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Nonlinear Schrödinger Initial Value Problem

Consider the initial value problem NLS±p (Rd):{
i∂tu + ∆u = ±|u|p−1u

u(0, x) = u0(x).

We seek u : (−T∗,T
∗)× Rd 7−→ C.

(+ focusing, − defocusing)

Time Invariant Quantities

Mass = ‖u(t)‖L2
x

Hamiltonian =

∫
Rd

|∇u(t)|2dx∓ 2

p + 1
|u(t)|p+1dx
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Dilation Invariance

If u solves NLS±p (Rd) on (−T∗,T
∗)× R2 then

uλ(τ, y) := λ
2

1−p u(τλ−2, yλ−1)

solves NLS±p (Rd) on (−λ2T∗, λ
2T ∗)× R2.

Dilation invariant norms play a decisive role in the theory of
NLS±p (Rd) :

‖Dσ
y uλ‖Lq(Rd

y ) =

(
1

λ

) 2
p−1

+σ− d
q

‖Dσ
x u‖Lq(Rd

x ).

Ẇ σ,q is critical if 2
p−1 + σ − d

q = 0.

NLS±p (Rd) is Ḣsc -critical for sc := d
2 −

2
p−1 .

L2 and Ḣ1 critical cases distinguished by conservation laws.
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Critical Regimes

Theory for NLS±p (Rd) is qualitatively similar in regimes:

Mass subcritical (sc < 0)
Mass critical (sc = 0)
Mass supercritical/Energy subcritical (0 < sc < 1)
Energy critical (sc = 1)
Energy supercritical (sc > 1).

Optimal local-in-time well-posedness (LWP) for NLS±p (Rd):
∀ s ≥ max(0, sc) ∃ unique continuous data-to-solution map

Hs 3 u0 7−→ u ∈ C ([0,Tlwp];H
s) ∩ Lq

t L
p
x

with Tlwp = Tlwp(‖u0‖Hs ) if s > sc and Tlwp = T (u0) if
s = sc . (Ill-posedness holds for s < max(0, sc))

Optimal maximal-in-time well-posedness (GWP) is known
only in the defocusing energy critical case. What is the fate of
local-in-time solutions with critical initial regularity?
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L2 Critical Case: LWP Theory

Restrict attention to NLS±3 (R2). Typical L2 critical case?

[Cazenave-Weissler]

∀ u0 ∈ L2 there exists Tlwp(u0) determined by

‖e it∆u0‖L4
tx
([0,Tlwp]× R2) <

1

100
.

∃ unique solution u ∈ C ([0,Tlwp]; L
2) ∩ L4

tx([0,Tlwp]× R2).

Define the maximal forward existence time T ∗(u0) by

‖u‖L4
tx ([0,T∗−δ]×R2) < ∞

for all δ > 0 but diverges to ∞ as δ ↓ 0.

∃ small data scattering threshold µ0 > 0

‖u0‖L2 < µ0 =⇒ ‖u‖L4
tx (R×R2) < 2µ0.
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L2 Critical Case: Defocusing GWP Theory

H1-GWP for NLS+
3 (R2).

Standard ’I Method’ yields Hs -GWP for s > 4
7 .

NLS+
5 (R1) is similarly Hs -GWP for s > 4

9 .
[Tzirakis]

NLS+
4
d
+1

(Rd) is GWP for s > d+8
d+10 .

[Visan-Zhang]

Recently NLS+
3 (R2): [Grillakis-Fang, s ≥ 1

2 ]; [CKSTT, s > 1
2 ]

(Different proofs which will combine to go below 1
2 .)

My second talk will discuss new [CKSTT] result.

Recently [Tao-Visan] proved NLS+
2 (R4) is GWP and scatters

using Bourgain’s induction on energy strategy!



L2 Critical Case: Defocusing GWP Theory

H1-GWP for NLS+
3 (R2).

Standard ’I Method’ yields Hs -GWP for s > 4
7 .

NLS+
5 (R1) is similarly Hs -GWP for s > 4

9 .
[Tzirakis]

NLS+
4
d
+1

(Rd) is GWP for s > d+8
d+10 .

