Toward a maximal-in-time theory of nonlinear Schrödinger equations at critical regularity

J. Colliander

University of Toronto

Institute for Applied Physics and Computational Mathematics Beijing

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 2 CRITICAL REGIMES & LOW REGULARITY GWP?
- **3** L^2 CRITICAL CASE
- 4 $H^{1/2}$ CRITICAL CASE
- 5 Energy Critical Case
- 6 ENERGY SUPERCRITICAL CASE

Consider the initial value problem $NLS_p^{\pm}(\mathbb{R}^d)$:

$$\begin{cases} i\partial_t u + \Delta u = \pm |u|^{p-1} u \\ u(0, x) = u_0(x). \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Consider the initial value problem $NLS_p^{\pm}(\mathbb{R}^d)$:

$$\begin{cases} i\partial_t u + \Delta u = \pm |u|^{p-1} u \\ u(0, x) = u_0(x). \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We seek $u: (-T_*, T^*) \times \mathbb{R}^d \mapsto \mathbb{C}$. (+ focusing, - defocusing)

Consider the initial value problem $NLS_p^{\pm}(\mathbb{R}^d)$:

$$\begin{cases} i\partial_t u + \Delta u = \pm |u|^{p-1} u \\ u(0, x) = u_0(x). \end{cases}$$

We seek
$$u: (-T_*, T^*) \times \mathbb{R}^d \longmapsto \mathbb{C}$$
.
(+ focusing, - defocusing)

Time Invariant Quantities

$$\begin{aligned} \mathsf{Mass} &= \|u(t)\|_{L^2_x}\\ \mathsf{Hamiltonian} &= \int_{R^d} |\nabla u(t)|^2 dx \mp \frac{2}{p+1} |u(t)|^{p+1} dx \end{aligned}$$

• If
$$u$$
 solves $NLS^{\pm}_{p}(\mathbb{R}^{d})$ on $(-T_{*}, T^{*}) \times \mathbb{R}^{2}$ then
 $u_{\lambda}(\tau, y) := \lambda^{\frac{2}{1-p}} u(\tau \lambda^{-2}, y \lambda^{-1})$

solves $NLS_p^{\pm}(\mathbb{R}^d)$ on $(-\lambda^2 T_*, \lambda^2 T^*) \times \mathbb{R}^2$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

If
$$u$$
 solves $NLS_p^{\pm}(\mathbb{R}^d)$ on $(-T_*, T^*) imes \mathbb{R}^2$ then

$$u_{\lambda}(\tau, y) := \lambda^{\frac{2}{1-p}} u(\tau \lambda^{-2}, y \lambda^{-1})$$

solves $NLS_p^{\pm}(\mathbb{R}^d)$ on $(-\lambda^2 T_*, \lambda^2 T^*) \times \mathbb{R}^2$.

 Dilation invariant norms play a decisive role in the theory of NLS[±]_p(ℝ^d) :

If
$$u$$
 solves $NLS_p^{\pm}(\mathbb{R}^d)$ on $(-T_*, T^*) imes \mathbb{R}^2$ then

$$u_{\lambda}(\tau, y) := \lambda^{\frac{2}{1-p}} u(\tau \lambda^{-2}, y \lambda^{-1})$$

solves $NLS_p^{\pm}(\mathbb{R}^d)$ on $(-\lambda^2 T_*, \lambda^2 T^*) \times \mathbb{R}^2$.

 Dilation invariant norms play a decisive role in the theory of NLS[±]_p(ℝ^d) :

If *u* solves
$$NLS_p^{\pm}(\mathbb{R}^d)$$
 on $(-T_*, T^*) \times \mathbb{R}^2$ then

$$u_{\lambda}(\tau, y) := \lambda^{\frac{2}{1-p}} u(\tau \lambda^{-2}, y \lambda^{-1})$$

solves $NLS^{\pm}_{p}(\mathbb{R}^{d})$ on $(-\lambda^{2}T_{*},\lambda^{2}T^{*}) \times \mathbb{R}^{2}$.

