Weak Turbulence for NLS

J. Colliander
University of Toronto

ICMP, Rio De Janeiro

1 Weak Turbulence for NLS

2 Overview of proof

- Resonant finite dimensional truncations approximate NLS
- Imagine we build a resonant $\Lambda \subset \mathbb{Z}^{2}$ such that...
- ...we get a low \rightarrow high frequency travelling wave across \wedge
- Combinatorial construction of $\Lambda \subset \mathbb{Z}^{2}$ such that...

3 Remarks

Defocusing cubic Nonlinear Schrödinger on \mathbb{T}^{2}

Defocusing cubic Nonlinear Schrödinger on \mathbb{T}^{2}

Consider the initial value problem:

$$
\left\{\begin{array}{l}
i \partial_{t} u+\Delta u=|u|^{2} u \tag{NLS}\\
\quad u(0, x)=u_{0}(x), \quad x \in \mathbb{T}^{2} .
\end{array}\right.
$$

Defocusing cubic Nonlinear Schrödinger on \mathbb{T}^{2}

Consider the initial value problem:

$$
\left\{\begin{array}{l}
i \partial_{t} u+\Delta u=|u|^{2} u \tag{NLS}\\
\quad u(0, x)=u_{0}(x), \quad x \in \mathbb{T}^{2} .
\end{array}\right.
$$

Defocusing cubic Nonlinear Schrödinger on \mathbb{T}^{2}

Consider the initial value problem:

$$
\left\{\begin{array}{l}
i \partial_{t} u+\Delta u=|u|^{2} u \tag{NLS}\\
\quad u(0, x)=u_{0}(x), \quad x \in \mathbb{T}^{2} .
\end{array}\right.
$$

- Local-in-time well-posedness (LWP) is known for $u_{0} \in H^{s}, s>0$. [Bourgain 1993]

Defocusing cubic Nonlinear Schrödinger on \mathbb{T}^{2}

Consider the initial value problem:

$$
\left\{\begin{array}{l}
i \partial_{t} u+\Delta u=|u|^{2} u \tag{NLS}\\
\quad u(0, x)=u_{0}(x), \quad x \in \mathbb{T}^{2} .
\end{array}\right.
$$

- Local-in-time well-posedness (LWP) is known for $u_{0} \in H^{s}, s>0$. [Bourgain 1993]
- Time Invariant Quantities:

$$
\begin{aligned}
\text { Mass } & =\|u(t)\|_{L_{x}^{2}} . \\
\text { Hamiltonian } & =\int_{T^{2}}|\nabla u(t)|^{2} d x+\frac{1}{2}|u(t)|^{4} d x .
\end{aligned}
$$

Defocusing cubic Nonlinear Schrödinger on \mathbb{T}^{2}

Consider the initial value problem:

$$
\left\{\begin{array}{l}
i \partial_{t} u+\Delta u=|u|^{2} u \tag{NLS}\\
\quad u(0, x)=u_{0}(x), \quad x \in \mathbb{T}^{2} .
\end{array}\right.
$$

- Local-in-time well-posedness (LWP) is known for $u_{0} \in H^{s}, s>0$. [Bourgain 1993]
- Time Invariant Quantities:

$$
\begin{aligned}
\text { Mass } & =\|u(t)\|_{L_{x}^{2}} . \\
\text { Hamiltonian } & =\int_{T^{2}}|\nabla u(t)|^{2} d x+\frac{1}{2}|u(t)|^{4} d x .
\end{aligned}
$$

- Global-in-time well-posedness is known for $u_{0} \in H^{s}, s>\frac{2}{3}$.
[De Silva, Pavlovic, Staffilani, Tzirakis 2006]

What happens to smooth solutions?

What happens to smooth solutions?

Suppose $u_{0} \in H^{s}\left(\mathbb{T}^{2}\right)$ for $s>1$. What happens to $\|u(t)\|_{H^{s}}$?

What happens to smooth solutions?

Suppose $u_{0} \in H^{s}\left(\mathbb{T}^{2}\right)$ for $s>1$. What happens to $\|u(t)\|_{H^{s}}$? Recall that $\|f\|_{H_{x}^{s}}=\left\|(1+|\xi|)^{s} \widehat{f}(\xi)\right\|_{L_{\xi}^{2}}$.

What happens to smooth solutions?

Suppose $u_{0} \in H^{s}\left(\mathbb{T}^{2}\right)$ for $s>1$. What happens to $\|u(t)\|_{H^{s}}$? Recall that $\|f\|_{H_{x}^{s}}=\left\|(1+|\xi|)^{s} \widehat{f}(\xi)\right\|_{L_{\xi}^{2}}$.
$■ \operatorname{LWP} \Longrightarrow\|u(t)\|_{H^{s}} \lesssim e^{C t}$.

