{I}([0, T]) := \sup_{(q, r) \text{ admissible}} \|\langle D \rangle Iu\|_{L_{t}^{q}L_{x}^{r}([0, T] \times \mathbb{R}^{2})} \lesssim \|\langle D \rangle Iu_{0}\|_{L^{2}}.$

Define T_{lwp} by the condition $\mu([0, T_{lwp}]) = \mu_0$. Thus, the local theory gives Strichartz control on Iu on spacetime slab $[0, T_{lwp}] \times \mathbb{R}^2$. A Fourier analysis of the expression

$$\int_{0}^{T_{lwp}} \partial_t H[Iu(t)]dt = \Re \int_{0}^{T_{lwp}} \int_{\mathbb{R}^2}^{(\partial_t Iu)} [|Iu|^2 Iu - I(|u|^2 u)]dxdt$$

permits proving....

Lemma

$$\begin{aligned} \text{If } H^{s} \ni u_{0} \to u(t) \text{ solves } NLS^{+}_{3}(\mathbb{R}^{2}) \text{ with } \frac{1}{2} > s > \frac{1}{3} \text{ then} \\ \sup_{t \in [0,T]} H[I_{N}u(t)] \leq & H[I_{N}u(0)] + CN^{-\frac{3}{2}+}[Z_{I}([0,T])]^{4} \\ & + CN^{-2+}[Z_{I}([0,T])]^{6}. \end{aligned}$$

This quantifies the increment in H[Iu] over $t \in [0, T]$. In particular, when $\|I_N \langle D \rangle u(0)\|_{L^2_v} \leq 1$ we have

$$\sup_{t\in[0,T_{Iwp}]}H[I_Nu(t)]\leq H[I_Nu(0)]+CN^{-\alpha}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for $\alpha = \frac{3}{2} - .$

Suppose $\phi : [0, T] \times \mathbb{R}^d \to \mathbb{C}$ solves generalized NLS

$$(i\partial_t + \Delta)\phi = \mathcal{N}$$

for some $\mathcal{N} = \mathcal{N}(t, x, u) : [0, T] \times \mathbb{R}^d \times \mathbb{C} \to \mathbb{C}$. Assume ϕ is nice.

We introduce notation to compactly express mass and momentum (non)conservation for solutions of generalized NLS.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Write $\partial_{x_j}\phi = \partial_j\phi = \phi_j$.

LOCAL MASS/MOMENTUM (NON)CONSERVATION

- mass density: $T_{00} = |\phi|^2$
- momentum density/mass current:

$$T_{0j}=T_{j0}=2\Im(\overline{\phi}\phi_j)$$

- (linear part of the) momentum current: $L_{jk} = L_{kj} = -\partial_j \partial_k |\phi|^2 + 4\Re(\overline{\phi_j}\phi_k)$
- mass bracket: $\{f,g\}_m = \Im(f\overline{g})$
- momentum bracket: $\{f,g\}_{\rho}^{j} = \Re(f\partial_{j}\overline{g} g\partial_{j}\overline{f})$

Local mass (non)conservation identity:

$$\partial_t T_{00} + \partial_j T_{0j} = 2\{\mathcal{N}, \phi\}_m$$

Local momentum (non)conservation identity:

$$\partial_t T_{0j} + \partial_k L_{kj} = 2\{\mathcal{N}, \phi\}_p^j$$

Consider $\mathcal{N} = F'(|\phi|^2)\phi$ for polynomial $F : \mathbb{R}^+ \to \mathbb{R}$.

We calculate the mass bracket

$$\{F'(|\phi|^2)\phi,\phi\}_m = \Im(F'(|\phi|^2)\phi\overline{\phi}) = 0.$$

Thus mass is conserved for these nonlinearities.

We calculate the momentum bracket

$$\{F'(|\phi|^2)\phi,\phi\}_p^j = -\partial_j G(|\phi|^2)$$

where $G(z) = zF'(z) - F(z) \sim F(z)$.

