Weak Turbulence for NLS

J. Colliander

University of Toronto

ICMP, Rio De Janeiro
1 Weak Turbulence for NLS

2 Overview of proof
- Resonant finite dimensional truncations approximate NLS
- Imagine we build a resonant $\Lambda \subset \mathbb{Z}^2$ such that...
- ...we get a low \rightarrow high frequency travelling wave across Λ
- Combinatorial construction of $\Lambda \subset \mathbb{Z}^2$ such that...

3 Remarks
Defocusing cubic Nonlinear Schrödinger on \mathbb{T}^2

Consider the initial value problem:

\[
\begin{align*}
&i \partial_t u + \Delta u = |u|^2 u \\
&u(0, x) = u_0(x), \quad x \in \mathbb{T}^2.
\end{align*}
\] (NLS)

Local-in-time well-posedness (LWP) is known for $u_0 \in H^s$, $s > 0$. [Bourgain 1993]

Time Invariant Quantities:

- Mass $\|u(t)\|_{L^2}$
- Hamiltonian $\int_{\mathbb{T}^2} |\nabla u(t)|^2 \, dx + \frac{1}{2} |u(t)|^4 \, dx$

Global-in-time well-posedness is known for $u_0 \in H^s$, $s > 2 \frac{3}{2}$. [De Silva, Pavlovic, Staffilani, Tzirakis 2006]
Defocusing cubic Nonlinear Schrödinger on \(\mathbb{T}^2 \)

Consider the initial value problem:

\[
\begin{cases}
 i \partial_t u + \Delta u = |u|^2 u \\
 u(0, x) = u_0(x), & x \in \mathbb{T}^2.
\end{cases}
\]

\((NLS) \)
Consider the initial value problem:

\[
\begin{aligned}
&i \partial_t u + \Delta u = |u|^2 u \\
&u(0, x) = u_0(x), \quad x \in \mathbb{T}^2.
\end{aligned}
\]

(NLS)
Consider the initial value problem:

\[
\begin{cases}
 i \partial_t u + \Delta u = |u|^2 u \\
 u(0, x) = u_0(x), \quad x \in \mathbb{T}^2.
\end{cases}
\]

\((NLS) \)

- Local-in-time well-posedness (LWP) is known for
 \(u_0 \in H^s, s > 0 \). [Bourgain 1993]
Consider the initial value problem:

\[
\begin{aligned}
 i \partial_t u + \Delta u &= |u|^2 u \\
 u(0, x) &= u_0(x), \quad x \in \mathbb{T}^2.
\end{aligned}
\]

\((NLS) \)

- Local-in-time well-posedness (LWP) is known for \(u_0 \in H^s, s > 0 \). [Bourgain 1993]

- Time Invariant Quantities:

 \[\text{Mass} = \|u(t)\|_{L_x^2}. \]

 \[\text{Hamiltonian} = \int_{\mathbb{T}^2} |\nabla u(t)|^2 dx + \frac{1}{2} |u(t)|^4 dx. \]
Consider the initial value problem:

\[
\begin{aligned}
&i \partial_t u + \Delta u = |u|^2 u \\
&u(0, x) = u_0(x), \quad x \in \mathbb{T}^2.
\end{aligned}
\]

\textbf{(NLS)}

- Local-in-time well-posedness (LWP) is known for \(u_0 \in H^s, s > 0 \). [Bourgain 1993]

- Time Invariant Quantities:

\[
\text{Mass} = \|u(t)\|_{L_x^2}.
\]

\[
\text{Hamiltonian} = \int_{\mathbb{T}^2} |\nabla u(t)|^2 dx + \frac{1}{2} |u(t)|^4 dx.
\]

- Global-in-time well-posedness is known for \(u_0 \in H^s, s > \frac{2}{3} \). [De Silva, Pavlovic, Staffilani, Tzirakis 2006]
What happens to smooth solutions?

Suppose \(u_0 \in H^s(T^2) \) for \(s > 1 \). What happens to \(\|u(t)\|_{H^s} \)?

Recall that

\[
\|f\|_{H^s_x} = \left\| (1 + |\xi|)^s \hat{f}(\xi) \right\|_{L^2_\xi}.
\]

LWP \(\Rightarrow \|u(t)\|_{H^s} \lesssim e^{Ct} \).

LWP + Dispersive Smoothing \(\Rightarrow \|u(t)\|_{H^s} \lesssim (1 + |t|)^{\alpha(s)} \).

[Bourgain 1996, Staffilani 1998]

Weak Turbulence Conjecture:

Exist \(s \) solutions with \(\|u(t)\|_{H^s} \to \infty \) as \(t \to \infty \)?

Does the conserved mass stay put in frequency space or does it cascade up to high frequencies?
What happens to smooth solutions?

Suppose $u_0 \in H^s(\mathbb{T}^2)$ for $s > 1$. What happens to $\|u(t)\|_{H^s}$?
What happens to smooth solutions?

Suppose $u_0 \in H^s(\mathbb{T}^2)$ for $s > 1$. What happens to $\|u(t)\|_{H^s}$?

Recall that $\|f\|_{H^s_x} = \|(1 + |\xi|)^s \hat{f}(\xi)\|_{L^2_{\xi}}$.

Weak Turbulence Conjecture: \exists solutions with $\|u(t)\|_{H^s} \nearrow \infty$ as $t \nearrow \infty$?