What happens to smooth solutions?

Suppose $u_{0} \in H^{s}\left(\mathbb{T}^{2}\right)$ for $s>1$. What happens to $\|u(t)\|_{H^{s}}$? Recall that $\|f\|_{H_{x}^{s}}=\left\|(1+|\xi|)^{s} \widehat{f}(\xi)\right\|_{L_{\xi}^{2}}$.

- LWP $\Longrightarrow\|u(t)\|_{H^{s}} \lesssim e^{C t}$.
- LWP + Dispersive Smoothing $\Longrightarrow\|u(t)\|_{H^{s}} \lesssim(1+|t|)^{\alpha(s)}$. [Bourgain 1996, Staffilani 1998]

What happens to smooth solutions?

Suppose $u_{0} \in H^{s}\left(\mathbb{T}^{2}\right)$ for $s>1$. What happens to $\|u(t)\|_{H^{s}}$? Recall that $\|f\|_{H_{x}^{s}}=\left\|(1+|\xi|)^{s} \widehat{f}(\xi)\right\|_{L_{\xi}^{2}}$.

- LWP $\Longrightarrow\|u(t)\|_{H^{s}} \lesssim e^{C t}$.

■ LWP + Dispersive Smoothing $\Longrightarrow\|u(t)\|_{H^{s}} \lesssim(1+|t|)^{\alpha(s)}$. [Bourgain 1996, Staffilani 1998]

- Weak Turbulence Conjecture:
\exists solutions with $\|u(t)\|_{H^{s}} \nearrow \infty$ as $t \nearrow \infty$?

What happens to smooth solutions?

Suppose $u_{0} \in H^{s}\left(\mathbb{T}^{2}\right)$ for $s>1$. What happens to $\|u(t)\|_{H^{s}}$? Recall that $\|f\|_{H_{x}^{s}}=\left\|(1+|\xi|)^{s} \widehat{f}(\xi)\right\|_{L_{\xi}^{2}}$.

- LWP $\Longrightarrow\|u(t)\|_{H^{s}} \lesssim e^{C t}$.

■ LWP + Dispersive Smoothing $\Longrightarrow\|u(t)\|_{H^{s}} \lesssim(1+|t|)^{\alpha(s)}$. [Bourgain 1996, Staffilani 1998]

- Weak Turbulence Conjecture:
\exists solutions with $\|u(t)\|_{H^{s}} \nearrow \infty$ as $t \nearrow \infty$?

What happens To smooth solutions?

Suppose $u_{0} \in H^{s}\left(\mathbb{T}^{2}\right)$ for $s>1$. What happens to $\|u(t)\|_{H^{s}}$? Recall that $\|f\|_{H_{x}^{s}}=\left\|(1+|\xi|)^{s} \widehat{f}(\xi)\right\|_{L_{\xi}^{2}}$.

- LWP $\Longrightarrow\|u(t)\|_{H^{s}} \lesssim e^{C t}$.

■ LWP + Dispersive Smoothing $\Longrightarrow\|u(t)\|_{H^{s}} \lesssim(1+|t|)^{\alpha(s)}$. [Bourgain 1996, Staffilani 1998]

- Weak Turbulence Conjecture:
\exists solutions with $\|u(t)\|_{H^{s}} \nearrow \infty$ as $t \nearrow \infty$?
Does the conserved mass stay put in frequency space or does it cascade up to high frequencies?
(VERY) WEAK TURBULENCE RESULT
(VERY) WEAK TURBULENCE RESULT

Theorem (C-Keel-Staffilini-TAKaOka-Tao)

(Very) weak turbulence result

Theorem (C-Keel-Staffilini-Takaoka-Tao)
Given $s>1, \epsilon \ll 1, K \gg 1$,

(VERY) WEAK TURBULENCE RESULT

Theorem (C-Keel-Staffilini-Takaoka-Tao)
Given $s>1, \epsilon \ll 1, K \gg 1$,
\exists smooth solution $u(t)$ of NLS and a time T such that

(Very) weak turbulence result

Theorem (C-Keel-Staffilini-Takaoka-Tao)
Given $s>1, \epsilon \ll 1, K \gg 1$,
\exists smooth solution $u(t)$ of NLS and a time T such that

$$
\|u(0)\|_{H^{s}} \leq \epsilon
$$

(Very) weak turbulence result

Theorem (C-Keel-Staffilini-Takaoka-Tao)