Thus the momentum bracket contributes a divergence and momentum is conserved for these nonlinearities.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Suppose $a : \mathbb{R}^d \to \mathbb{R}$. Form the **Morawetz Action**

$$M_{a}(t) = \int_{\mathbb{R}^{d}} \nabla a \cdot 2\Im(\overline{\phi} \nabla \phi) dx.$$

Conservation identities lead to the generalized virial identity

$$\partial_t M_a = \int_{\mathbb{R}^d} (-\Delta \Delta a) |\phi|^2 + 4a_{jk} \Re(\overline{\phi_j} \phi_k) + 2a_j \{\mathcal{N}, \phi\}_p^j dx.$$

Idea of Morawetz Estimates: Cleverly choose the weight function *a* so that $\partial_t M_a \ge 0$ but $M_a \le C(\phi_0)$ to obtain spacetime control on ϕ . This strategy imposes various constraints on *a* which suggest choosing a(x) = |x|.

Consider $(i\partial_t + \Delta)\phi = F'(|\phi|^2)\phi$ with $F' \ge 0$ and $x \in \mathbb{R}^3$. Choose a(x) = |x|. Observe that *a* is weakly convex, $\nabla a = \frac{x}{|x|}$ is bounded, and $-\Delta\Delta a = 4\pi\delta_0$. One gets the **Lin-Strauss Morawetz identity**

$$M_{a}(T) - M_{a}(0) = \int_{0}^{T} \int_{\mathbb{R}^{3}} 4\pi \delta_{0}(x) |\phi(t, x)|^{2} + (\geq 0) + 4 \frac{G(|\phi|^{2})}{|x|} dx dt$$

which implies the spacetime control estimate

$$(H[u_0])^{1/2} \|u_0\|_{L^2} \gtrsim \int_0^T \int_{\mathbb{R}^3} \frac{G(|\phi|^2)}{|x|} dx dt.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

EXAMPLE: $L^4(\mathbb{R}_t \times \mathbb{R}^3_x)$ INTERACTION MORAWETZ

[CKSTT 04] (Hassell 04)

Suppose ϕ_1, ϕ_2 are two solutions of $(i\partial_t + \Delta)\phi = F'(|\phi|^2)\phi$ with $F' \ge 0$ and $x \in \mathbb{R}^3$. The "2-particle" wave function

$$\Psi(t, x_1, x_2) = \phi_1(t, x_1)\phi_2(t, x_2)$$

satisfies an NLS-type equation on \mathbb{R}^{1+6}

$$(i\partial_t + \Delta_1 + \Delta_2)\Psi = [F'(|\phi_1|^2) + F'(|\phi_2|^2)]\Psi.$$

- Note that $[F'(|\phi_1|^2) + F'(|\phi_2|^2)] \ge 0$ so defocusing.
- Reparametrize \mathbb{R}^6 using center-of-mass coordinates (\overline{x}, y) with $\overline{x} = \frac{1}{2}(x_1 + x_2) \in \mathbb{R}^3$. Note that y = 0 corresponds to the diagonal $x_1 = x_2 = \overline{x}$. Apply the generalized virial identity with the **choice** $a(x_1, x_2) = |y|$. Dismissing terms with favorable signs, one obtains...

EXAMPLE: $L^4(\mathbb{R}_t \times \mathbb{R}^3_x)$ INTERACTION MORAWETZ

$$\begin{split} \|\nabla u\|_{L^{\infty}_{[0,T]}L^{2}_{x}}\|u_{0}\|^{3}_{L^{2}} &\geq \int_{0}^{T}\int_{\mathbb{R}^{6}}(-\Delta_{6}\Delta_{6}|y|)|\Psi(x_{1},x_{2})|^{2}dx_{1}dx_{2}dt\\ &\geq c\int_{0}^{T}\int_{\mathbb{R}^{6}}\delta_{\{y=0\}}(x_{1},x_{2})|\phi_{1}(x_{1})\phi_{2}(x_{2})|^{2}dx_{1}dx_{2}dt\\ &\geq c\int_{0}^{T}\int_{\mathbb{R}^{3}}|\phi_{1}(t,\overline{x})\phi_{2}(t,\overline{x})|^{2}d\overline{x}dt. \end{split}$$

Specializing to $\phi_1 = \phi_2$ gives the interaction Morawetz estimate

$$\int_0^T \int_{\mathbb{R}^3} |\phi(t,x)|^4 dx dt \le C \|\nabla u\|_{L^{\infty}_{[0,T]}L^2_x} \|u_0\|^3_{L^2_x}$$

valid uniformly for all defocusing NLS equations on \mathbb{R}^3 .