Does the conserved mass stay put in frequency space or does it cascade up to high frequencies?
What happens to smooth solutions?

Suppose $u_0 \in H^s(\mathbb{T}^2)$ for $s > 1$. What happens to $\|u(t)\|_{H^s}$?

Recall that $\|f\|_{H^s_x} = \|(1 + |\xi|)^s \hat{f}(\xi)\|_{L^2_\xi}$.

LWP $\implies \|u(t)\|_{H^s} \lesssim e^{Ct}$.

[Bourgain 1996, Staffilani 1998]

Weak Turbulence Conjecture: \exists solutions with $\|u(t)\|_{H^s} \to \infty$ as $t \to \infty$?

Does the conserved mass stay put in frequency space or does it cascade up to high frequencies?
What happens to smooth solutions?

Suppose $u_0 \in H^s(\mathbb{T}^2)$ for $s > 1$. What happens to $\|u(t)\|_{H^s}$?
Recall that $\|f\|_{H_x^s} = \|(1 + |\xi|)^s \hat{f}(\xi)\|_{L_\xi^2}$.

- LWP $\implies \|u(t)\|_{H^s} \lesssim e^{Ct}$.
- LWP + Dispersive Smoothing $\implies \|u(t)\|_{H^s} \lesssim (1 + |t|)^{\alpha(s)}$.
[Bourgain 1996, Staffilani 1998]
What happens to smooth solutions?

Suppose \(u_0 \in H^s(\mathbb{T}^2) \) for \(s > 1 \). What happens to \(\| u(t) \|_{H^s} \)?

Recall that \(\| f \|_{H_x^s} = \| (1 + |\xi|)^s \hat{f}(\xi) \|_{L_\xi^2} \).

- **LWP** \(\implies \| u(t) \|_{H^s} \lesssim e^{Ct} \).
- **LWP + Dispersive Smoothing** \(\implies \| u(t) \|_{H^s} \lesssim (1 + |t|)^{\alpha(s)} \).

 [Bourgain 1996, Staffilani 1998]

- **Weak Turbulence Conjecture:**

 \(\exists \) solutions with \(\| u(t) \|_{H^s} \nearrow \infty \) as \(t \nearrow \infty \)?
What happens to smooth solutions?

Suppose $u_0 \in H^s(T^2)$ for $s > 1$. What happens to $\|u(t)\|_{H^s}$?

Recall that $\|f\|_{H^s_x} = \|(1 + |\xi|)^s \hat{f}(\xi)\|_{L^2_\xi}$.

- LWP $\implies \|u(t)\|_{H^s} \lesssim e^{Ct}$.
- LWP + Dispersive Smoothing $\implies \|u(t)\|_{H^s} \lesssim (1 + |t|)^{\alpha(s)}$. [Bourgain 1996, Staffilani 1998]
- Weak Turbulence Conjecture:
 \exists solutions with $\|u(t)\|_{H^s} \to \infty$ as $t \to \infty$?
What happens to smooth solutions?

Suppose \(u_0 \in H^s(\mathbb{T}^2) \) for \(s > 1 \). What happens to \(\|u(t)\|_{H^s} \)?

Recall that \(\|f\|_{H^s_x} = \|(1 + |\xi|)^s \hat{f}(\xi)\|_{L^2_\xi} \).

- **LWP** \(\implies \|u(t)\|_{H^s} \lesssim e^{Ct} \).
- **LWP + Dispersive Smoothing** \(\implies \|u(t)\|_{H^s} \lesssim (1 + |t|)^{\alpha(s)}. \) [Bourgain 1996, Staffilani 1998]

Weak Turbulence Conjecture:

\(\exists \) solutions with \(\|u(t)\|_{H^s} \nearrow \infty \) as \(t \nearrow \infty \)?

Does the conserved mass stay put in frequency space or does it cascade up to high frequencies?
(Very) weak turbulence result

Theorem (C-Keel-Staffilini-Takaoka-Tao)

Given \(s > 1, \epsilon \ll 1, K \gg 1 \), there exists a smooth solution \(u(t) \) of NLS and a time \(T \) such that

\[
\| u(0) \|_{H^s} \leq \epsilon, \quad \| u(T) \|_{H^s} \geq K.
\]

Overview of proof:
(Very) weak turbulence result

Theorem (C-Keel-Staffilini-Takaoka-Tao)

Given $s > 1$, $\epsilon \ll 1$, $K \gg 1$, there exists a smooth solution $u(t)$ of NLS and a time T such that

$\|u(0)\|_{H^s} \leq \epsilon$, $\|u(T)\|_{H^s} \geq K$.