Given $s>1, \epsilon \ll 1, K \gg 1$,
\exists smooth solution $u(t)$ of NLS and a time T such that

$$
\begin{gathered}
\|u(0)\|_{H^{s}} \leq \epsilon \\
\|u(T)\|_{H^{s}} \geq K
\end{gathered}
$$

(Very) weak turbulence result

Theorem (C-Keel-Staffilini-Takaoka-Tao)

Given $s>1, \epsilon \ll 1, K \gg 1$,
\exists smooth solution $u(t)$ of NLS and a time T such that

$$
\begin{gathered}
\|u(0)\|_{H^{s}} \leq \epsilon \\
\|u(T)\|_{H^{s}} \geq K
\end{gathered}
$$

Overview of proof:

Preliminary Reductions

Preliminary Reductions

■ Gauge Freedom:

Preliminary Reductions

- Gauge Freedom:

If u solves NLS then $v(t, x)=e^{-i 2 G t} u(t, x)$ solves

$$
\left\{\begin{array}{c}
i \partial_{t} v+\Delta v=\left(2 G+|v|^{2}\right) v \tag{G}\\
v(0, x)=v_{0}(x), \quad x \in \mathbb{T}^{2} .
\end{array}\right.
$$

Preliminary Reductions

- Gauge Freedom:

If u solves NLS then $v(t, x)=e^{-i 2 G t} u(t, x)$ solves

$$
\left\{\begin{array}{cl}
i \partial_{t} v+\Delta v=\left(2 G+|v|^{2}\right) v \tag{G}\\
v(0, x)=v_{0}(x), & x \in \mathbb{T}^{2} .
\end{array}\right.
$$

■ Fourier Ansatz:

Preliminary Reductions

- Gauge Freedom:

If u solves NLS then $v(t, x)=e^{-i 2 G t} u(t, x)$ solves

$$
\left\{\begin{array}{c}
i \partial_{t} v+\Delta v=\left(2 G+|v|^{2}\right) v \tag{G}\\
v(0, x)=v_{0}(x), \quad x \in \mathbb{T}^{2} .
\end{array}\right.
$$

■ Fourier Ansatz: Recast the dynamics in Fourier coefficients,

$$
v(t, x)=\sum_{n \in \mathbb{Z}^{2}} a_{n}(t) e^{i\left(n \cdot x+|n|^{2} t\right)}
$$

Preliminary Reductions

- Gauge Freedom:

If u solves NLS then $v(t, x)=e^{-i 2 G t} u(t, x)$ solves

$$
\left\{\begin{array}{c}
i \partial_{t} v+\Delta v=\left(2 G+|v|^{2}\right) v \tag{G}\\
v(0, x)=v_{0}(x), \quad x \in \mathbb{T}^{2} .
\end{array}\right.
$$

■ Fourier Ansatz: Recast the dynamics in Fourier coefficients,

$$
v(t, x)=\sum_{n \in \mathbb{Z}^{2}} a_{n}(t) e^{i\left(n \cdot x+|n|^{2} t\right)}
$$

$$
\left\{\begin{array}{cc}
i \partial_{t} a_{n}=2 G a_{n}+\sum_{\substack{n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2}}} a_{n_{1}} \bar{a}_{n_{2}} a_{n_{3}} e^{i \omega_{4} t} & \\
n_{1}-n_{2}+n_{3}=n & \\
a_{n}(0)=\widehat{u_{0}}(n), & n \in \mathbb{Z}^{2} . \\
& \left(\mathcal{F} N L S_{G}\right)
\end{array}\right.
$$

Preliminary Reductions

Preliminary Reductions

- Diagonal decomposition of sum:

Preliminary Reductions

- Diagonal decomposition of sum:

$$
\begin{array}{ccc}
\sum & = & \sum_{\substack{ \\
n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\
n_{1}-n_{2}+n_{3}=n}} \\
& n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} & \\
n_{1}-n_{2}+n_{3}=n & n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\
n \neq n_{1}, n_{3} & & n=n_{2}+n_{3}=n \\
& \sum_{n} & - \\
& n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} & n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\
& n_{1}-n_{2}+n_{3}=n & n_{1}-n_{2}+n_{3}=n \\
& n=n_{3} & n=n_{1}=n_{3}
\end{array}
$$

Preliminary Reductions

■ Diagonal decomposition of sum:

$$
\begin{array}{ccc}
\sum & = & \sum \\
n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} & & \sum_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\
n_{1}-n_{2}+n_{3}=n & n_{1}-n_{2}+n_{3}=n & n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\
n \neq n_{1}, n_{3} & & n=n_{2}+n_{3}=n \\
+ & \sum & \sum_{1} \\
& & n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\
n_{1}-n_{2}+n_{3}=n & n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\
& n=n_{1}-n_{2}+n_{3}=n \\
& & n=n_{1}=n_{3}
\end{array}
$$