 Dilation invariant norms play a decisive role in the theory of NLS[±]_p(ℝ^d) :

$$\|D_y^{\sigma}u_{\lambda}\|_{L^q(\mathbb{R}^d_y)} = \left(\frac{1}{\lambda}\right)^{\frac{2}{p-1}+\sigma-\frac{d}{q}} \|D_x^{\sigma}u\|_{L^q(\mathbb{R}^d_x)}.$$

If *u* solves
$$NLS_p^{\pm}(\mathbb{R}^d)$$
 on $(-T_*, T^*) \times \mathbb{R}^2$ then

$$u_{\lambda}(\tau, y) := \lambda^{\frac{2}{1-p}} u(\tau \lambda^{-2}, y \lambda^{-1})$$

solves $NLS^{\pm}_{p}(\mathbb{R}^{d})$ on $(-\lambda^{2}T_{*},\lambda^{2}T^{*})\times\mathbb{R}^{2}$.

 Dilation invariant norms play a decisive role in the theory of NLS[±]_p(ℝ^d) :

$$\|D_y^{\sigma}u_{\lambda}\|_{L^q(\mathbb{R}^d_y)} = \left(\frac{1}{\lambda}\right)^{\frac{2}{p-1}+\sigma-\frac{d}{q}} \|D_x^{\sigma}u\|_{L^q(\mathbb{R}^d_x)}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\dot{W}^{\sigma,q}$ is critical if $\frac{2}{p-1} + \sigma - \frac{d}{q} = 0$.

If *u* solves
$$NLS_p^{\pm}(\mathbb{R}^d)$$
 on $(-T_*, T^*) \times \mathbb{R}^2$ then

$$u_{\lambda}(\tau, y) := \lambda^{\frac{2}{1-p}} u(\tau \lambda^{-2}, y \lambda^{-1})$$

solves $NLS^{\pm}_{\rho}(\mathbb{R}^d)$ on $(-\lambda^2 T_*, \lambda^2 T^*) \times \mathbb{R}^2$.

 Dilation invariant norms play a decisive role in the theory of NLS[±]_p(ℝ^d) :

$$\|D_y^{\sigma}u_{\lambda}\|_{L^q(\mathbb{R}^d_y)} = \left(\frac{1}{\lambda}\right)^{\frac{2}{p-1}+\sigma-\frac{d}{q}} \|D_x^{\sigma}u\|_{L^q(\mathbb{R}^d_x)}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\dot{W}^{\sigma,q}$ is critical if $\frac{2}{p-1} + \sigma - \frac{d}{q} = 0$. • $NLS_p^{\pm}(\mathbb{R}^d)$ is \dot{H}^{s_c} -critical for $s_c := \frac{d}{2} - \frac{2}{p-1}$.

If *u* solves
$$NLS_p^{\pm}(\mathbb{R}^d)$$
 on $(-T_*, T^*) \times \mathbb{R}^2$ then

$$u_{\lambda}(\tau, y) := \lambda^{\frac{2}{1-p}} u(\tau \lambda^{-2}, y \lambda^{-1})$$

solves $NLS^{\pm}_{p}(\mathbb{R}^{d})$ on $(-\lambda^{2}T_{*},\lambda^{2}T^{*})\times\mathbb{R}^{2}$.

 Dilation invariant norms play a decisive role in the theory of NLS[±]_p(ℝ^d) :

$$\|D_y^{\sigma}u_{\lambda}\|_{L^q(\mathbb{R}^d_y)} = \left(\frac{1}{\lambda}\right)^{\frac{2}{p-1}+\sigma-\frac{d}{q}} \|D_x^{\sigma}u\|_{L^q(\mathbb{R}^d_x)}.$$

 $\dot{W}^{\sigma,q}$ is critical if $\frac{2}{p-1} + \sigma - \frac{d}{q} = 0$. **N** $LS_p^{\pm}(\mathbb{R}^d)$ is \dot{H}^{s_c} -critical for $s_c := \frac{d}{2} - \frac{2}{p-1}$. **L**² and \dot{H}^1 critical cases distinguished by conservation laws.