Overview of proof:
(Very) weak turbulence result

Theorem (C-Keel-Staffilini-Takaoka-Tao)

Given $s > 1$, $\epsilon \ll 1$, $K \gg 1$,
(Very) weak turbulence result

Theorem (C-Keel-Staffilini-Takaoka-Tao)

Given $s > 1$, $\epsilon \ll 1$, $K \gg 1$,

\exists smooth solution $u(t)$ of NLS and a time T such that

\[\|u(0)\|_{H^s} \leq \epsilon, \quad \|u(T)\|_{H^s} \geq K.\]
Theorem (C-Keel-Staffilini-Takaoka-Tao)

Given $s > 1$, $\epsilon \ll 1$, $K \gg 1$,

\[\exists \text{ smooth solution } u(t) \text{ of NLS and a time } T \text{ such that} \]

\[\| u(0) \|_{H^s} \leq \epsilon, \]
(Very) weak turbulence result

Theorem (C-Keel-Staffilini-Takaoka-Tao)

Given \(s > 1, \epsilon \ll 1, K \gg 1, \)

\[\exists \text{ smooth solution } u(t) \text{ of NLS and a time } T \text{ such that} \]

\[\| u(0) \|_{H^s} \leq \epsilon, \]

\[\| u(T) \|_{H^s} \geq K. \]
(Very) weak turbulence result

Theorem (C-Keel-Staffilini-Takaoka-Tao)

Given $s > 1$, $\epsilon \ll 1$, $K \gg 1$,

\[\exists \text{ smooth solution } u(t) \text{ of NLS and a time } T \text{ such that} \]

\[\| u(0) \|_{H^s} \leq \epsilon, \]

\[\| u(T) \|_{H^s} \geq K. \]

Overview of proof:
Preliminary reductions

Gauge Freedom:

If u solves \textit{NLS}, then $v(t, x) = e^{-i \frac{G}{2} t} u(t, x)$ solves \textit{NLS}.

Fourier Ansatz:

Recast the dynamics in Fourier coefficients,

$$v(t, x) = \sum_{n \in \mathbb{Z}^2} a_n(t) e^{i (n \cdot x + |n|^2 t)}.$$}

$$i \partial_t a_n = 2 G a_n + \sum_{n_1, n_2, n_3 \in \mathbb{Z}^2: n_1 - n_2 + n_3 = n} a_{n_1} a_{n_2} a_{n_3} e^{i \omega_4 t} a_n(0) = \hat{u}_0(n), n \in \mathbb{Z}^2.$$}

$$\omega_4 = |n_1|^2 - |n_2|^2 + |n_3|^2 - |n|^2.$$
Preliminary reductions

Gauge Freedom:

If u solves NLS then $v(t, x) = e^{-i\frac{t}{2}G}u(t, x)$ solves \{NLS\}_G.

Fourier Ansatz:
Recast the dynamics in Fourier coefficients, $v(t, x) = \sum_{n \in \mathbb{Z}^2} a_n(t)e^{i(n \cdot x + |n|^2 t)}$.

\[
\begin{align*}
 i\frac{\partial}{\partial t} a_n &= 2Ga_n + \sum_{n_1, n_2, n_3 \in \mathbb{Z}^2} n_1 - n_2 + n_3 = n [a_{n_1}a_{n_2}a_{n_3}] e^{i\omega_4 t} \\
 a_n(0) &= \hat{u}_0(n), \quad n \in \mathbb{Z}^2.
\end{align*}
\]

$\omega_4 = |n_1|^2 - |n_2|^2 + |n_3|^2 - |n|^2$.
Preliminary reductions

- **Gauge Freedom:**
 If u solves NLS then $v(t, x) = e^{-i2Gt} u(t, x)$ solves
 \[
 \begin{cases}
 i\partial_t v + \Delta v = (2G + |v|^2)v \\
 v(0, x) = v_0(x), \quad x \in \mathbb{T}^2.
 \end{cases} \quad (NLS_G)
 \]
Preliminary reductions

- **Gauge Freedom:**
 If u solves NLS then $v(t, x) = e^{-i2Gt}u(t, x)$ solves

 \[
 \begin{cases}
 i\partial_t v + \Delta v = (2G + |v|^2)v \\
 v(0, x) = v_0(x), \quad x \in \mathbb{T}^2.
 \end{cases}
 \]

- **Fourier Ansatz:**
Preliminary reductions

- **Gauge Freedom:**
 If u solves NLS then $v(t, x) = e^{-i2Gt}u(t, x)$ solves
 \[
 \begin{cases}
 i\partial_t v + \Delta v = (2G + |v|^2)v \\
v(0, x) = v_0(x), \quad x \in \mathbb{T}^2.
 \end{cases}
 \]
 \hspace{1cm} (NLS_G)

- **Fourier Ansatz:** Recast the dynamics in Fourier coefficients,
 \[
 v(t, x) = \sum_{n \in \mathbb{Z}^2} a_n(t)e^{i(n \cdot x + |n|^2 t)}.
 \]
Preliminary reductions

- **Gauge Freedom:**
 If \(u \) solves NLS then \(v(t, x) = e^{-i2Gt} u(t, x) \) solves
 \[
 \begin{cases}
 i\partial_t v + \Delta v = (2G + |v|^2)v \\
 v(0, x) = v_0(x), \quad x \in \mathbb{T}^2.
 \end{cases}
 \]

- **Fourier Ansatz:** Recast the dynamics in Fourier coefficients,
 \[
 v(t, x) = \sum_{n \in \mathbb{Z}^2} a_n(t) e^{i(n \cdot x + |n|^2 t)}.
 \]

\[
\begin{cases}
 i\partial_t a_n = 2Ga_n + \sum_{n_1, n_2, n_3 \in \mathbb{Z}^2} a_{n_1} \bar{a}_{n_2} a_{n_3} e^{i\omega_4 t} \\
 n_1 - n_2 + n_3 = n \\
 a_n(0) = \hat{u}_0(n),
 \end{cases}
\]