- Choice of G :

Preliminary Reductions

- Diagonal decomposition of sum:

$$
\begin{array}{ccc}
\sum & = & \sum \\
n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\
n_{1}-n_{2}+n_{3}=n & & n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\
n_{1}-n_{2}+n_{3}=n & n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\
& n \neq n_{1}, n_{3} & \\
+ & \sum & n=n_{2}+n_{3}=n \\
& & n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\
& n_{1}-n_{2}+n_{3}=n & n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\
& n=n_{1}-n_{2}+n_{3}=n \\
& & n=n_{1}=n_{3}
\end{array}
$$

- Choice of G :

$$
G=-\left\|u_{0}\right\|_{L^{2}}^{2} .
$$

Resonant truncation

Resonant truncation

- NLS dynamic is recast as

Resonant truncation

- NLS dynamic is recast as

$$
-i \partial_{t} a_{n}=-a_{n}\left|a_{n}\right|^{2}+\sum_{n_{1}, n_{2}, n_{3} \in \Gamma(n)} a_{n_{1}} \bar{a}_{n_{2}} a_{n_{3}} e^{i \omega_{4} t} . \quad(\mathcal{F N L S})
$$

Resonant truncation

- NLS dynamic is recast as

$$
\begin{equation*}
-i \partial_{t} a_{n}=-a_{n}\left|a_{n}\right|^{2}+\sum_{n_{1}, n_{2}, n_{3} \in \Gamma(n)} a_{n_{1}} \bar{a}_{n_{2}} a_{n_{3}} e^{i \omega_{4} t} \tag{FNLS}
\end{equation*}
$$

where

$$
\Gamma(n)=\left\{n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2}: n_{1}-n_{2}+n_{3}=n, n_{1} \neq n, n_{3} \neq n\right\} .
$$

Resonant truncation

- NLS dynamic is recast as

$$
-i \partial_{t} a_{n}=-a_{n}\left|a_{n}\right|^{2}+\sum_{n_{1}, n_{2}, n_{3} \in \Gamma(n)} a_{n_{1}} \bar{a}_{n_{2}} a_{n_{3}} e^{i \omega_{4} t} . \quad \text { (FNLS) }
$$

where

$$
\Gamma(n)=\left\{n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2}: n_{1}-n_{2}+n_{3}=n, n_{1} \neq n, n_{3} \neq n\right\} .
$$

$$
\Gamma_{r e s}(n)=\left\{n_{1}, n_{2}, n_{3} \in \Gamma(n): \omega_{4}=0\right\}
$$

Resonant truncation

- NLS dynamic is recast as

$$
-i \partial_{t} a_{n}=-a_{n}\left|a_{n}\right|^{2}+\sum_{n_{1}, n_{2}, n_{3} \in \Gamma(n)} a_{n_{1}} \bar{a}_{n_{2}} a_{n_{3}} e^{i \omega_{4} t} . \quad(\mathcal{F} N L S)
$$

where

$$
\Gamma(n)=\left\{n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2}: n_{1}-n_{2}+n_{3}=n, n_{1} \neq n, n_{3} \neq n\right\} .
$$

$$
\begin{aligned}
\Gamma_{\text {res }}(n) & =\left\{n_{1}, n_{2}, n_{3} \in \Gamma(n): \omega_{4}=0\right\} \\
& =\left\{\text { Triples }\left(n_{1}, n_{2}, n_{3}\right):\left(n_{1}, n_{2}, n_{3}, n_{4}\right) \text { is a rectangle }\right\}
\end{aligned}
$$

Resonant truncation

- NLS dynamic is recast as

$$
-i \partial_{t} a_{n}=-a_{n}\left|a_{n}\right|^{2}+\sum_{n_{1}, n_{2}, n_{3} \in \Gamma(n)} a_{n_{1}} \bar{a}_{n_{2}} a_{n_{3}} e^{i \omega_{4} t} . \quad(\mathcal{F} N L S)
$$

where

$$
\Gamma(n)=\left\{n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2}: n_{1}-n_{2}+n_{3}=n, n_{1} \neq n, n_{3} \neq n\right\} .
$$

$$
\begin{aligned}
\Gamma_{\text {res }}(n) & =\left\{n_{1}, n_{2}, n_{3} \in \Gamma(n): \omega_{4}=0\right\} . \\
& =\left\{\text { Triples }\left(n_{1}, n_{2}, n_{3}\right):\left(n_{1}, n_{2}, n_{3}, n_{4}\right) \text { is a rectangle }\right\}
\end{aligned}
$$