[Visan-Zhang]

Recently NLS+
3 (R2): [Grillakis-Fang, s ≥ 1

2 ]; [CKSTT, s > 1
2 ]

(Different proofs which will combine to go below 1
2 .)

My second talk will discuss new [CKSTT] result.

Recently [Tao-Visan] proved NLS+
2 (R4) is GWP and scatters

using Bourgain’s induction on energy strategy!



L2 Critical Case: Defocusing GWP Theory

H1-GWP for NLS+
3 (R2).

Standard ’I Method’ yields Hs -GWP for s > 4
7 .

NLS+
5 (R1) is similarly Hs -GWP for s > 4

9 .
[Tzirakis]

NLS+
4
d
+1

(Rd) is GWP for s > d+8
d+10 .

[Visan-Zhang]

Recently NLS+
3 (R2): [Grillakis-Fang, s ≥ 1

2 ]; [CKSTT, s > 1
2 ]

(Different proofs which will combine to go below 1
2 .)

My second talk will discuss new [CKSTT] result.

Recently [Tao-Visan] proved NLS+
2 (R4) is GWP and scatters

using Bourgain’s induction on energy strategy!



L2 Critical Case: Defocusing GWP Theory

H1-GWP for NLS+
3 (R2).

Standard ’I Method’ yields Hs -GWP for s > 4
7 .

NLS+
5 (R1) is similarly Hs -GWP for s > 4

9 .
[Tzirakis]

NLS+
4
d
+1

(Rd) is GWP for s > d+8
d+10 .

[Visan-Zhang]

Recently NLS+
3 (R2): [Grillakis-Fang, s ≥ 1

2 ]; [CKSTT, s > 1
2 ]

(Different proofs which will combine to go below 1
2 .)

My second talk will discuss new [CKSTT] result.

Recently [Tao-Visan] proved NLS+
2 (R4) is GWP and scatters

using Bourgain’s induction on energy strategy!



L2 Critical Case: Defocusing GWP Theory

H1-GWP for NLS+
3 (R2).

Standard ’I Method’ yields Hs -GWP for s > 4
7 .

NLS+
5 (R1) is similarly Hs -GWP for s > 4

9 .
[Tzirakis]

NLS+
4
d
+1

(Rd) is GWP for s > d+8
d+10 .

[Visan-Zhang]

Recently NLS+
3 (R2): [Grillakis-Fang, s ≥ 1

2 ]; [CKSTT, s > 1
2 ]

(Different proofs which will combine to go below 1
2 .)

My second talk will discuss new [CKSTT] result.

Recently [Tao-Visan] proved NLS+
2 (R4) is GWP and scatters

using Bourgain’s induction on energy strategy!



L2 Critical Case: Defocusing GWP Theory

H1-GWP for NLS+
3 (R2).

Standard ’I Method’ yields Hs -GWP for s > 4
7 .

NLS+
5 (R1) is similarly Hs -GWP for s > 4

9 .
[Tzirakis]

NLS+
4
d
+1

(Rd) is GWP for s > d+8
d+10 .

[Visan-Zhang]

Recently NLS+
3 (R2): [Grillakis-Fang, s ≥ 1

2 ]; [CKSTT, s > 1
2 ]

(Different proofs which will combine to go below 1
2 .)

My second talk will discuss new [CKSTT] result.

Recently [Tao-Visan] proved NLS+
2 (R4) is GWP and scatters

using Bourgain’s induction on energy strategy!



L2 Critical Case: Defocusing GWP Theory

H1-GWP for NLS+
3 (R2).

Standard ’I Method’ yields Hs -GWP for s > 4
7 .

NLS+
5 (R1) is similarly Hs -GWP for s > 4

9 .
[Tzirakis]

NLS+
4
d
+1

(Rd) is GWP for s > d+8
d+10 .

[Visan-Zhang]

Recently NLS+
3 (R2): [Grillakis-Fang, s ≥ 1

2 ]; [CKSTT, s > 1
2 ]

(Different proofs which will combine to go below 1
2 .)

