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1 Weak Turbulence for NLS

2 Overview of proof
Resonant finite dimensional truncations approximate NLS
Imagine we build a resonant Λ ⊂ Z2 such that...
...we get a low → high frequency travelling wave across Λ
Combinatorial construction of Λ ⊂ Z2 such that...

3 Remarks



Defocusing cubic Nonlinear Schrödinger on T2

Consider the initial value problem:{
i∂tu + ∆u = |u|2u
u(0, x) = u0(x), x ∈ T2.

(NLS)

Local-in-time well-posedness (LWP) is known for
u0 ∈ Hs , s > 0. [Bourgain 1993]

Time Invariant Quantities:

Mass = ‖u(t)‖L2
x
.

Hamiltonian =

∫
T 2

|∇u(t)|2dx +
1

2
|u(t)|4dx .

Global-in-time well-posedness is known for u0 ∈ Hs , s > 2
3 .

[De Silva, Pavlovic, Staffilani, Tzirakis 2006]
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What happens to smooth solutions?

Suppose u0 ∈ Hs(T2) for s > 1. What happens to ‖u(t)‖Hs ?
Recall that ‖f ‖Hs

x
= ‖(1 + |ξ|)s f̂ (ξ)‖L2

ξ
.

LWP =⇒ ‖u(t)‖Hs . eCt .

LWP + Dispersive Smoothing =⇒ ‖u(t)‖Hs . (1 + |t|)α(s).
[Bourgain 1996, Staffilani 1998]

Weak Turbulence Conjecture:
∃ solutions with ‖u(t)‖Hs ↗∞ as t ↗∞?

Does the conserved mass stay put in frequency space or does it
cascade up to high frequencies?
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(Very) weak turbulence result

Theorem (C-Keel-Staffilini-Takaoka-Tao)

Given s > 1, ε � 1, K � 1,
∃ smooth solution u(t) of NLS and a time T such that

‖u(0)‖Hs ≤ ε,

‖u(T )‖Hs ≥ K .

Overview of proof:
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Preliminary reductions

Gauge Freedom:
If u solves NLS then v(t, x) = e−i2Gtu(t, x) solves{

i∂tv + ∆v = (2G + |v |2)v
v(0, x) = v0(x), x ∈ T2.

(NLSG )

Fourier Ansatz: Recast the dynamics in Fourier coefficients,

v(t, x) =
∑
n∈Z2

an(t)e
i(n·x+|n|2t).


i∂tan = 2Gan +

∑
n1, n2, n3 ∈ Z2

n1 − n2 + n3 = n

an1an2an3e
iω4t

an(0) = û0(n), n ∈ Z2.
(FNLSG )

ω4 = |n1|2 − |n2|2 + |n3|2 − |n|2.
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Preliminary reductions

Diagonal decomposition of sum:∑
n1, n2, n3 ∈ Z2

n1 − n2 + n3 = n

=
∑

n1, n2, n3 ∈ Z2

n1 − n2 + n3 = n
n 6= n1, n3

+
∑

n1, n2, n3 ∈ Z2

n1 − n2 + n3 = n
n = n1

+
∑

n1, n2, n3 ∈ Z2

n1 − n2 + n3 = n
n = n3

−
∑

n1, n2, n3 ∈ Z2

n1 − n2 + n3 = n
n = n1 = n3

Choice of G :

G = −‖u0‖2L2 .
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Resonant truncation

NLS dynamic is recast as

−i∂tan = −an|an|2 +
∑

n1,n2,n3∈Γ(n)

an1an2an3e
iω4t . (FNLS)

where

Γ(n) = {n1, n2, n3 ∈ Z2 : n1 − n2 + n3 = n, n1 6= n, n3 6= n}.

Γres(n) = {n1, n2, n3 ∈ Γ(n) : ω4 = 0}.
= { Triples (n1, n2, n3) : (n1, n2, n3, n4) is a rectangle }

The resonant truncation of FNLS is

−i∂tbn = −bn|bn|2 +
∑

n1,n2,n3∈Γres(n)

bn1bn2bn3 . (RFNLS)
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Finite dimensional resonant truncation

A set Λ ⊂ Z2 is closed under resonant interactions if

n1, n2, n3 ∈ Γres(n), n1, n2, n3 ∈ Λ =⇒ n ∈ Λ.

A finite dimensional resonant truncation of FNLS is

−i∂tbn = −bn|bn|2 +
∑

n1,n2,n3∈Γres(n)∩Λ3

bn1bn2bn3 . (RFNLSΛ)

∀ resonant-closed finite Λ ⊂ Z2 RFNLSΛ is an ODE.

If spt(an(0)) ⊂ Λ then FNLS-evolution an(0) 7−→ an(t) is
nicely approximated by RFNLSΛ-ODE an(0) 7−→ bn(t).

Given ε, s,K , build Λ so that RFNLSΛ has weak turbulence.
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Imagine we build a resonant Λ ⊂ Z2 such that...

Imagine a resonant-closed Λ = Λ1 ∪ · · · ∪ ΛM with properties.
Define a nuclear family to be a rectangle (n1, n2, n3, n4) where the
frequencies n1, n3 (the ’parents’) live in generation Λj and n2, n4

(’children’) live in generation Λj+1.

∀ 1 ≤ j < M and ∀ n1 ∈ Λj ∃ unique nuclear family such that
n1, n3 ∈ Λj are parents and n2, n4 ∈ Λj+1 are children.

∀ 1 ≤ j < M and ∀ n2 ∈ Λj+1 ∃ unique nuclear family such
that n2, n4 ∈ Λj+1 are children and n1, n3 ∈ Λj are parents.

The sibling of a frequency is never its spouse.

Besides nuclear families, Λ contains no other rectangles.

The function n 7−→ an(0) is constant on each generation Λj .
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The toy model ODE

Assume we can construct such a Λ = Λ1 ∪ · · · ∪ ΛM . The
properties imply RFNLSΛ simplifies to the toy model ODE

i∂tbj(t) = |bj(t)|2bj(t)− 2bj−1(t)
2bj(t)− 2bj+1(t)

2bj(t).

L2 ∼
∑

j

|bj(t)|2 =
∑

j

|bj(0)|2

Hs ∼
∑

j

|bj(t)|2(
∑
n∈Λj

|n|2s).

We also want Λ = Λ1 ∪ · · · ∪ ΛM to satisfy∑
n∈ΛM

|n|2s �
∑
n∈Λ1

|n|2s .
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Toy model travelling wave solution

Using dynamical systems methods, we construct a Toy Model ODE
evolution bj(0) 7−→ bj(t) such that:

(b1(0), b2(0), . . . , bM(0)) ∼ (1, 0, . . . , 0)

(b1(t2), b2(t2), . . . , bM(t2)) ∼ (0, 1, . . . , 0)

.

.

.

(b1(tM), b2(tM), . . . , bM(tM)) ∼ (0, 0, . . . , 1)

Bulk of conserved mass is transferred from Λ1 to ΛM . Weak
turbulence follows, provided we can construct such a Λ.
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