\(\omega_4 = |n_1|^2 - |n_2|^2 + |n_3|^2 - |n|^2 \).
PRELIMINARY REDUCTIONS
PRELIMINARY REDUCTIONS

- Diagonal decomposition of sum:

\[
\sum_{n_1, n_2, n_3 \in \mathbb{Z}^2} n_1 - n_2 + n_3 = \sum_{n_1, n_2, n_3 \in \mathbb{Z}^2} n_1 - n_2 + n_3 = \sum_{n_1, n_3 \in \mathbb{Z}^2} n_1 + \sum_{n_1, n_2, n_3 \in \mathbb{Z}^2} n_1 - n_2 + n_3 = \sum_{n_1, n_3 \in \mathbb{Z}^2} n_1 + \sum_{n_1, n_3 \in \mathbb{Z}^2} n_3
\]

Choice of G:

\[
G = -\|u_0\|_2 L_2
\]
Preliminary reductions

- Diagonal decomposition of sum:

\[
\sum_{n_1, n_2, n_3 \in \mathbb{Z}^2} n_1 - n_2 + n_3 = n
\]

\[
= \sum_{n_1, n_2, n_3 \in \mathbb{Z}^2} n_1 - n_2 + n_3 = n
+ \sum_{n_1, n_2, n_3 \in \mathbb{Z}^2} n_1 - n_2 + n_3 = n
+ \sum_{n_1, n_2, n_3 \in \mathbb{Z}^2} n_1 - n_2 + n_3 = n
\]

\[
+ \sum_{n_1, n_2, n_3 \in \mathbb{Z}^2} n_1 - n_2 + n_3 = n
- \sum_{n_1, n_2, n_3 \in \mathbb{Z}^2} n_1 - n_2 + n_3 = n
+ \sum_{n_1, n_2, n_3 \in \mathbb{Z}^2} n_1 - n_2 + n_3 = n
\]

\[
+ \sum_{n_1, n_2, n_3 \in \mathbb{Z}^2} n_1 - n_2 + n_3 = n
- \sum_{n_1, n_2, n_3 \in \mathbb{Z}^2} n_1 - n_2 + n_3 = n
+ \sum_{n_1, n_2, n_3 \in \mathbb{Z}^2} n_1 - n_2 + n_3 = n
\]
Preliminary reductions

- Diagonal decomposition of sum:

\[
\sum_{n_1, n_2, n_3 \in \mathbb{Z}^2} = \sum_{n_1, n_2, n_3 \in \mathbb{Z}^2} + \sum_{n_1 - n_2 + n_3 = n \neq n_1, n_3} + \sum_{n_1, n_2, n_3 \in \mathbb{Z}^2} + \sum_{n_1 - n_2 + n_3 = n = n_1} + \sum_{n_1, n_2, n_3 \in \mathbb{Z}^2} - \sum_{n_1 - n_2 + n_3 = n = n_3} - \sum_{n_1, n_2, n_3 \in \mathbb{Z}^2} - \sum_{n_1 - n_2 + n_3 = n = n_1 = n_3}
\]

- Choice of \(G \):
Preliminary reductions

- Diagonal decomposition of sum:

\[
\sum_{n_1, n_2, n_3 \in \mathbb{Z}^2, n_1 - n_2 + n_3 = n} = \sum_{n_1, n_2, n_3 \in \mathbb{Z}^2, n_1 - n_2 + n_3 = n} + \sum_{n_1, n_2, n_3 \in \mathbb{Z}^2, n_1 - n_2 + n_3 = n, n \neq n_1, n_3} + \sum_{n_1, n_2, n_3 \in \mathbb{Z}^2, n_1 - n_2 + n_3 = n, n = n_1} + \sum_{n_1, n_2, n_3 \in \mathbb{Z}^2, n_1 - n_2 + n_3 = n, n = n_3} - \sum_{n_1, n_2, n_3 \in \mathbb{Z}^2, n_1 - n_2 + n_3 = n, n = n_1 = n_3}
\]

- Choice of G:

\[
G = -\|u_0\|_{L^2}^2.
\]
Resonant truncation

\[-i \frac{\partial}{\partial t} a_n = -a_n |a_n|^2 + \sum_{n_1, n_2, n_3 \in \Gamma(n)} a_{n_1} a_{n_2} a_{n_3} e^{i \omega_4 t}.\]

\[\Gamma_{\text{res}}(n) = \{ n_1, n_2, n_3 \in \Gamma(n) : \omega_4 = 0 \}.\]

Resonant truncation of \(F_{\text{NLS}} \) is

\[-i \frac{\partial}{\partial t} b_n = -b_n |b_n|^2 + \sum_{n_1, n_2, n_3 \in \Gamma_{\text{res}}(n)} b_{n_1} b_{n_2} b_{n_3}.\]

\[\left(R F_{\text{NLS}} \right)\]
Resonant truncation

- NLS dynamic is recast as
Resonant truncation

- NLS dynamic is recast as

\[-i \partial_t a_n = -a_n |a_n|^2 + \sum_{n_1, n_2, n_3 \in \Gamma(n)} a_{n_1} \overline{a}_{n_2} a_{n_3} e^{i \omega_4 t}. \quad (\mathcal{F}NLS)\]
Resonant truncation