My second talk will discuss new [CKSTT] result.

Recently [Tao-Visan] proved NLS+
2 (R4) is GWP and scatters

using Bourgain’s induction on energy strategy!



L2 Critical Case: Defocusing GWP Theory

H1-GWP for NLS+
3 (R2).

Standard ’I Method’ yields Hs -GWP for s > 4
7 .

NLS+
5 (R1) is similarly Hs -GWP for s > 4

9 .
[Tzirakis]

NLS+
4
d
+1

(Rd) is GWP for s > d+8
d+10 .

[Visan-Zhang]

Recently NLS+
3 (R2): [Grillakis-Fang, s ≥ 1

2 ]; [CKSTT, s > 1
2 ]

(Different proofs which will combine to go below 1
2 .)

My second talk will discuss new [CKSTT] result.

Recently [Tao-Visan] proved NLS+
2 (R4) is GWP and scatters

using Bourgain’s induction on energy strategy!



L2 Critical Case: Defocusing GWP Theory

H1-GWP for NLS+
3 (R2).

Standard ’I Method’ yields Hs -GWP for s > 4
7 .

NLS+
5 (R1) is similarly Hs -GWP for s > 4

9 .
[Tzirakis]

NLS+
4
d
+1

(Rd) is GWP for s > d+8
d+10 .

[Visan-Zhang]

Recently NLS+
3 (R2): [Grillakis-Fang, s ≥ 1

2 ]; [CKSTT, s > 1
2 ]

(Different proofs which will combine to go below 1
2 .)

My second talk will discuss new [CKSTT] result.

Recently [Tao-Visan] proved NLS+
2 (R4) is GWP and scatters

using Bourgain’s induction on energy strategy!



L2 Critical Case: Defocusing GWP Theory

H1-GWP for NLS+
3 (R2).

Standard ’I Method’ yields Hs -GWP for s > 4
7 .

NLS+
5 (R1) is similarly Hs -GWP for s > 4

9 .
[Tzirakis]

NLS+
4
d
+1

(Rd) is GWP for s > d+8
d+10 .

[Visan-Zhang]

Recently NLS+
3 (R2): [Grillakis-Fang, s ≥ 1

2 ]; [CKSTT, s > 1
2 ]

(Different proofs which will combine to go below 1
2 .)

My second talk will discuss new [CKSTT] result.

Recently [Tao-Visan] proved NLS+
2 (R4) is GWP and scatters

using Bourgain’s induction on energy strategy!



L2 Critical Case: Defocusing GWP Theory

H1-GWP for NLS+
3 (R2).

Standard ’I Method’ yields Hs -GWP for s > 4
7 .

NLS+
5 (R1) is similarly Hs -GWP for s > 4

9 .
[Tzirakis]

NLS+
4
d
+1

(Rd) is GWP for s > d+8
d+10 .

[Visan-Zhang]

Recently NLS+
3 (R2): [Grillakis-Fang, s ≥ 1

2 ]; [CKSTT, s > 1
2 ]

(Different proofs which will combine to go below 1
2 .)

My second talk will discuss new [CKSTT] result.

Recently [Tao-Visan] proved NLS+
2 (R4) is GWP and scatters

using Bourgain’s induction on energy strategy!



L2 Critical Case: Defocusing GWP Theory

H1-GWP for NLS+
3 (R2).

Standard ’I Method’ yields Hs -GWP for s > 4
7 .

NLS+
5 (R1) is similarly Hs -GWP for s > 4

9 .
[Tzirakis]

NLS+
4
d
+1

(Rd) is GWP for s > d+8
d+10 .

[Visan-Zhang]

Recently NLS+
3 (R2): [Grillakis-Fang, s ≥ 1

2 ]; [CKSTT, s > 1
2 ]

(Different proofs which will combine to go below 1
2 .)

My second talk will discuss new [CKSTT] result.

Recently [Tao-Visan] proved NLS+
2 (R4) is GWP and scatters

using Bourgain’s induction on energy strategy!



