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Consider the initial value problem NLS;(R?):

iOu + Au = +|ulP~tu
u(0, x) = up(x).

We seek u: (=T, T*) x R — C.
(+ focusing, — defocusing)

Time Invariant Quantities

Mass = [[u(t)].z

2
Hamiltonian = [ |Vu(t)*d t)|Ptid
amiltonian /Rd| u(t)] X$p+1|u( )| Ix
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DILATION INVARIANCE

m If u solves NLS;E(]Rd) on (— Ty, T*) x R? then

u = AT P u(rA 2 yA L
)\(T,}/) T PU(T Y )

solves NLSF(R?) on (—A2T,, A*T*) x R,

m Dilation invariant norms play a decisive role in the theory of
NLSF(RY) -

Qla

1\ F1to-
-
07lisssy = (3) " 10wl

W9 is critical |f 1 +o0— 5 =0.

= NLS:(Rd) is HSC—crltlcaI for s. := g — p21

m L2 and H! critical cases distinguished by conservation laws.
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m Theory for NLS;E(Rd) is qualitatively similar in regimes:
m Mass subcritical (s. < 0)
m Mass critical (s = 0)
m Mass supercritical /Energy subcritical (0 < s < 1)
m Energy critical (s. = 1)
m Energy supercritical (s > 1).
= Optimal local-in-time well-posedness (LWP) for NLS(R?):
Vs > max(0, sc) 3 unique continuous data-to-solution map

H* > up — u € C([0, Tiwp); H?) N LILE

with lep = T/Wp(HUOHHS) if s > s. and lep = T(U()) if
s = sc. (Ill-posedness holds for s < max(0, s))

m Optimal maximal-in-time well-posedness (GWP) is known
only in the defocusing energy critical case. What is the fate of
local-in-time solutions with critical initial regularity?
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[? CRITICAL CASE: LWP THEORY

Restrict attention to NLSF (R?). Typical L2 critical case?

[Cazenave-Weissler|

m Y up € L? there exists Tj,,(uo) determined by

itA
le®®uoll 2 ([0, Tip] x R?) < 100"

3 unique solution u € C([0, Thpl; L2) N LE([0, Thwp] x R?).
m Define the maximal forward existence time T*(up) by
lull 2 (o, 7+—s)xr2) <
for all 6 > 0 but diverges to oo as § | 0.
m J small data scattering threshold g > 0

HUOHL2 < Mo = HUHL?X(RXR2) < 2up.
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[? CRITICAL CASE: DEFOCUSING GWP THEORY

HL-GWP for NLS; (R2).

m Standard '/ Method’ yields H*-GWP for s > %.

NLS (RY) is similarly H*-GWP for s > 3.

[Tzirakis]

NLS§+1(R") is GWP for s > S48

[Visan-Zhang]

Recently NLS;“(]RZ): [Grillakis-Fang, s > %] [CKSTT, s > %]
(Different proofs which will combine to go below 3.)

My second talk will discuss new [CKSTT] result.

Recently [Tao-Visan] proved NLS,"(R*) is GWP and scatters
using Bourgain's induction on energy strategy!
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m H-GWP mass threshold || Q|| for NLS; (R?):
||U0||L2 < ||QHL2 - H1 S ug — u, T = 0.

[Weinstein]
Here Q is the ground state solution to —Q + AQ = Q3.
u(t,x) = e Q(x) is the ground state soliton solution to
NLS; (R?).
m NLS; (R) is H-GWP for s > § below ground state.
[Tzirakis]
L] NLS%_H(R") is H*>-GWP for s > % below ground state.
[Visan-Zhang]
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[? CRITICAL CASE: EXPLICIT BLOWUP SOLUTIONS

m Arise as pseudoconformal image of e Q(x) :

2
_ilx

1 X i
S(t,x) == (7> et
(t,x) tQ F)e T
m S has minimal mass:

IS(=Dllz = 1Rl 2.

All mass in S is conically concentrated into a point.

m Minimal mass H! blowup solution characterization:
up € HY, |luoll 2 = |Qll 2, T*(uo) < oo implies that u =S up
to an explicit solution symmetry.
[Merle]
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[? CRITICAL CASE: BLOWUP SOLUTION PROPERTIES

Virial Identity —> 3 Many Blowup Solutions
m Integration by parts and the equation yields

af/ x| u(t, x)Pdx = 8H[ug).
R

m Hlup] <0, [ |x[?|uo(x)|?dx < oo blows up.

m How do these solutions blow up?
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H' Theory of Mass Concentration

m H! N {radial} > up — u, T* < oo implies

Iiminf/ lu(t, x)[Pdx > || Q%
T J|x|<(T*—t)1/2-

[Merle-Tsutsumi]

m H! blowups parabolically concentrate at least the ground
state mass. Explicit blowups S concentrate mass much faster.

m Fantastic recent progress on the H! blowup theory.
[Merle-Raphaél]
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L? Theory of Mass Concentration

m (%235 uy— u, T* < co implies

lim sup sup /|u(t,x)]2dx > HUoHEM.
tTT*  squares I,side()<(T*—t)1/2/1

[Bourgain]
L2 blowups parabolically concentrate some mass.

m For large L2 data, do there exist tiny concentrations?

m Extensions in [Merle-Vega], [Carles-Keraani], [Bégout-Vargas|.
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TYPICAL BLOWUPS LEAVE AN L2 STAIN AT TIME T*

[Merle-Raphaél]:

HE Ol Qllez < lluolliz < Q2 + "} 5 to — u solving
NLS; (R?) on [0, T*) (maximal) with T* < oo.
3 A(t), x(t),0(t) € RY,R?, R/(27Z) and u* such that

u(t) — A(t)7'Q <X ;();)(t)> et —

strongly in L?(R?). Typically, u*¢H® U LP for s > 0, p > 2!
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Consider focusing NLS; (R?):
m Scattering Below the Ground State Mass

77

uollz < [|Qllz2 = " up = v with [uf| s < oo

(Also, L? solutions of NLS; (R?) satisfy’”’ [ulls < oc.)