- \textit{NLS} dynamic is recast as

\[-i\partial_t a_n = -a_n|a_n|^2 + \sum_{n_1,n_2,n_3\in\Gamma(n)} a_{n_1}\bar{a}_{n_2}a_{n_3}e^{i\omega_4 t}. \quad (\mathcal{F NLS})\]

where

\[\Gamma(n) = \{n_1, n_2, n_3 \in \mathbb{Z}^2 : n_1 - n_2 + n_3 = n, n_1 \neq n, n_3 \neq n\}.\]
Resonant truncation

- NLS dynamic is recast as

\[-i \partial_t a_n = -a_n|a_n|^2 + \sum_{n_1, n_2, n_3 \in \Gamma(n)} a_{n_1} \bar{a}_{n_2} a_{n_3} e^{i \omega_4 t}. \quad (\mathcal{F}NLS)\]

where

\[\Gamma(n) = \{n_1, n_2, n_3 \in \mathbb{Z}^2 : n_1 - n_2 + n_3 = n, n_1 \neq n, n_3 \neq n\}.\]

- $\Gamma_{res}(n) = \{n_1, n_2, n_3 \in \Gamma(n) : \omega_4 = 0\}.$
Resonant truncation

- \textit{NLS} dynamic is recast as

\[-i\partial_t a_n = -a_n|a_n|^2 + \sum_{n_1, n_2, n_3 \in \Gamma(n)} a_{n_1} \bar{a}_{n_2} a_{n_3} e^{i\omega_4 t}. \] \hspace{1cm} (\mathcal{F}NLS)

where

\[\Gamma(n) = \{ n_1, n_2, n_3 \in \mathbb{Z}^2 : n_1 - n_2 + n_3 = n, n_1 \neq n, n_3 \neq n \}. \]

- \[\Gamma_{res}(n) = \{ n_1, n_2, n_3 \in \Gamma(n) : \omega_4 = 0 \}. \]

\[= \{ \text{Triples } (n_1, n_2, n_3) : (n_1, n_2, n_3, n_4) \text{ is a rectangle} \} \]
Resonant truncation

- NLS dynamic is recast as

\[-i \partial_t a_n = -a_n |a_n|^2 + \sum_{n_1, n_2, n_3 \in \Gamma(n)} a_{n_1} \overline{a}_{n_2} a_{n_3} e^{i\omega_4 t}. \quad (\mathcal{F}NLS) \]

where

\[\Gamma(n) = \{ n_1, n_2, n_3 \in \mathbb{Z}^2 : n_1 - n_2 + n_3 = n, n_1 \neq n, n_3 \neq n \}. \]

- The resonant truncation of \(\mathcal{F}NLS \) is

\[-i \partial_t b_n = -b_n |b_n|^2 + \sum_{n_1, n_2, n_3 \in \Gamma_{res}(n)} b_{n_1} \overline{b}_{n_2} b_{n_3}. \quad (R\mathcal{F}NLS) \]
Finite dimensional resonant truncation

A set $\Lambda \subset \mathbb{Z}^2$ is closed under resonant interactions if $n_1, n_2, n_3 \in \Gamma_{\text{res}}(n) \cap \Lambda \Rightarrow n \in \Lambda$.

A finite dimensional resonant truncation of \mathcal{F}_{NLS} is\
$$-i \partial_t b_n = -b_n |b_n|^2 + \sum_{n_1, n_2, n_3 \in \Gamma_{\text{res}}(n) \cap \Lambda} b_{n_1} b_{n_2} b_{n_3}.$$

($R_{\mathcal{F}_{\text{NLS}}\Lambda}$)\

\forall resonant-closed finite $\Lambda \subset \mathbb{Z}^2$, $R_{\mathcal{F}_{\text{NLS}}\Lambda}$ is an ODE.

If $\text{spt}(a_n(0)) \subset \Lambda$ then \mathcal{F}_{NLS}-evolution $a_n(0) \mapsto -\to b_n(t)$ is nicely approximated by $R_{\mathcal{F}_{\text{NLS}}\Lambda}$-ODE $a_n(0) \mapsto -\to b_n(t)$.

Given ϵ, s, K, build Λ so that $R_{\mathcal{F}_{\text{NLS}}\Lambda}$ has weak turbulence.
A set $\Lambda \subset \mathbb{Z}^2$ is closed under resonant interactions if

$$n_1, n_2, n_3 \in \Gamma_{\text{res}}(n), n_1, n_2, n_3 \in \Lambda \implies n \in \Lambda.$$
 finite dimensional resonant truncation

A set $\Lambda \subset \mathbb{Z}^2$ is closed under resonant interactions if

$$n_1, n_2, n_3 \in \Gamma_{\text{res}}(n), n_1, n_2, n_3 \in \Lambda \implies n \in \Lambda.$$

A finite dimensional resonant truncation of $\mathcal{F}NLS$ is

$$-i \partial_t b_n = -b_n |b_n|^2 + \sum_{n_1, n_2, n_3 \in \Gamma_{\text{res}}(n) \cap \Lambda^3} b_{n_1} \overline{b}_{n_2} b_{n_3}. \quad (R \mathcal{F}NLS_{\Lambda})$$
A set $\Lambda \subset \mathbb{Z}^2$ is closed under resonant interactions if

$$n_1, n_2, n_3 \in \Gamma_{\text{res}}(n), n_1, n_2, n_3 \in \Lambda \implies n \in \Lambda.$$