• Theory for $NLS_p^{\pm}(\mathbb{R}^d)$ is qualitatively similar in regimes:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Theory for NLS[±]_p(R^d) is qualitatively similar in regimes:
 Mass subcritical (s_c < 0)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

• Theory for $NLS_p^{\pm}(\mathbb{R}^d)$ is qualitatively similar in regimes:

- Mass subcritical ($s_c < 0$)
- Mass critical $(s_c = 0)$

• Theory for $NLS_p^{\pm}(\mathbb{R}^d)$ is qualitatively similar in regimes:

- Mass subcritical (s_c < 0)
- Mass critical ($s_c = 0$)
- Mass supercritical/Energy subcritical ($0 < s_c < 1$)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Theory for $NLS_p^{\pm}(\mathbb{R}^d)$ is qualitatively similar in regimes:

- Mass subcritical (s_c < 0)
- Mass critical ($s_c = 0$)
- Mass supercritical/Energy subcritical ($0 < s_c < 1$)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Energy critical ($s_c = 1$)

• Theory for $NLS_p^{\pm}(\mathbb{R}^d)$ is qualitatively similar in regimes:

- Mass subcritical (s_c < 0)
- Mass critical (s_c = 0)
- Mass supercritical/Energy subcritical ($0 < s_c < 1$)

- Energy critical ($s_c = 1$)
- Energy supercritical $(s_c > 1)$.

• Theory for $NLS_p^{\pm}(\mathbb{R}^d)$ is qualitatively similar in regimes:

- Mass subcritical (s_c < 0)
- Mass critical $(s_c = 0)$
- Mass supercritical/Energy subcritical ($0 < s_c < 1$)
- Energy critical ($s_c = 1$)
- Energy supercritical $(s_c > 1)$.

• Optimal local-in-time well-posedness (LWP) for $NLS_p^{\pm}(\mathbb{R}^d)$:

• Theory for $NLS_p^{\pm}(\mathbb{R}^d)$ is qualitatively similar in regimes:

- Mass subcritical (s_c < 0)
- Mass critical $(s_c = 0)$
- Mass supercritical/Energy subcritical ($0 < s_c < 1$)
- Energy critical ($s_c = 1$)
- Energy supercritical $(s_c > 1)$.

• Optimal local-in-time well-posedness (LWP) for $NLS_p^{\pm}(\mathbb{R}^d)$:

• Theory for $NLS_p^{\pm}(\mathbb{R}^d)$ is qualitatively similar in regimes:

- Mass subcritical (s_c < 0)
- Mass critical (s_c = 0)
- Mass supercritical/Energy subcritical ($0 < s_c < 1$)
- Energy critical ($s_c = 1$)
- Energy supercritical $(s_c > 1)$.
- Optimal local-in-time well-posedness (LWP) for NLS[±]_p(ℝ^d):
 ∀ s ≥ max(0, s_c) ∃ unique continuous data-to-solution map

$$H^{s} \ni u_{0} \longmapsto u \in C([0, T_{lwp}]; H^{s}) \cap L_{t}^{q} L_{x}^{p}$$

with $T_{lwp} = T_{lwp}(||u_0||_{H^s})$ if $s > s_c$ and $T_{lwp} = T(u_0)$ if $s = s_c$. (III-posedness holds for $s < \max(0, s_c)$)

• Theory for $NLS_p^{\pm}(\mathbb{R}^d)$ is qualitatively similar in regimes:

- Mass subcritical (s_c < 0)
- Mass critical (s_c = 0)
- Mass supercritical/Energy subcritical ($0 < s_c < 1$)
- Energy critical ($s_c = 1$)
- Energy supercritical ($s_c > 1$).
- Optimal local-in-time well-posedness (LWP) for NLS[±]_p(ℝ^d):
 ∀ s ≥ max(0, s_c) ∃ unique continuous data-to-solution map

$$H^{s} \ni u_{0} \longmapsto u \in C([0, T_{lwp}]; H^{s}) \cap L_{t}^{q}L_{x}^{p}$$

with $T_{lwp} = T_{lwp}(||u_0||_{H^s})$ if $s > s_c$ and $T_{lwp} = T(u_0)$ if $s = s_c$. (III-posedness holds for $s < \max(0, s_c)$)

Optimal maximal-in-time well-posedness (GWP) is known only in the defocusing energy critical case. What is the fate of local-in-time solutions with critical initial regularity?