L2 Critical Case: Focusing GWP Properties

H1-GWP mass threshold ‖Q‖L2 for NLS−3 (R2):

‖u0‖L2 < ‖Q‖L2 =⇒ H1 3 u0 7−→ u,T ∗ = ∞.

[Weinstein]
Here Q is the ground state solution to −Q + ∆Q = Q3.
u(t, x) = e itQ(x) is the ground state soliton solution to
NLS−3 (R2).

NLS−5 (R) is Hs -GWP for s > 4
9 below ground state.

[Tzirakis]

NLS−4
d
+1

(Rd) is Hs -GWP for s > d+8
d+10 below ground state.

[Visan-Zhang]



L2 Critical Case: Focusing GWP Properties

H1-GWP mass threshold ‖Q‖L2 for NLS−3 (R2):

‖u0‖L2 < ‖Q‖L2 =⇒ H1 3 u0 7−→ u,T ∗ = ∞.

[Weinstein]
Here Q is the ground state solution to −Q + ∆Q = Q3.
u(t, x) = e itQ(x) is the ground state soliton solution to
NLS−3 (R2).

NLS−5 (R) is Hs -GWP for s > 4
9 below ground state.

[Tzirakis]

NLS−4
d
+1

(Rd) is Hs -GWP for s > d+8
d+10 below ground state.

[Visan-Zhang]



L2 Critical Case: Focusing GWP Properties

H1-GWP mass threshold ‖Q‖L2 for NLS−3 (R2):

‖u0‖L2 < ‖Q‖L2 =⇒ H1 3 u0 7−→ u,T ∗ = ∞.

[Weinstein]

Here Q is the ground state solution to −Q + ∆Q = Q3.
u(t, x) = e itQ(x) is the ground state soliton solution to
NLS−3 (R2).

NLS−5 (R) is Hs -GWP for s > 4
9 below ground state.

[Tzirakis]

NLS−4
d
+1

(Rd) is Hs -GWP for s > d+8
d+10 below ground state.

[Visan-Zhang]



L2 Critical Case: Focusing GWP Properties

H1-GWP mass threshold ‖Q‖L2 for NLS−3 (R2):

‖u0‖L2 < ‖Q‖L2 =⇒ H1 3 u0 7−→ u,T ∗ = ∞.

[Weinstein]
Here Q is the ground state solution to −Q + ∆Q = Q3.
u(t, x) = e itQ(x) is the ground state soliton solution to
NLS−3 (R2).

NLS−5 (R) is Hs -GWP for s > 4
9 below ground state.

[Tzirakis]

NLS−4
d
+1

(Rd) is Hs -GWP for s > d+8
d+10 below ground state.

[Visan-Zhang]



L2 Critical Case: Focusing GWP Properties

H1-GWP mass threshold ‖Q‖L2 for NLS−3 (R2):

‖u0‖L2 < ‖Q‖L2 =⇒ H1 3 u0 7−→ u,T ∗ = ∞.

[Weinstein]
Here Q is the ground state solution to −Q + ∆Q = Q3.
u(t, x) = e itQ(x) is the ground state soliton solution to
NLS−3 (R2).

NLS−5 (R) is Hs -GWP for s > 4
9 below ground state.

[Tzirakis]

NLS−4
d
+1

(Rd) is Hs -GWP for s > d+8
d+10 below ground state.

[Visan-Zhang]



L2 Critical Case: Focusing GWP Properties

H1-GWP mass threshold ‖Q‖L2 for NLS−3 (R2):

‖u0‖L2 < ‖Q‖L2 =⇒ H1 3 u0 7−→ u,T ∗ = ∞.

[Weinstein]
Here Q is the ground state solution to −Q + ∆Q = Q3.
u(t, x) = e itQ(x) is the ground state soliton solution to
NLS−3 (R2).

NLS−5 (R) is Hs -GWP for s > 4
9 below ground state.

[Tzirakis]

NLS−4
d
+1

(Rd) is Hs -GWP for s > d+8
d+10 below ground state.