A finite dimensional resonant truncation of $\mathcal{F}NLS$ is

$$-i\partial_t b_n = -b_n|b_n|^2 + \sum_{n_1, n_2, n_3 \in \Gamma_{\text{res}}(n) \cap \Lambda^3} b_{n_1} \overline{b}_{n_2} b_{n_3}. \quad (R\mathcal{F}NLS_{\Lambda})$$

\forall resonant-closed finite $\Lambda \subset \mathbb{Z}^2$ $R\mathcal{F}NLS_{\Lambda}$ is an ODE.
Finite dimensional resonant truncation

A set $\Lambda \subset \mathbb{Z}^2$ is closed under resonant interactions if

$$n_1, n_2, n_3 \in \Gamma_{\text{res}}(n), n_1, n_2, n_3 \in \Lambda \implies n \in \Lambda.$$

A finite dimensional resonant truncation of $\mathcal{F}\text{NLS}$ is

$$-i\partial_t b_n = -b_n|b_n|^2 + \sum_{n_1, n_2, n_3 \in \Gamma_{\text{res}}(n) \cap \Lambda^3} b_{n_1} \bar{b}_{n_2} b_{n_3}. \ (R\mathcal{F}\text{NLS}_\Lambda)$$

\forall resonant-closed finite $\Lambda \subset \mathbb{Z}^2 \ R\mathcal{F}\text{NLS}_\Lambda$ is an ODE.

If spt($a_n(0)$) $\subset \Lambda$ then $\mathcal{F}\text{NLS}$-evolution $a_n(0) \mapsto a_n(t)$ is nicely approximated by $R\mathcal{F}\text{NLS}_\Lambda$-ODE $a_n(0) \mapsto b_n(t)$.
A set $\Lambda \subset \mathbb{Z}^2$ is closed under resonant interactions if

$$n_1, n_2, n_3 \in \Gamma_{\text{res}}(n), n_1, n_2, n_3 \in \Lambda \implies n \in \Lambda.$$

A finite dimensional resonant truncation of $\mathcal{F}NLS$ is

$$-i\partial_t b_n = -b_n|b_n|^2 + \sum_{n_1, n_2, n_3 \in \Gamma_{\text{res}}(n) \cap \Lambda^3} b_{n_1} b_{n_2} b_{n_3}. \quad (RFNLS_{\Lambda})$$

All resonant-closed finite $\Lambda \subset \mathbb{Z}^2$ $RFNLS_{\Lambda}$ is an ODE.

If $\text{spt}(a_n(0)) \subset \Lambda$ then $\mathcal{F}NLS$-evolution $a_n(0) \mapsto a_n(t)$ is nicely approximated by $RFNLS_{\Lambda}$-ODE $a_n(0) \mapsto b_n(t)$.

Given ϵ, s, K, build Λ so that $RFNLS_{\Lambda}$ has weak turbulence.
Resonant finite dimensional truncations approximate \textit{NLS}
Imagine we build a resonant $\Lambda \subset \mathbb{Z}^2$ such that...

Define a nuclear family to be a rectangle (n_1, n_2, n_3, n_4) where the frequencies n_1, n_3 (the 'parents') live in generation Λ_j and n_2, n_4 (‘children’) live in generation $\Lambda_j + 1$.

$\forall 1 \leq j < M$ and $\forall n_1 \in \Lambda_j \exists$ unique nuclear family such that $n_1, n_3 \in \Lambda_j$ are parents and $n_2, n_4 \in \Lambda_j + 1$ are children.

$\forall 1 \leq j < M$ and $\forall n_2 \in \Lambda_j + 1 \exists$ unique nuclear family such that $n_2, n_4 \in \Lambda_j + 1$ are children and $n_1, n_3 \in \Lambda_j$ are parents.

The sibling of a frequency is never its spouse.

Besides nuclear families, Λ contains no other rectangles.

The function $n \mapsto -a_n(0)$ is constant on each generation Λ_j.
Imagine we build a resonant $\Lambda \subset \mathbb{Z}^2$ such that...

Imagine a resonant-closed $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_M$ with properties.
Imagine we build a resonant $\Lambda \subset \mathbb{Z}^2$ such that...

Imagine a resonant-closed $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_M$ with properties. Define a nuclear family to be a rectangle (n_1, n_2, n_3, n_4) where the frequencies n_1, n_3 (the 'parents') live in generation Λ_j and n_2, n_4 ('children') live in generation Λ_{j+1}.
Imagine we build a resonant $\Lambda \subset \mathbb{Z}^2$ such that...

Imagine a resonant-closed $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_M$ with properties. Define a **nuclear family** to be a rectangle (n_1, n_2, n_3, n_4) where the frequencies n_1, n_3 (the 'parents') live in generation Λ_j and n_2, n_4 ('children') live in generation Λ_{j+1}.

- $\forall \ 1 \leq j < M$ and $\forall \ n_1 \in \Lambda_j \ \exists$ unique nuclear family such that $n_1, n_3 \in \Lambda_j$ are parents and $n_2, n_4 \in \Lambda_{j+1}$ are children.

Besides nuclear families, Λ contains no other rectangles. The function $n \mapsto \vec{a}_n(0)$ is constant on each generation Λ_j.
Imagine we build a resonant $\Lambda \subset \mathbb{Z}^2$ such that...