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 国 ● の Q @

Restrict attention to $NLS_3^{\pm}(\mathbb{R}^2)$. Typical L^2 critical case?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Restrict attention to $NLS_3^{\pm}(\mathbb{R}^2)$. Typical L^2 critical case?

[Cazenave-Weissler]

Restrict attention to $NLS_3^{\pm}(\mathbb{R}^2)$. Typical L^2 critical case?

[Cazenave-Weissler] • $\forall u_0 \in L^2$ there exists $T_{lwp}(u_0)$ determined by $\|e^{it\Delta}u_0\|_{L^4_{tx}}([0, T_{lwp}] \times \mathbb{R}^2) < \frac{1}{100}.$ \exists unique solution $u \in C([0, T_{lwp}]; L^2) \cap L^4_{tx}([0, T_{lwp}] \times \mathbb{R}^2).$

Restrict attention to $NLS_3^{\pm}(\mathbb{R}^2)$. Typical L^2 critical case?

[Cazenave-Weissler]

• $\forall u_0 \in L^2$ there exists $T_{lwp}(u_0)$ determined by

$$\|e^{it\Delta}u_0\|_{L^4_{tx}}([0, T_{lwp}] \times \mathbb{R}^2) < \frac{1}{100}$$

∃ unique solution $u \in C([0, T_{lwp}]; L^2) \cap L^4_{tx}([0, T_{lwp}] \times \mathbb{R}^2)$. ■ Define the maximal forward existence time $T^*(u_0)$ by

$$\|u\|_{L^4_{tx}([0,T^*-\delta]\times\mathbb{R}^2)}<\infty$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for all $\delta > 0$ but diverges to ∞ as $\delta \downarrow 0$.

Restrict attention to $NLS_3^{\pm}(\mathbb{R}^2)$. Typical L^2 critical case?

[Cazenave-Weissler]

• $\forall u_0 \in L^2$ there exists $T_{lwp}(u_0)$ determined by

$$\|e^{it\Delta}u_0\|_{L^4_{tx}}([0, T_{lwp}] \times \mathbb{R}^2) < \frac{1}{100}$$

∃ unique solution $u \in C([0, T_{lwp}]; L^2) \cap L^4_{tx}([0, T_{lwp}] \times \mathbb{R}^2)$. ■ Define the maximal forward existence time $T^*(u_0)$ by

$$\|u\|_{L^4_{tx}([0,T^*-\delta]\times\mathbb{R}^2)}<\infty$$

for all $\delta > 0$ but diverges to ∞ as $\delta \downarrow 0$.

• \exists small data scattering threshold $\mu_0 > 0$

$$||u_0||_{L^2} < \mu_0 \implies ||u||_{L^4_{tx}(\mathbb{R} \times \mathbb{R}^2)} < 2\mu_0.$$

L^2 CRITICAL CASE: DEFOCUSING GWP THEORY

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

L^2 CRITICAL CASE: DEFOCUSING GWP THEORY

• H^1 -GWP for $NLS_3^+(\mathbb{R}^2)$.

L^2 CRITICAL CASE: DEFOCUSING GWP THEORY

• H^1 -GWP for $NLS_3^+(\mathbb{R}^2)$.

L^2 Critical Case: Defocusing GWP Theory

- H^1 -GWP for $NLS_3^+(\mathbb{R}^2)$.
- Standard 'I Method' yields H^s -GWP for $s > \frac{4}{7}$.