$L^4(\mathbb{R}_t \times \mathbb{R}^2_x)$ Interaction Morawetz

- The " \mathbb{R}^3 miracle" underpinning the $L^4(\mathbb{R}^{1+3})$ estimate is $-\Delta\Delta|y| = 4\pi\delta_0$. For \mathbb{R}^2_x , we'd like to replace |y| with $a(x) = |x|^2 \log |x|$ but this violates $|\nabla a(x)| \leq C$.
- Inspired by [FG 05], define smooth convex f satisfying

$$f(|x|) = \begin{cases} \frac{1}{2M} |x|^2 (1 - \log \frac{|x|}{M}) & \text{for } |x| < \frac{M}{\sqrt{e}} \\ 100|x| & \text{for } |x| > M \end{cases}$$

where M is a large parameter we will later choose.

■ Choose a(x₁, x₂) = f(|x₁ - x₂|) in the "2-particle" virial identity. A calculation shows that

$$-\Delta\Delta a = \frac{2\pi}{M}\delta_{\{x_1=x_2\}} + \mathbf{1}_{\{|x_1-x_2|>\frac{M}{\sqrt{e}}\}}O(\frac{1}{|x_1-x_2|^3}).$$

$L^4(\mathbb{R}_t \times \mathbb{R}^2_x)$ Interaction Morawetz

Inserting this into the virial identity, dismissing terms with favorable signs, and collapsing to $u_1 = u_2$ produces

$$\begin{aligned} \frac{1}{M} \int_{0}^{T} \int_{\mathbb{R}^{2}} |u(x)|^{4} dx dt &\lesssim M_{a} \Big|_{0}^{T} + \int_{0}^{T} \int_{|x_{1} - x_{2}| > \frac{M}{\sqrt{e}}} \frac{|u(x_{1})|^{2} u(x_{2})|^{2}}{|x_{1} - x_{2}|^{3}} dx_{1} dx_{2} dt \\ &\lesssim \|\nabla u\|_{L^{\infty}_{[0,T]} L^{2}_{x}} \|u_{0}\|^{3}_{L^{2}_{x}} + \frac{T}{M^{3}} \|u_{0}\|^{4}_{L^{2}_{x}}. \end{aligned}$$

Multiplying through by M and balancing terms by choosing $M \sim T^{1/3}$ gives the **improved interaction Morawetz estimate**

$$\int_{0}^{T} \int_{\mathbb{R}^{2}} |u(t,x)|^{4} dx dt \lesssim T^{\frac{1}{3}} \|\nabla u\|_{L^{\infty}_{[0,T]}L^{2}_{x}} \|u_{0}\|^{3}_{L^{2}_{x}} + T^{\frac{1}{3}} \|u_{0}\|^{4}_{L^{2}_{x}}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

INTERACTION MORAWETZ FOR *lu*: ERROR TERM.

Reexpress $I(NLS_3^+)$ evolution equation

$$(i\partial_t + \Delta)Iu = |Iu|^2Iu + [I(|u|^2u) - |Iu|^2Iu].$$

First term contributes positive term to Morawetz.
[...] produces error. Commutator makes it small.
Form Ψ(t, x₁, x₂) = lu₁(t, x₁)lu₂(t, x₂) and ...