Imagine a resonant-closed $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_M$ with properties.

Define a nuclear family to be a rectangle (n_1, n_2, n_3, n_4) where the frequencies n_1, n_3 (the 'parents') live in generation Λ_j and n_2, n_4 ('children') live in generation Λ_{j+1}.

- $\forall \ 1 \leq j < M$ and $\forall \ n_1 \in \Lambda_j \ \exists$ unique nuclear family such that $n_1, n_3 \in \Lambda_j$ are parents and $n_2, n_4 \in \Lambda_{j+1}$ are children.
- $\forall \ 1 \leq j < M$ and $\forall \ n_2 \in \Lambda_{j+1} \ \exists$ unique nuclear family such that $n_2, n_4 \in \Lambda_{j+1}$ are children and $n_1, n_3 \in \Lambda_j$ are parents.

Besides nuclear families, Λ contains no other rectangles.

The function $n \mapsto a(n(0))$ is constant on each generation Λ_j.
Imagine we build a resonant $\Lambda \subset \mathbb{Z}^2$ such that...

Imagine a resonant-closed $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_M$ with properties.

Define a nuclear family to be a rectangle (n_1, n_2, n_3, n_4) where the frequencies n_1, n_3 (the 'parents') live in generation Λ_j and n_2, n_4 ('children') live in generation Λ_{j+1}.

- $\forall 1 \leq j < M$ and $\forall n_1 \in \Lambda_j \exists$ unique nuclear family such that $n_1, n_3 \in \Lambda_j$ are parents and $n_2, n_4 \in \Lambda_{j+1}$ are children.
- $\forall 1 \leq j < M$ and $\forall n_2 \in \Lambda_{j+1} \exists$ unique nuclear family such that $n_2, n_4 \in \Lambda_{j+1}$ are children and $n_1, n_3 \in \Lambda_j$ are parents.
- The sibling of a frequency is never its spouse.

Besides nuclear families, Λ contains no other rectangles.

The function $n \mapsto \overrightarrow{a}_n(0)$ is constant on each generation Λ_j.

Imagine we build a resonant $\Lambda \subset \mathbb{Z}^2$ such that...

Imagine a resonant-closed $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_M$ with properties. Define a **nuclear family** to be a rectangle (n_1, n_2, n_3, n_4) where the frequencies n_1, n_3 (the 'parents') live in generation Λ_j and n_2, n_4 ('children') live in generation Λ_{j+1}.

- $\forall 1 \leq j < M$ and $\forall n_1 \in \Lambda_j \ \exists$ unique nuclear family such that $n_1, n_3 \in \Lambda_j$ are parents and $n_2, n_4 \in \Lambda_{j+1}$ are children.
- $\forall 1 \leq j < M$ and $\forall n_2 \in \Lambda_{j+1} \ \exists$ unique nuclear family such that $n_2, n_4 \in \Lambda_{j+1}$ are children and $n_1, n_3 \in \Lambda_j$ are parents.
- The sibling of a frequency is never its spouse.
- Besides nuclear families, Λ contains no other rectangles.
Imagine we build a resonant $\Lambda \subset \mathbb{Z}^2$ such that...

Imagine a resonant-closed $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_M$ with properties. Define a nuclear family to be a rectangle (n_1, n_2, n_3, n_4) where the frequencies n_1, n_3 (the 'parents') live in generation Λ_j and n_2, n_4 ('children') live in generation Λ_{j+1}.

- $\forall 1 \leq j < M$ and $\forall n_1 \in \Lambda_j$ there exists a unique nuclear family such that $n_1, n_3 \in \Lambda_j$ are parents and $n_2, n_4 \in \Lambda_{j+1}$ are children.
- $\forall 1 \leq j < M$ and $\forall n_2 \in \Lambda_{j+1}$ there exists a unique nuclear family such that $n_2, n_4 \in \Lambda_{j+1}$ are children and $n_1, n_3 \in \Lambda_j$ are parents.

- The sibling of a frequency is never its spouse.
- Besides nuclear families, Λ contains no other rectangles.
- The function $n \mapsto a_n(0)$ is constant on each generation Λ_j.
The toy model ODE

Assume we can construct such a $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_M$. The properties imply $RFNLS_{\Lambda}$ simplifies to the toy model ODE:

$$i \partial_t b_j(t) = |b_j(t)|^2 b_j(t) - 2b_j(t) - 2b_{j-1}(t) - 2b_{j+1}(t).$$

$L_2 \sim \sum_j |b_j(t)|^2 = \sum_j |b_j(0)|^2 S$. We also want $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_M$ to satisfy

$$\sum_{n \in \Lambda_M} |n|^2 S \gg \sum_{n \in \Lambda_1} |n|^2 S.$$
The toy model ODE

Assume we can construct such a $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_M$. The properties imply $RFNLS_\Lambda$ simplifies to the toy model ODE

$$i\partial_t b_j(t) = |b_j(t)|^2 b_j(t) - 2b_{j-1}(t)^2\overline{b_j}(t) - 2b_{j+1}(t)^2\overline{b_j}(t).$$
The toy model ODE