L^2 Critical Case: Defocusing GWP Theory

- H^1 -GWP for $NLS_3^+(\mathbb{R}^2)$.
- Standard 'I Method' yields H^s -GWP for $s > \frac{4}{7}$.
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

- H^1 -GWP for $NLS_3^+(\mathbb{R}^2)$.
- Standard 'I Method' yields H^s -GWP for $s > \frac{4}{7}$.
- NLS₅⁺(ℝ¹) is similarly H^s-GWP for s > ⁴/₉. [Tzirakis]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

- H^1 -GWP for $NLS_3^+(\mathbb{R}^2)$.
- Standard 'I Method' yields H^s -GWP for $s > \frac{4}{7}$.
- NLS₅⁺(ℝ¹) is similarly H^s-GWP for s > ⁴/₉. [Tzirakis]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- H^1 -GWP for $NLS_3^+(\mathbb{R}^2)$.
- Standard 'I Method' yields H^s -GWP for $s > \frac{4}{7}$.
- NLS₅⁺(ℝ¹) is similarly H^s-GWP for s > ⁴/₉. [Tzirakis]
- $NLS^+_{\frac{4}{d}+1}(\mathbb{R}^d)$ is GWP for $s > \frac{d+8}{d+10}$. [Visan-Zhang]

• H^1 -GWP for $NLS_3^+(\mathbb{R}^2)$.

- Standard 'I Method' yields H^s -GWP for $s > \frac{4}{7}$.
- NLS₅⁺(ℝ¹) is similarly H^s-GWP for s > ⁴/₉. [Tzirakis]
- $NLS^+_{\frac{4}{d}+1}(\mathbb{R}^d)$ is GWP for $s > \frac{d+8}{d+10}$. [Visan-Zhang]
- Recently $NLS_3^+(\mathbb{R}^2)$: [Grillakis-Fang, $s \ge \frac{1}{2}$]; [CKSTT, $s > \frac{1}{2}$] (Different proofs which will combine to go below $\frac{1}{2}$.)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• H^1 -GWP for $NLS_3^+(\mathbb{R}^2)$.

- Standard 'I Method' yields H^s -GWP for $s > \frac{4}{7}$.
- NLS₅⁺(ℝ¹) is similarly H^s-GWP for s > ⁴/₉. [Tzirakis]
- $NLS^+_{\frac{4}{d}+1}(\mathbb{R}^d)$ is GWP for $s > \frac{d+8}{d+10}$. [Visan-Zhang]
- Recently $NLS_3^+(\mathbb{R}^2)$: [Grillakis-Fang, $s \ge \frac{1}{2}$]; [CKSTT, $s > \frac{1}{2}$] (Different proofs which will combine to go below $\frac{1}{2}$.)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

My second talk will discuss new [CKSTT] result.

• H^1 -GWP for $NLS_3^+(\mathbb{R}^2)$.

- Standard 'I Method' yields H^s -GWP for $s > \frac{4}{7}$.
- NLS₅⁺(ℝ¹) is similarly H^s-GWP for s > ⁴/₉. [Tzirakis]
- $NLS^+_{\frac{4}{d}+1}(\mathbb{R}^d)$ is GWP for $s > \frac{d+8}{d+10}$. [Visan-Zhang]
- Recently $NLS_3^+(\mathbb{R}^2)$: [Grillakis-Fang, $s \ge \frac{1}{2}$]; [CKSTT, $s > \frac{1}{2}$] (Different proofs which will combine to go below $\frac{1}{2}$.)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

My second talk will discuss new [CKSTT] result.

• H^1 -GWP for $NLS_3^+(\mathbb{R}^2)$.

- Standard 'I Method' yields H^s -GWP for $s > \frac{4}{7}$.
- NLS₅⁺(ℝ¹) is similarly H^s-GWP for s > ⁴/₉. [Tzirakis]
- $NLS^+_{\frac{4}{d}+1}(\mathbb{R}^d)$ is GWP for $s > \frac{d+8}{d+10}$. [Visan-Zhang]
- Recently $NLS_3^+(\mathbb{R}^2)$: [Grillakis-Fang, $s \ge \frac{1}{2}$]; [CKSTT, $s > \frac{1}{2}$] (Different proofs which will combine to go below $\frac{1}{2}$.)
- My second talk will discuss new [CKSTT] result.
- Recently [Tao-Visan] proved NLS⁺₂(R⁴) is GWP and scatters using Bourgain's induction on energy strategy!