- The resonant truncation of $\mathcal{F} N L S$ is

$$
-i \partial_{t} b_{n}=-b_{n}\left|b_{n}\right|^{2}+\sum_{n_{1}, n_{2}, n_{3} \in \Gamma_{r e s}(n)} b_{n_{1}} \bar{b}_{n_{2}} b_{n_{3}} . \quad(R \mathcal{F} N L S)
$$

Finite dimensional Resonant truncation

Finite dimensional Resonant Truncation

- A set $\Lambda \subset \mathbb{Z}^{2}$ is closed under resonant interactions if

$$
n_{1}, n_{2}, n_{3} \in \Gamma_{r e s}(n), n_{1}, n_{2}, n_{3} \in \Lambda \Longrightarrow n \in \Lambda
$$

Finite dimensional Resonant TRUNCATION

- A set $\Lambda \subset \mathbb{Z}^{2}$ is closed under resonant interactions if

$$
n_{1}, n_{2}, n_{3} \in \Gamma_{r e s}(n), n_{1}, n_{2}, n_{3} \in \Lambda \Longrightarrow n \in \Lambda
$$

- A finite dimensional resonant truncation of $\mathcal{F} N L S$ is

$$
-i \partial_{t} b_{n}=-b_{n}\left|b_{n}\right|^{2}+\sum_{n_{1}, n_{2}, n_{3} \in \Gamma_{\text {res }}(n) \cap \Lambda^{3}} b_{n_{1}} \bar{b}_{n_{2}} b_{n_{3}} .\left(R \mathcal{F} N L S_{\Lambda}\right)
$$

Finite dimensional Resonant TRUNCATION

- A set $\Lambda \subset \mathbb{Z}^{2}$ is closed under resonant interactions if

$$
n_{1}, n_{2}, n_{3} \in \Gamma_{r e s}(n), n_{1}, n_{2}, n_{3} \in \Lambda \Longrightarrow n \in \Lambda .
$$

- A finite dimensional resonant truncation of $\mathcal{F} N L S$ is

$$
-i \partial_{t} b_{n}=-b_{n}\left|b_{n}\right|^{2}+\sum_{n_{1}, n_{2}, n_{3} \in \Gamma_{\text {res }}(n) \cap \Lambda^{3}} b_{n_{1}} \bar{b}_{n_{2}} b_{n_{3}} .\left(R \mathcal{F} N L S_{\Lambda}\right)
$$

- \forall resonant-closed finite $\Lambda \subset \mathbb{Z}^{2} R \mathcal{F} N L S_{\Lambda}$ is an ODE.

Finite dimensional Resonant truncation

- A set $\Lambda \subset \mathbb{Z}^{2}$ is closed under resonant interactions if

$$
n_{1}, n_{2}, n_{3} \in \Gamma_{\text {res }}(n), n_{1}, n_{2}, n_{3} \in \Lambda \Longrightarrow n \in \Lambda .
$$

- A finite dimensional resonant truncation of $\mathcal{F} N L S$ is

$$
-i \partial_{t} b_{n}=-b_{n}\left|b_{n}\right|^{2}+\sum_{n_{1}, n_{2}, n_{3} \in \Gamma_{\text {res }}(n) \cap \Lambda^{3}} b_{n_{1}} \bar{b}_{n_{2}} b_{n_{3}} .\left(R \mathcal{F} N L S_{\Lambda}\right)
$$

- \forall resonant-closed finite $\Lambda \subset \mathbb{Z}^{2} R \mathcal{F} N L S_{\Lambda}$ is an ODE.
- If $\operatorname{spt}\left(a_{n}(0)\right) \subset \Lambda$ then $\mathcal{F} N L S$-evolution $a_{n}(0) \longmapsto a_{n}(t)$ is nicely approximated by $R \mathcal{F} N L S_{\Lambda}-$ ODE $a_{n}(0) \longmapsto b_{n}(t)$.