$$\int_{0}^{T} \int_{\mathbb{R}^{2}} |Iu(x)|^{4} dx dt \lesssim T^{\frac{1}{3}} \|\nabla Iu\|_{L^{\infty}_{[0,T]}L^{2}_{x}} \|Iu_{0}\|^{3}_{L^{2}_{x}} + T^{\frac{1}{3}} \|Iu_{0}\|^{4}_{L^{2}_{x}}$$
$$+ T^{\frac{1}{3}} \left| \int_{0}^{T} \int_{\mathbb{R}^{4}} \nabla a \cdot \{\mathcal{N}_{error}, Iu_{1}(x_{1})Iu_{2}(x_{2})\}_{p} dx_{1} dx_{2} dt \right|$$
with $\mathcal{N}_{error} = [I(|u_{1}|^{2}u_{1}) - |Iu_{1}|^{2}Iu_{1}]Iu_{2} + (1 \leftrightarrow 2).$

MORAWETZ ERROR INCREMENT QUANTIFICATION

Lemma

If
$$H^s \ni u_0 \to u$$
 solves $NLS_3^+(\mathbb{R}^2)$ with $\frac{1}{2} > s > 0$ then

$$\left|\int_{0}^{T}\int_{\mathbb{R}^{4}} \nabla a \cdot \left\{\mathcal{N}_{error}, Iu_{1}(x_{1})Iu_{2}(x_{2})\right\}_{p} dx_{1} dx_{2} dt\right| \lesssim N^{-1+} [Z_{I}([0, T])]^{6}.$$

The proof imitates the **almost conservation analysis**. In particular, when $||I_N \langle D \rangle u(0)||_{L^2_v} \leq 1$ we have

$$\left| \int_{0}^{T_{lwp}} \int_{\mathbb{R}^{4}} \nabla a \cdot \left\{ \mathcal{N}_{error}, Iu_{1}(x_{1})Iu_{2}(x_{2}) \right\}_{p} dx_{1} dx_{2} dt \right| \lesssim N^{-\beta}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for $\beta = 1-$.

BOOTSTRAP ARGUMENT: PRELIMINARIES

Fix a huge time interval [0, T₀]. Consider a global-in-time solution C₀[∞](ℝ²) ∋ u₀ → u. We will prove

$$\sup_{t\in[0,T_0]}\|u(t)\|_{H^s}\leq CT_0^{\theta(s)}$$

for $s > \frac{2}{5}$ with C independent of extra C_0^{∞} assumptions. Rescale initial data so that

$$\|Iu_0^{\lambda}\|_{H^1} = O(1) \iff \lambda \sim N^{\frac{1-s}{s}}.$$

• We will choose $N = N(T_0)$ and show

$$\sup_{t\in [0,\lambda^2 T_0]} \| Iu^\lambda(t)\|_{H^1} \leq O(1)$$

This unravels to prove the polynomial bound above.

BOOTSTRAP ARGUMENT: SETUP

• With
$$\alpha = \frac{3}{2}, \beta = 1$$
 and $\gamma = \frac{1}{3}$, define the set
 $S_{\mathcal{K}} = \{t \in [0, \lambda^2 T_0] : \|Iu^{\lambda}\|_{L^4([0,t] \times \mathbb{R}^2)}^4 \le KN^{\alpha - \beta}t^{\gamma}\}$

Here K is a large constant to be chosen.

Claim: $S_{\mathcal{K}} = [0, \lambda^2 T_0]$. Assume not. Since $||Iu^{\lambda}||_{L^4([0,t] \times \mathbb{R}^2)}$ is continuous with $t, \exists T \in (0, \lambda^2 T_0)$ such that

$$\|Iu^{\lambda}\|_{L^{4}([0,T]\times\mathbb{R}^{2})}^{4}=KN^{\alpha-\beta}T^{\gamma}.$$

• Cut [0, T] into disjoint intervals $J_k, k = 1, \dots, L$ such that

$$\int_{J_k}\int_{\mathbb{R}^2}|Iu^{\lambda}|^4dxdt\leq \mu_0.$$

Each J_k is like $[0, T_{lwp}]$. Also, $L \sim \frac{KN^{\alpha-\beta}T^{\gamma}}{\mu_0}$.