= Minimal Mass Blowup Characterization
luoll 2 = || Q| 2y o — u, T* <00 = " u=S,

modulo a solution symmetry. An intermediate step would

extend characterization of the minimal mass blowup solutions

in H® for s < 1.
m Concentrated mass amounts are quantized
The explicit blowups constructed by pseudoconformally

transforming time periodic solutions with ground and excited

state profiles are the only asymptotic profiles.
m Are there any general upper bounds?
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m For 0.86 ~ $(1+V/11) < s < 1, H* N {radial} > up —
u, T" <oo =

umsupm*/ u(t, )P > Q2.
|x|<(T*—t)s/2~

H?*-blowup solutions concentrate ground state mass.
[With Raynor, Sulem and Wright] (Third lecture)

m |ull2 = ||Q2,u0 € H5,~ 086 <s<1,T"<o0o =
Ity T T st u(ty) — Q in H¥S) (mod symmetry sequence).
For H® blowups with [[ug||;2 > ||Q]|;2, u(t,) — V € H (mod
symmetry sequence). [Hmidi-Keraani] This is an H® analog of
an H' result of [Weinstein] which preceded the minimal H?!
blowup solution characterization.

m Same results for NLS;H(R") in H®, s > %. [Visan-Zhang]
d
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[? CRITICAL CASE: PARTIAL RESULTS

m Spacetime norm divergence rate

lull s o, xmey 2 (T7 — t)"
is linked with mass concentration rate
lim sup sup /| (t,x)[2dx > ||”0||/_2 .
(T cubes I,side(1)<(T*—t) %+7j

[with Roudenko] (Third Lecture)

m Ruling out tight concentrations provides spacetime divergence
rate upper bounds.
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H'/2 CriTicAL CASE

Consider NLS; (R3). Also L3-Critical. Typical Case?
= LWP theory similar to NLS;(R?):

L2(R?) —s HY2(R®)

4 5
th th'

m There cannot be an H1-GWP mass threshold.

No explicit blowup solutions are known.
m Virial identity = 3 many blowup solutions.
H* N {radial} > up — u, T* < oo then for any a > 0

IVu(®)li,_ Tooas el T

Thus, radial solutions must explode at the origin.
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HY/2 CriticAL CASE: RADIAL NLS; (R?)

PROOF.

By Hamiltonian conservation,

1 1
2 - 4 - 4
IVu(e): = Hiuol + S lu(®)lfs  + (It

Inner contribution estimated using Gagliardo-Nirenberg by
C(Mass, a)||Vu(t)||?z2 . Exterior region estimated by pulling out
[x|<a

two factors in L3° then using radial Sobolev to get control by
Gollu(t) (32 IV u(t)|| 2. Absorb the exterior kinetic energy to left
side

IVu(t)12 S C(a, Mass[uo], H[uo]) + C(a, /\/Iass[uo])HVu(t)HZzXKa

Ol
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H'/2 CriTicAL CASE: REMARKS

m Radial blowup solutions of energy subcritical NLS,(R9) with
p < 5 must explode at the origin.

m For HY/2-critical NLS; (R?), there exists
H' N {radial} > vo — v, T*(v) < oo which blows up
precisely on a circle! [Raphaél]

m Numerics/heuristics suggest: Finite time blowup solutions of
NLS3(IR3) satisfy Ju(t)lz Tooast T T
[Recently proved for H! N {radial} data by Merle-Raphaél
with log lower bounds.] [Work in progress with Raynor,
Sulem, Wright; different proof]
(Analogous to [Escauriaza-Seregin-Sverdk] on Navier-Stokes)

m H/2-blowups parabolically concentrate in L3 and H/2?
[Work in progress with Roudenko]
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m Defocusing energy critical NL51++4/(d_2)(Rd), d > 3 is globally
well-posed and scatters in H':
[Bourgain], [Grillakis]: Radial Case for d = 3,4
[CKSTT]: d =3
[Tao]: Radial Case for d > 4
[Ryckman-Visan], [Visan], [Tao-Visan]: d > 4
Induction on Energy; Interaction Morawetz; Mass Freezing

m Focusing energy critical case? For RY, d = 3,4, 5, recently
[Kenig-Merle] proved: Scattering below stationary solution
energy. E[ug] < E[W] and ||[Vuo| 2 < [VW] 2 =
global-in-time and scatters.
(AW — _| W|4/(d_2)W, W = [1 + Cd|X|2](2—d)/d)

m Scattering below W extended to d > 6 by [Visan-Zhang].
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ENERGY SUPERCRITICAL CASE

Consider NLS;(R3). Typical case?

m Numerical experiments by [Blue-Sulem] and also for
corresponding NLKG [Strauss-Vazquez] suggest GWP and
scattering.

= Conjecture: NLS; (R3) is GWP and scatters in H7/%(R3).
[See discussion by Bourgain, GAFA Special Volume, 2000]
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