Finite dimensional Resonant truncation

- A set $\Lambda \subset \mathbb{Z}^{2}$ is closed under resonant interactions if

$$
n_{1}, n_{2}, n_{3} \in \Gamma_{\text {res }}(n), n_{1}, n_{2}, n_{3} \in \Lambda \Longrightarrow n \in \Lambda .
$$

- A finite dimensional resonant truncation of $\mathcal{F} N L S$ is

$$
-i \partial_{t} b_{n}=-b_{n}\left|b_{n}\right|^{2}+\sum_{n_{1}, n_{2}, n_{3} \in \Gamma_{\text {res }}(n) \cap \Lambda^{3}} b_{n_{1}} \bar{b}_{n_{2}} b_{n_{3}} .\left(R \mathcal{F} N L S_{\Lambda}\right)
$$

- \forall resonant-closed finite $\Lambda \subset \mathbb{Z}^{2} R \mathcal{F} N L S_{\Lambda}$ is an ODE.
- If $\operatorname{spt}\left(a_{n}(0)\right) \subset \Lambda$ then $\mathcal{F} N L S$-evolution $a_{n}(0) \longmapsto a_{n}(t)$ is nicely approximated by $R \mathcal{F} N L S_{\Lambda}-$ ODE $a_{n}(0) \longmapsto b_{n}(t)$.
■ Given ϵ, s, K, build Λ so that $R \mathcal{F} N L S_{\Lambda}$ has weak turbulence.

Resonant finite dimensional truncations

 approximate NLS

Imagine we build a resonant $\wedge \subset \mathbb{Z}^{2}$ such that...

Imagine we build a resonant $\Lambda \subset \mathbb{Z}^{2}$ SUCH that...

Imagine a resonant-closed $\Lambda=\Lambda_{1} \cup \cdots \cup \Lambda_{M}$ with properties.

Imagine we build a resonant $\Lambda \subset \mathbb{Z}^{2}$ SUCH That...

Imagine a resonant-closed $\Lambda=\Lambda_{1} \cup \cdots \cup \Lambda_{M}$ with properties.
Define a nuclear family to be a rectangle ($n_{1}, n_{2}, n_{3}, n_{4}$) where the frequencies n_{1}, n_{3} (the 'parents') live in generation Λ_{j} and n_{2}, n_{4} ('children') live in generation Λ_{j+1}.

Imagine we build a resonant $\Lambda \subset \mathbb{Z}^{2}$ SUCH That...

Imagine a resonant-closed $\Lambda=\Lambda_{1} \cup \cdots \cup \Lambda_{M}$ with properties.
Define a nuclear family to be a rectangle ($n_{1}, n_{2}, n_{3}, n_{4}$) where the frequencies n_{1}, n_{3} (the 'parents') live in generation Λ_{j} and n_{2}, n_{4} ('children') live in generation Λ_{j+1}.

■ $\forall 1 \leq j<M$ and $\forall n_{1} \in \Lambda_{j} \exists$ unique nuclear family such that $n_{1}, n_{3} \in \Lambda_{j}$ are parents and $n_{2}, n_{4} \in \Lambda_{j+1}$ are children.

Imagine we build a resonant $\Lambda \subset \mathbb{Z}^{2}$ SUCH That...

Imagine a resonant-closed $\Lambda=\Lambda_{1} \cup \cdots \cup \Lambda_{M}$ with properties.
Define a nuclear family to be a rectangle $\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ where the frequencies n_{1}, n_{3} (the 'parents') live in generation Λ_{j} and n_{2}, n_{4} ('children') live in generation Λ_{j+1}.

■ $\forall 1 \leq j<M$ and $\forall n_{1} \in \Lambda_{j} \exists$ unique nuclear family such that $n_{1}, n_{3} \in \Lambda_{j}$ are parents and $n_{2}, n_{4} \in \Lambda_{j+1}$ are children.

- $\forall 1 \leq j<M$ and $\forall n_{2} \in \Lambda_{j+1} \exists$ unique nuclear family such that $n_{2}, n_{4} \in \Lambda_{j+1}$ are children and $n_{1}, n_{3} \in \Lambda_{j}$ are parents.

Imagine we build a resonant $\Lambda \subset \mathbb{Z}^{2}$ SUCH That...

Imagine a resonant-closed $\Lambda=\Lambda_{1} \cup \cdots \cup \Lambda_{M}$ with properties.
Define a nuclear family to be a rectangle ($n_{1}, n_{2}, n_{3}, n_{4}$) where the frequencies n_{1}, n_{3} (the 'parents') live in generation Λ_{j} and n_{2}, n_{4} ('children') live in generation Λ_{j+1}.

■ $\forall 1 \leq j<M$ and $\forall n_{1} \in \Lambda_{j} \exists$ unique nuclear family such that $n_{1}, n_{3} \in \Lambda_{j}$ are parents and $n_{2}, n_{4} \in \Lambda_{j+1}$ are children.

- $\forall 1 \leq j<M$ and $\forall n_{2} \in \Lambda_{j+1} \exists$ unique nuclear family such that $n_{2}, n_{4} \in \Lambda_{j+1}$ are children and $n_{1}, n_{3} \in \Lambda_{j}$ are parents.
- The sibling of a frequency is never its spouse.