BOOTSTRAP: MODIFED HAMILTONIAN CONTROL

Almost Conservation Lemma gives

$$\sup_{t\in J_1} H[Iu^{\lambda}(t)] \leq H[Iu^{\lambda}(0)] + N^{-\alpha} \lesssim O(1)$$

Accumulating increments and recalling rescaling gives

$$\sup_{t\in[0,T]}H[Iu^{\lambda}(t)] \leq O(1) + \frac{L}{N^{\alpha}} \leq O(1) \text{ if } L < N^{\alpha}.$$

Recalling L, λ , using $T < \lambda^2 T_0$, choose $N = N(T_0)$ s.t.

$$T_0^{\gamma} \frac{K}{\mu_0} = N^{\frac{(\beta+2\gamma)s-2\gamma}{s}} \implies L < N^{\alpha}.$$

< ロ ト < 団 ト < 三 ト < 三 ト の へ ()</p>

• Since T_0 is big, this requires $s > \frac{2\gamma}{\beta+2\gamma} = \frac{2}{5}$.

BOOTSTRAP: CONCLUSION

Recall the interaction Morawetz estimate for Iu^{λ}

$$\begin{split} \int_{0}^{T} \int_{\mathbb{R}^{2}} |Iu^{\lambda}(x)|^{4} dx dt &\lesssim T^{\frac{1}{3}} \|\nabla Iu^{\lambda}\|_{L^{\infty}_{[0,T]}L^{2}_{x}} \|Iu^{\lambda}_{0}\|^{3}_{L^{2}_{x}} + T^{\frac{1}{3}} \|Iu^{\lambda}_{0}\|^{4}_{L^{2}_{x}} \\ &+ T^{\frac{1}{3}} \left| \int_{0}^{T} \int_{\mathbb{R}^{4}} \nabla a \cdot \{\mathcal{N}_{error}, Iu^{\lambda}_{1}(x_{1})Iu^{\lambda}_{2}(x_{2})\}_{p} dx_{1} dx_{2} dt \right| \end{split}$$

• On each J_k the Morawetz error term contributes at most $N^{-\beta}$

$$\left|\int_{J_k}\int_{\mathbb{R}^4} \nabla a \cdot \{\mathcal{N}_{error}, Iu_1^{\lambda}(x_1)Iu_2^{\lambda}(x_2)\}_p dx_1 dx_2 dt\right| \lesssim N^{-\beta}.$$

• Accumulating the increments over N^{α} steps proves

$$\|Iu^{\lambda}\|_{L^{4}([0,T]\times\mathbb{R}^{2})}^{4}\lesssim N^{\alpha-\beta}T^{\frac{1}{3}}.$$

Contradiction for K larger than the implied constants.

References

[Cazenave-Weissler 90] The Cauchy problem for the critical nonlinear Schrödinger equation in H^s. Nonlinear Anal. 14 (1990), no. 10, 807–836. [Tao-Visan-Zhang 06] Global well-posedness and scattering for the mass-critical nonlinear Schrödinger equation for radial data in high dimensions, preprint, (arXiv:math.AP/0609692).

[C-Grillakis-Tzirakis 07] Improved interaction Morawetz inequalities for the cubic nonlinear Schrödinger equation on \mathbb{R}^2 , preprint, (arXiv:math/0703606). [Bourgain 98] Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity. I.M.R.N. 1998, no. 5, 253–283.

[CKSTT 02] Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation. M.R.L. 9 (2002), no. 5-6, 659–682.

[CKSTT 07] Resonant decompositions and the *I*-method for cubic nonlinear Schrödinger on \mathbb{R}^2 , preprint, (arXiv:0704.2730).

[Fang-Grillakis 05] On the global existence of rough solutions of the cubic defocusing Schrödinger equation in \mathbb{R}^{2+1} , to appear, J.H.D.E.

[CKSTT 04] Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on \mathbb{R}^3 . C.P.A.M. 57 (2004), no. 8, 987–1014.

[Lin-Strauss 78] Decay and scattering of solutions of a nonlinear Schrödinger equation. J.F.A. 30 (1978), no. 2, 245–263.

(Hassell 04) private conversation with T. Tao.