[Visan-Zhang]



L2 Critical Case: Explicit Blowup Solutions

Arise as pseudoconformal image of e itQ(x) :

S(t, x) =
1

t
Q

(x

t

)
e−i |x|

2

4t
+ i

t .

S has minimal mass:

‖S(−1)‖L2
x

= ‖Q‖L2 .

All mass in S is conically concentrated into a point.

Minimal mass H1 blowup solution characterization:
u0 ∈ H1, ‖u0‖L2 = ‖Q‖L2 , T ∗(u0) < ∞ implies that u = S up
to an explicit solution symmetry.
[Merle]
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Virial Identity =⇒ ∃ Many Blowup Solutions

Integration by parts and the equation yields

∂2
t

∫
R2

x

|x |2|u(t, x)|2dx = 8H[u0].

H[u0] < 0,
∫
|x |2|u0(x)|2dx < ∞ blows up.

How do these solutions blow up?
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L2 Critical Case: Mass Concentration

H1 Theory of Mass Concentration

H1 ∩ {radial} 3 u0 7−→ u,T ∗ < ∞ implies

lim inf
t↑T∗

∫
|x |<(T∗−t)1/2−

|u(t, x)|2dx ≥ ‖Q‖2
L2 .

[Merle-Tsutsumi]

H1 blowups parabolically concentrate at least the ground
state mass. Explicit blowups S concentrate mass much faster.

Fantastic recent progress on the H1 blowup theory.
[Merle-Raphaël]
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L2 Critical Case: Mass Concentration

H1 Theory of Mass Concentration

H1 ∩ {radial} 3 u0 7−→ u,T ∗ < ∞ implies

lim inf
t↑T∗

∫
|x |<(T∗−t)1/2−

|u(t, x)|2dx ≥ ‖Q‖2
L2 .

[Merle-Tsutsumi]

H1 blowups parabolically concentrate at least the ground
state mass. Explicit blowups S concentrate mass much faster.

Fantastic recent progress on the H1 blowup theory.
[Merle-Raphaël]
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Typical blowups leave an L2 stain at time T ∗

[Merle-Raphaël]:

H1 ∩ {‖Q‖L2 < ‖u0‖L2 < ‖Q‖L2 + α∗} 3 u0 7−→ u solving
NLS−3 (R2) on [0,T ∗) (maximal) with T ∗ < ∞.

∃ λ(t), x(t), θ(t) ∈ R+, R2, R/(2πZ) and u∗ such that

u(t)− λ(t)−1Q

(
x − x(t)

λ(t)

)
e iθ(t) → u∗

strongly in L2(R2). Typically, u∗ /∈Hs ∪ Lp for s > 0, p > 2!
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L2 Critical Case: Conjectures/Questions

Consider focusing NLS−3 (R2):

Scattering Below the Ground State Mass

‖u0‖L2 < ‖Q‖L2 =⇒ ??? u0 7−→ u with ‖u‖L4
tx

< ∞.

(Also, L2 solutions of NLS+
3 (R2) satisfy??? ‖u‖L4

tx
< ∞.)

Minimal Mass Blowup Characterization

‖u0‖L2 = ‖Q‖L2 , u0 7−→ u,T ∗ < ∞ =⇒ ??? u = S ,

modulo a solution symmetry. An intermediate step would
extend characterization of the minimal mass blowup solutions
in Hs for s < 1.

Concentrated mass amounts are quantized
The explicit blowups constructed by pseudoconformally
transforming time periodic solutions with ground and excited
state profiles are the only asymptotic profiles.

Are there any general upper bounds?
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L2 Critical Case: Partial Results

For 0.86 ∼ 1
5(1 +

√
11) < s < 1,Hs ∩ {radial} 3 u0 7−→

u,T ∗ < ∞ =⇒

lim supt↑T∗

∫
|x |<(T∗−t)s/2−

|u(t, x)|2dx ≥ ‖Q‖2
L2 .