Imagine we build a resonant $\Lambda \subset \mathbb{Z}^{2}$ SUCh that...

Imagine a resonant-closed $\Lambda=\Lambda_{1} \cup \cdots \cup \Lambda_{M}$ with properties.
Define a nuclear family to be a rectangle $\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ where the frequencies n_{1}, n_{3} (the 'parents') live in generation Λ_{j} and n_{2}, n_{4} ('children') live in generation Λ_{j+1}.

■ $\forall 1 \leq j<M$ and $\forall n_{1} \in \Lambda_{j} \exists$ unique nuclear family such that $n_{1}, n_{3} \in \Lambda_{j}$ are parents and $n_{2}, n_{4} \in \Lambda_{j+1}$ are children.

- $\forall 1 \leq j<M$ and $\forall n_{2} \in \Lambda_{j+1} \exists$ unique nuclear family such that $n_{2}, n_{4} \in \Lambda_{j+1}$ are children and $n_{1}, n_{3} \in \Lambda_{j}$ are parents.
- The sibling of a frequency is never its spouse.

■ Besides nuclear families, Λ contains no other rectangles.

Imagine we build a resonant $\Lambda \subset \mathbb{Z}^{2}$ SUCh that...

Imagine a resonant-closed $\Lambda=\Lambda_{1} \cup \cdots \cup \Lambda_{M}$ with properties.
Define a nuclear family to be a rectangle ($n_{1}, n_{2}, n_{3}, n_{4}$) where the frequencies n_{1}, n_{3} (the 'parents') live in generation Λ_{j} and n_{2}, n_{4} ('children') live in generation Λ_{j+1}.

■ $\forall 1 \leq j<M$ and $\forall n_{1} \in \Lambda_{j} \exists$ unique nuclear family such that $n_{1}, n_{3} \in \Lambda_{j}$ are parents and $n_{2}, n_{4} \in \Lambda_{j+1}$ are children.

- $\forall 1 \leq j<M$ and $\forall n_{2} \in \Lambda_{j+1} \exists$ unique nuclear family such that $n_{2}, n_{4} \in \Lambda_{j+1}$ are children and $n_{1}, n_{3} \in \Lambda_{j}$ are parents.
- The sibling of a frequency is never its spouse.
- Besides nuclear families, Λ contains no other rectangles.

■ The function $n \longmapsto a_{n}(0)$ is constant on each generation Λ_{j}.

The toy model ODE

The toy model ODE

Assume we can construct such a $\Lambda=\Lambda_{1} \cup \cdots \cup \Lambda_{M}$. The properties imply $R \mathcal{F} N L S_{\Lambda}$ simplifies to the toy model ODE

$$
i \partial_{t} b_{j}(t)=\left|b_{j}(t)\right|^{2} b_{j}(t)-2 b_{j-1}(t)^{2} \bar{b}_{j}(t)-2 b_{j+1}(t)^{2} \bar{b}_{j}(t)
$$

The toy model ODE

Assume we can construct such a $\Lambda=\Lambda_{1} \cup \cdots \cup \Lambda_{M}$. The properties imply $R \mathcal{F} N L S_{\Lambda}$ simplifies to the toy model ODE

$$
\begin{gathered}
i \partial_{t} b_{j}(t)=\left|b_{j}(t)\right|^{2} b_{j}(t)-2 b_{j-1}(t)^{2} \bar{b}_{j}(t)-2 b_{j+1}(t)^{2} \bar{b}_{j}(t) \\
L^{2} \sim \sum_{j}\left|b_{j}(t)\right|^{2}=\sum_{j}\left|b_{j}(0)\right|^{2}
\end{gathered}
$$

The toy model ODE

Assume we can construct such a $\Lambda=\Lambda_{1} \cup \cdots \cup \Lambda_{M}$. The properties imply $R \mathcal{F} N L S_{\Lambda}$ simplifies to the toy model ODE

$$
i \partial_{t} b_{j}(t)=\left|b_{j}(t)\right|^{2} b_{j}(t)-2 b_{j-1}(t)^{2} \bar{b}_{j}(t)-2 b_{j+1}(t)^{2} \bar{b}_{j}(t)
$$

$$
\begin{aligned}
L^{2} & \sim \sum_{j}\left|b_{j}(t)\right|^{2}=\sum_{j}\left|b_{j}(0)\right|^{2} \\
H^{s} & \sim \sum_{j}\left|b_{j}(t)\right|^{2}\left(\sum_{n \in \Lambda_{j}}|n|^{2 s}\right) .
\end{aligned}
$$