L^2 CRITICAL CASE: FOCUSING GWP PROPERTIES

• H^1 -GWP mass threshold $||Q||_{L^2}$ for $NLS_3^-(\mathbb{R}^2)$:

L^2 CRITICAL CASE: FOCUSING GWP PROPERTIES

• H^1 -GWP mass threshold $||Q||_{L^2}$ for $NLS_3^-(\mathbb{R}^2)$:

L^2 CRITICAL CASE: FOCUSING GWP PROPERTIES

• H^1 -GWP mass threshold $||Q||_{L^2}$ for $NLS_3^-(\mathbb{R}^2)$: $||u_0||_{L^2} < ||Q||_{L^2} \implies H^1 \ni u_0 \longmapsto u, T^* = \infty.$ [Weinstein]

・ロト・日本・モート モー うへで

L^2 Critical Case: Focusing GWP Properties

• H^1 -GWP mass threshold $||Q||_{L^2}$ for $NLS_3^-(\mathbb{R}^2)$:

$$\|u_0\|_{L^2} < \|Q\|_{L^2} \implies H^1 \ni u_0 \longmapsto u, T^* = \infty.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

[Weinstein] Here Q is the ground state solution to $-Q + \Delta Q = Q^3$. $u(t,x) = e^{it}Q(x)$ is the ground state soliton solution to $NLS_3^-(\mathbb{R}^2)$. • H^1 -GWP mass threshold $||Q||_{L^2}$ for $NLS_3^-(\mathbb{R}^2)$:

$$\|u_0\|_{L^2} < \|Q\|_{L^2} \implies H^1 \ni u_0 \longmapsto u, T^* = \infty.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

[Weinstein] Here Q is the ground state solution to -Q + ΔQ = Q³. u(t,x) = e^{it}Q(x) is the ground state soliton solution to NLS₃⁻(ℝ²).
NLS₅⁻(ℝ) is H^s-GWP for s > ⁴/₉ below ground state.

[Tzirakis]

• H^1 -GWP mass threshold $||Q||_{L^2}$ for $NLS_3^-(\mathbb{R}^2)$:

$$\|u_0\|_{L^2} < \|Q\|_{L^2} \implies H^1 \ni u_0 \longmapsto u, T^* = \infty.$$

[Weinstein] Here Q is the ground state solution to $-Q + \Delta Q = Q^3$. $u(t,x) = e^{it}Q(x)$ is the ground state soliton solution to $NLS_3^-(\mathbb{R}^2)$.

- NLS₅[−](ℝ) is H^s-GWP for s > ⁴/₉ below ground state. [Tzirakis]
- $NLS^{-}_{\frac{4}{d}+1}(\mathbb{R}^d)$ is H^s -GWP for $s > \frac{d+8}{d+10}$ below ground state. [Visan-Zhang]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

• Arise as *pseudoconformal* image of $e^{it}Q(x)$:

$$S(t,x) = \frac{1}{t}Q\left(\frac{x}{t}\right)e^{-i\frac{|x|^2}{4t}+\frac{i}{t}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Arise as *pseudoconformal* image of $e^{it}Q(x)$:

$$S(t,x) = \frac{1}{t}Q\left(\frac{x}{t}\right)e^{-i\frac{|x|^2}{4t}+\frac{i}{t}}.$$

S has minimal mass:

$$\|S(-1)\|_{L^2_x} = \|Q\|_{L^2}.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

All mass in S is conically concentrated into a point.

• Arise as *pseudoconformal* image of $e^{it}Q(x)$:

$$S(t,x) = \frac{1}{t}Q\left(\frac{x}{t}\right)e^{-i\frac{|x|^2}{4t}+\frac{i}{t}}.$$

S has minimal mass:

$$\|S(-1)\|_{L^2_x} = \|Q\|_{L^2}.$$

All mass in S is conically concentrated into a point.