Assume we can construct such a $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_M$. The properties imply $R\mathcal{F}NLS_\Lambda$ simplifies to the toy model ODE

$$i\partial_t b_j(t) = |b_j(t)|^2 b_j(t) - 2b_{j-1}(t)^2 \overline{b_j(t)} - 2b_{j+1}(t)^2 \overline{b_j(t)}.$$

$$L^2 \sim \sum_j |b_j(t)|^2 = \sum_j |b_j(0)|^2$$
The toy model ODE

Assume we can construct such a $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_M$. The properties imply $R\mathcal{F}NLS_\Lambda$ simplifies to the toy model ODE

$$i\partial_t b_j(t) = |b_j(t)|^2 b_j(t) - 2b_{j-1}(t)^2 \overline{b}_j(t) - 2b_{j+1}(t)^2 \overline{b}_j(t).$$

$$L^2 \sim \sum_j |b_j(t)|^2 = \sum_j |b_j(0)|^2$$

$$H^s \sim \sum_j |b_j(t)|^2 \left(\sum_{n \in \Lambda_j} |n|^{2s} \right).$$
The toy model ODE

Assume we can construct such a $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_M$. The properties imply $R\mathcal{F}NLS_\Lambda$ simplifies to the toy model ODE

$$i\partial_t b_j(t) = |b_j(t)|^2 b_j(t) - 2b_{j-1}(t)^2\overline{b_j(t)} - 2b_{j+1}(t)^2\overline{b_j(t)}.$$

$$L^2 \sim \sum_j |b_j(t)|^2 = \sum_j |b_j(0)|^2$$

$$H^s \sim \sum_j |b_j(t)|^2 (\sum_{n\in\Lambda_j} |n|^{2s}).$$

We also want $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_M$ to satisfy

$$\sum_{n\in\Lambda_M} |n|^{2s} \gg \sum_{n\in\Lambda_1} |n|^{2s}.$$
Toy model travelling wave solution

Using dynamical systems methods, we construct a Toy Model ODE evolution \(b_j(0) \mapsto b_j(t) \) such that:

\[
(b_1(0), b_2(0), \ldots, b_M(0)) \sim (1, 0, \ldots, 0) \quad \text{and} \quad (b_1(t_2), b_2(t_2), \ldots, b_M(t_2)) \sim (0, 1, \ldots, 0) \quad \text{for } t_2 = \ldots.
\]

Bulk of conserved mass is transferred from \(\Lambda_1 \) to \(\Lambda_M \).

Weak turbulence follows, provided we can construct such a \(\Lambda \).
Using dynamical systems methods, we construct a Toy Model ODE evolution $b_j(0) \mapsto b_j(t)$ such that:
Using dynamical systems methods, we construct a Toy Model ODE evolution $b_j(0) \mapsto b_j(t)$ such that:

$$(b_1(0), b_2(0), \ldots, b_M(0)) \sim (1, 0, \ldots, 0)$$

Bulk of conserved mass is transferred from Λ_1 to Λ_M. Weak turbulence follows, provided we can construct such a Λ.
Using dynamical systems methods, we construct a Toy Model ODE evolution $b_j(0) \mapsto b_j(t)$ such that:

$$(b_1(0), b_2(0), \ldots, b_M(0)) \sim (1, 0, \ldots, 0)$$
$$(b_1(t_2), b_2(t_2), \ldots, b_M(t_2)) \sim (0, 1, \ldots, 0)$$

Bulk of conserved mass is transferred from Λ_1 to Λ_M. Weak turbulence follows, provided we can construct such a Λ.

Toy model travelling wave solution
Using dynamical systems methods, we construct a Toy Model ODE evolution $b_j(0) \mapsto b_j(t)$ such that:

\[(b_1(0), b_2(0), \ldots, b_M(0)) \sim (1, 0, \ldots, 0)\]
\[(b_1(t_2), b_2(t_2), \ldots, b_M(t_2)) \sim (0, 1, \ldots, 0)\]
\[
\vdots
\]
\[
\vdots
\]

Bulk of conserved mass is transferred from Λ_1 to Λ_M. Weak turbulence follows, provided we can construct such a Λ.

Toy model travelling wave solution
Using dynamical systems methods, we construct a Toy Model ODE evolution $b_j(0) \mapsto b_j(t)$ such that:

$$(b_1(0), b_2(0), \ldots, b_M(0)) \sim (1, 0, \ldots, 0)$$

$$(b_1(t_2), b_2(t_2), \ldots, b_M(t_2)) \sim (0, 1, \ldots, 0)$$

$$\ldots$$

$$(b_1(t_M), b_2(t_M), \ldots, b_M(t_M)) \sim (0, 0, \ldots, 1)$$
Using dynamical systems methods, we construct a Toy Model ODE evolution $b_j(0) \mapsto b_j(t)$ such that:

\[
(b_1(0), b_2(0), \ldots, b_M(0)) \sim (1, 0, \ldots, 0) \\
(b_1(t_2), b_2(t_2), \ldots, b_M(t_2)) \sim (0, 1, \ldots, 0) \\
\vdots \\
(b_1(t_M), b_2(t_M), \ldots, b_M(t_M)) \sim (0, 0, \ldots, 1)
\]

Bulk of conserved mass is transferred from Λ_1 to Λ_M. Weak turbulence follows, provided we can construct such a Λ.
Combinatorial construction of \(\Lambda \subset \mathbb{Z}^2 \)
Combinatorial construction of $\Lambda \subset \mathbb{Z}^2$