The toy model ODE

Assume we can construct such a $\Lambda=\Lambda_{1} \cup \cdots \cup \Lambda_{M}$. The properties imply $R \mathcal{F} N L S_{\Lambda}$ simplifies to the toy model ODE

$$
i \partial_{t} b_{j}(t)=\left|b_{j}(t)\right|^{2} b_{j}(t)-2 b_{j-1}(t)^{2} \bar{b}_{j}(t)-2 b_{j+1}(t)^{2} \bar{b}_{j}(t)
$$

$$
\begin{aligned}
L^{2} & \sim \sum_{j}\left|b_{j}(t)\right|^{2}=\sum_{j}\left|b_{j}(0)\right|^{2} \\
H^{s} & \sim \sum_{j}\left|b_{j}(t)\right|^{2}\left(\sum_{n \in \Lambda_{j}}|n|^{2 s}\right) .
\end{aligned}
$$

We also want $\Lambda=\Lambda_{1} \cup \cdots \cup \Lambda_{M}$ to satisfy

$$
\sum_{n \in \Lambda_{M}}|n|^{2 s} \gg \sum_{n \in \Lambda_{1}}|n|^{2 s} .
$$

Toy model travelling wave solution

Toy model travelling wave solution

Using dynamical systems methods, we construct a Toy Model ODE evolution $b_{j}(0) \longmapsto b_{j}(t)$ such that:

Toy model travelling wave solution

Using dynamical systems methods, we construct a Toy Model ODE evolution $b_{j}(0) \longmapsto b_{j}(t)$ such that:

$$
\left(b_{1}(0), b_{2}(0), \ldots, b_{M}(0)\right) \sim(1,0, \ldots, 0)
$$

Toy model travelling wave solution

Using dynamical systems methods, we construct a Toy Model ODE evolution $b_{j}(0) \longmapsto b_{j}(t)$ such that:

$$
\begin{aligned}
\left(b_{1}(0), b_{2}(0), \ldots, b_{M}(0)\right) & \sim(1,0, \ldots, 0) \\
\left(b_{1}\left(t_{2}\right), b_{2}\left(t_{2}\right), \ldots, b_{M}\left(t_{2}\right)\right) & \sim(0,1, \ldots, 0)
\end{aligned}
$$

Toy model travelling wave solution

Using dynamical systems methods, we construct a Toy Model ODE evolution $b_{j}(0) \longmapsto b_{j}(t)$ such that:

$$
\begin{aligned}
\left(b_{1}(0), b_{2}(0), \ldots, b_{M}(0)\right) & \sim(1,0, \ldots, 0) \\
\left(b_{1}\left(t_{2}\right), b_{2}\left(t_{2}\right), \ldots, b_{M}\left(t_{2}\right)\right) & \sim(0,1, \ldots, 0)
\end{aligned}
$$

Toy model travelling wave solution

Using dynamical systems methods, we construct a Toy Model ODE evolution $b_{j}(0) \longmapsto b_{j}(t)$ such that:

$$
\begin{aligned}
\left(b_{1}(0), b_{2}(0), \ldots, b_{M}(0)\right) & \sim(1,0, \ldots, 0) \\
\left(b_{1}\left(t_{2}\right), b_{2}\left(t_{2}\right), \ldots, b_{M}\left(t_{2}\right)\right) & \sim(0,1, \ldots, 0)
\end{aligned}
$$

$$
\left(b_{1}\left(t_{M}\right), b_{2}\left(t_{M}\right), \ldots, b_{M}\left(t_{M}\right)\right) \sim(0,0, \ldots, 1)
$$

Toy model travelling wave solution

Using dynamical systems methods, we construct a Toy Model ODE evolution $b_{j}(0) \longmapsto b_{j}(t)$ such that:

$$
\begin{aligned}
\left(b_{1}(0), b_{2}(0), \ldots, b_{M}(0)\right) & \sim(1,0, \ldots, 0) \\
\left(b_{1}\left(t_{2}\right), b_{2}\left(t_{2}\right), \ldots, b_{M}\left(t_{2}\right)\right) & \sim(0,1, \ldots, 0)
\end{aligned}
$$

$$
\left(b_{1}\left(t_{M}\right), b_{2}\left(t_{M}\right), \ldots, b_{M}\left(t_{M}\right)\right) \sim(0,0, \ldots, 1)
$$

Bulk of conserved mass is transferred from Λ_{1} to Λ_{M}. Weak turbulence follows, provided we can construct such a Λ.

Combinatorial construction of $\Lambda \subset \mathbb{Z}^{2}$

Combinatorial construction of $\Lambda \subset \mathbb{Z}^{2}$

REmARKs