Hs -blowup solutions concentrate ground state mass.
[With Raynor, Sulem and Wright] (Third lecture)
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L2 Critical Case: Partial Results

Spacetime norm divergence rate

‖u‖L4
tx ([0,t]×R2) & (T ∗ − t)−β

is linked with mass concentration rate

lim sup
t↑T∗

sup

cubes I ,side(I )≤(T∗−t)
1
2 +

β
2

∫
I
|u(t, x)|2dx ≥ ‖u0‖−M

L2 .

[with Roudenko] (Third Lecture)

Ruling out tight concentrations provides spacetime divergence
rate upper bounds.
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H1/2 Critical Case

Consider NLS−3 (R3). Also L3
x -Critical. Typical Case?

LWP theory similar to NLS±3 (R2):

L2(R2) 7−→ H1/2(R3)

L4
tx 7−→ L5

tx .

There cannot be an H1-GWP mass threshold.

No explicit blowup solutions are known.

Virial identity =⇒ ∃ many blowup solutions.

H1 ∩ {radial} 3 u0 7−→ u,T ∗ < ∞ then for any a > 0

‖∇u(t)‖L2
|x|<a

↑ ∞ as t ↑ T ∗.

Thus, radial solutions must explode at the origin.
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H1/2 Critical Case: Radial NLS−3 (R3)

Proof.

By Hamiltonian conservation,

‖∇u(t)‖2
L2 = H[u0] +

1

2
‖u(t)‖4

L4
|x|<a

+
1

2
‖u(t)‖4

L4
|x|>a

.

Inner contribution estimated using Gagliardo-Nirenberg by
C (Mass, a)‖∇u(t)‖3

L2
|x|<a

. Exterior region estimated by pulling out

two factors in L∞x then using radial Sobolev to get control by
Ca‖u(t)‖3

L2‖∇u(t)‖L2 . Absorb the exterior kinetic energy to left
side

‖∇u(t)‖2
L2 . C (a,Mass[u0],H[u0]) + C (a,Mass[u0])‖∇u(t)‖3

L2
|x|<a

.
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H1/2 Critical Case: Remarks

Radial blowup solutions of energy subcritical NLSp(Rd) with
p < 5 must explode at the origin.

For H1/2-critical NLS−5 (R2), there exists
H1 ∩ {radial} 3 v0 7−→ v , T ∗(v0) < ∞ which blows up
precisely on a circle! [Raphaël]

Numerics/heuristics suggest: Finite time blowup solutions of
NLS3(R3) satisfy ‖u(t)‖L3

x
↑ ∞ as t ↑ T ∗.

[Recently proved for H1 ∩ {radial} data by Merle-Raphaël
with log lower bounds.] [Work in progress with Raynor,
Sulem, Wright; different proof]
(Analogous to [Escauriaza-Seregin-Šverák] on Navier-Stokes)

H1/2-blowups parabolically concentrate in L3 and H1/2?
[Work in progress with Roudenko]
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H1(Rd), d ≥ 3 Critical Case

Defocusing energy critical NLS+
1+4/(d−2)(R

d), d ≥ 3 is globally

well-posed and scatters in H1:

[Bourgain], [Grillakis]: Radial Case for d = 3, 4
[CKSTT]: d = 3
[Tao]: Radial Case for d ≥ 4
[Ryckman-Visan], [Visan], [Tao-Visan]: d ≥ 4

Induction on Energy; Interaction Morawetz; Mass Freezing

Focusing energy critical case? For Rd , d = 3, 4, 5, recently
[Kenig-Merle] proved: Scattering below stationary solution
energy. E [u0] < E [W ] and ‖∇u0‖L2 < ‖∇W ‖L2 =⇒
global-in-time and scatters.
(∆W = −|W |4/(d−2)W ,W = [1 + Cd |x |2](2−d)/d)

Scattering below W extended to d ≥ 6 by [Visan-Zhang].
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Energy Supercritical Case

Consider NLS+
7 (R3). Typical case?

Numerical experiments by [Blue-Sulem] and also for
corresponding NLKG [Strauss-Vazquez] suggest GWP and
scattering.

Conjecture: NLS+
7 (R3) is GWP and scatters in H7/6(R3).

[See discussion by Bourgain, GAFA Special Volume, 2000]
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