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WEAK TURBULENCE FOR NLS

OVERVIEW OF PROOF
m Resonant finite dimensional truncations approximate NLS

m Imagine we build a resonant A C Z? such that...
m ...we get a low — high frequency travelling wave across A
m Combinatorial construction of A C Z? such that...

REMARKS
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Consider the initial value problem:

iOu+ Au = |ul?u
{ u(0,x) = ug(x), x €& T2 (NLS)

m Local-in-time well-posedness (LWP) is known for

up € H*,s > 0. [Bourgain 1993]

m Time Invariant Quantities:
Mass = [|u()]|
1
Hamiltonian = / |Vu(t)?dx + E\u(t)\“dx.
T2

m Global-in-time well-posedness is known for ug € H®,s > %
[De Silva, Pavlovic, Staffilani, Tzirakis 2006]
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WHAT HAPPENS TO SMOOTH SOLUTIONS?

Suppose ug € H*(T?) for s > 1. What happens to ||u(t)]|1s?
Recall that |||z = |(1 + IE)F(&) ] 2-

B WP = |lu(t)||ps < et

m LWP + Dispersive Smoothing = |lu(t)||ns < (1 + [t])*().
[Bourgain 1996, Staffilani 1998]

m Weak Turbulence Conjecture:
3 solutions with ||u(t)||ns /" 00 as t /' o0?

Does the conserved mass stay put in frequency space or does it
cascade up to high frequencies?
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(VERY) WEAK TURBULENCE RESULT

THEOREM (C-KEEL-STAFFILINI-TAKAOKA-TAO)

Givens > 1, e<1, K> 1,
3 smooth solution u(t) of NLS and a time T such that

[u(0)[[Hs <'e,

[u(T)][Hs = K.

Overview of proof:
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PRELIMINARY REDUCTIONS

m Gauge Freedom:
If u solves NLS then v(t,x) = e 26t y(t, x) solves

- _ 2
{lf)tv—i-Av—(ZG—i-M v (NLS)

v(0, x) = wo(x), x € T2
m Fourier Ansatz: Recast the dynamics in Fourier coefficients,

V(t,X) _ Z an(t)ei(n-x+\n|2t).

neZ?

iOra, = 2Ga, + > Qn, Any an, €™t
ni, np, N3 € 7?2
n—n+n3=n
a,(0) = do(n), ne 7z
(FNLSg)
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PRELIMINARY REDUCTIONS

m Diagonal decomposition of sum:

>, = > o+ X
2 2
nl,ng,n3€Z2 ni, mp,n3 € Z ny, N, n3 € Z
n—n+n=n n—m+n=n n—m+n=n
n# ny,n3 n=nm
+ R
m, no, n3 € 72 m, no, n3 € 72
n—n+n=n n—n+n=n
n=n3 n=ny = n3
m Choice of G:

2
G = —|luollz=-
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m NLS dynamic is recast as

—iBran = —ap|an|® + Z amaman e, (FNLS)

n1,n2,n3€(n)

where

F(n):{nl,ng,ng;EZz:n1—n2+n3:n,n17£n,n37$n}.

Mres(n) = {m,n2,n3 €T(n):ws=0}.
= { Triples (n1, n2, n3) : (n1, n2, n3, ng) is a rectangle }

m The resonant truncation of FNLS is

—i0¢by = —bylbn> + > bnbnybn,.  (RFNLS)

n11n2:n3erres(n)



Q>



FINITE DIMENSIONAL RESONANT TRUNCATION

m A set A C Z2 is closed under resonant interactions if

ni,n2,n3 € lNes(n), n1,na,n3 € N = neA.



FINITE DIMENSIONAL RESONANT TRUNCATION

m A set A C Z2 is closed under resonant interactions if
ni,n2,n3 € lNes(n), n1,na,n3 € N = neA.
m A finite dimensional resonant truncation of FNLS is

— iy = —bp|by)? + > Bry By bny. (RFNLS)

nlan27n3€rres(")m/\3



FINITE DIMENSIONAL RESONANT TRUNCATION

m A set A C Z2 is closed under resonant interactions if
ni,n2,n3 € lNes(n), n1,na,n3 € N = neA.
m A finite dimensional resonant truncation of FNLS is

— iy = —bp|by)? + > Bry By bny. (RFNLS)

nlan27n3€rres(")m/\3

m V resonant-closed finite A C Z? RFNLS, is an ODE.



FINITE DIMENSIONAL RESONANT TRUNCATION

m A set A C Z2 is closed under resonant interactions if
ni,n2,n3 € lNes(n), n1,na,n3 € N = neA.
m A finite dimensional resonant truncation of FNLS is

— iy = —bp|by)? + > Bry By bny. (RFNLS)

nlan27n3€rres(")m/\3

m V resonant-closed finite A C Z? RFNLS, is an ODE.

m If spt(an(0)) C A then FNLS-evolution a,(0) — ap(t) is
nicely approximated by RFNLS)-ODE a,(0) — bp(t).
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m A set A C Z2 is closed under resonant interactions if
ni,n2,n3 € lNes(n), n1,na,n3 € N = neA.
m A finite dimensional resonant truncation of FNLS is

—i0¢by = —bp|by|? + > by by by (RFNLS)

nlan27n3€rres(")m/\3

m V resonant-closed finite A C Z? RFNLS, is an ODE.

m If spt(an(0)) C A then FNLS-evolution a,(0) — ap(t) is
nicely approximated by RFNLS)-ODE a,(0) — bp(t).

m Given ¢, s, K, build A so that RFNLS, has weak turbulence.
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Imagine a resonant-closed A = A; U --- U Ay with properties.
Define a nuclear family to be a rectangle (ny, na, n3, ny) where the
frequencies ny, n3 (the 'parents’) live in generation A; and ny, na
(‘children’) live in generation Aji;.
mV1<j<MandV n €A; 3 unique nuclear family such that
ni, n3 € \; are parents and np, ng € Aji1 are children.
mV1<j<MandV n € Aji1 3 unique nuclear family such
that nz, ng € Aj11 are children and ny, n3 € A; are parents.
m The sibling of a frequency is never its spouse.
m Besides nuclear families, A contains no other rectangles.

m The function n — a,(0) is constant on each generation A;.
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THE TOY MODEL ODE

Assume we can construct sucha A=A U---UApy. The
properties imply RFNLS) simplifies to the toy model ODE

i0ebj(t) = |bj(t)|*by(t) — 2bj-1(t)?b;(t) — 2bj41(£)*By(2).
L2~ (0) =D 160
j j

He ~ S0P [n).
J

nE/\j
We also want A = Ay U --- U Ay to satisfy

Z ‘n|2s > Z |n’2s.

neNy nehy
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TOY MODEL TRAVELLING WAVE SOLUTION

Using dynamical systems methods, we construct a Toy Model ODE
evolution b;(0) — bj(t) such that:

(b1(0), b2(0),...,by(0)) ~ (1,0,...,0)
(bl(tz),bz(tz),...,b/\/](tg)) ~ (0,1,...,0)

(bl(tM), bg(tl\//), ey bm(t/\//)) ~ (0, 0,..., ].)

Bulk of conserved mass is transferred from A; to Ay, Weak
turbulence follows, provided we can construct such a A.
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