 Minimal mass H¹ blowup solution characterization: u₀ ∈ H¹, ||u₀||_{L²} = ||Q||_{L²}, T*(u₀) < ∞ implies that u = S up to an explicit solution symmetry. [Merle]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

L^2 CRITICAL CASE: BLOWUP SOLUTION PROPERTIES

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Virial Identity $\implies \exists$ Many Blowup Solutions

Virial Identity $\implies \exists$ Many Blowup Solutions

Integration by parts and the equation yields

$$\partial_t^2 \int_{\mathbb{R}^2_x} |x|^2 |u(t,x)|^2 dx = 8H[u_0]$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Virial Identity $\implies \exists$ Many Blowup Solutions

Integration by parts and the equation yields

$$\partial_t^2 \int_{\mathbb{R}^2_x} |x|^2 |u(t,x)|^2 dx = 8H[u_0].$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• $H[u_0] < 0, \int |x|^2 |u_0(x)|^2 dx < \infty$ blows up.

Virial Identity $\implies \exists$ Many Blowup Solutions

Integration by parts and the equation yields

$$\partial_t^2 \int_{\mathbb{R}^2_x} |x|^2 |u(t,x)|^2 dx = 8H[u_0].$$

■
$$H[u_0] < 0, \int |x|^2 |u_0(x)|^2 dx < \infty$$
 blows up.
■ How do these solutions blow up?

▲□▶ ▲□▶ ★ □▶ ★ □▶ ▲□ ● ● ●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

H^1 Theory of Mass Concentration

H^1 Theory of Mass Concentration

•
$$H^1 \cap \{ radial \} \ni u_0 \longmapsto u, T^* < \infty$$
 implies
$$\liminf_{t \uparrow T^*} \int_{|x| < (T^* - t)^{1/2 -}} |u(t, x)|^2 dx \ge \|Q\|_{L^2}^2.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

[Merle-Tsutsumi]

H^1 Theory of Mass Concentration

•
$$H^1 \cap \{ radial \} \ni u_0 \longmapsto u, T^* < \infty \text{ implies}$$

$$\liminf_{t \uparrow T^*} \int_{|x| < (T^* - t)^{1/2 -}} |u(t, x)|^2 dx \ge ||Q||_{L^2}^2.$$

[Merle-Tsutsumi]

 H¹ blowups parabolically concentrate at least the ground state mass. Explicit blowups S concentrate mass much faster.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

H^1 Theory of Mass Concentration

•
$$H^1 \cap \{ radial \} \ni u_0 \longmapsto u, T^* < \infty \text{ implies}$$

$$\liminf_{t \uparrow T^*} \int_{|x| < (T^* - t)^{1/2 -}} |u(t, x)|^2 dx \ge ||Q||_{L^2}^2.$$

[Merle-Tsutsumi]

 H¹ blowups parabolically concentrate at least the ground state mass. Explicit blowups S concentrate mass much faster.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Fantastic recent progress on the H¹ blowup theory. [Merle-Raphaël]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

L² Theory of Mass Concentration

L² Theory of Mass Concentration

•
$$L^2 \ni u_0 \longmapsto u, T^* < \infty$$
 implies

$$\limsup_{t \uparrow T^*} \sup_{squares \ I, side(I) \le (T^* - t)^{1/2}} \int_I |u(t, x)|^2 dx \ge ||u_0||_{L^2}^{-M}$$

c

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

[Bourgain]

 L^2 blowups parabolically concentrate some mass.

L² Theory of Mass Concentration

•
$$L^2 \ni u_0 \longmapsto u, T^* < \infty$$
 implies

$$\limsup_{t \uparrow T^*} \sup_{squares} \sup_{I,side(I) \le (T^* - t)^{1/2}} \int_I |u(t, x)|^2 dx \ge ||u_0||_{L^2}^{-M}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

[Bourgain]

L² blowups parabolically concentrate some mass.
For large L² data, do there exist tiny concentrations?

L² Theory of Mass Concentration

•
$$L^2 \ni u_0 \longmapsto u, T^* < \infty$$
 implies

$$\limsup_{t \uparrow T^*} \sup_{squares} \sup_{I,side(I) \le (T^* - t)^{1/2}} \int_I |u(t, x)|^2 dx \ge ||u_0||_{L^2}^{-M}$$

[Bourgain]

 L^2 blowups parabolically concentrate some mass.

- For large L^2 data, do there exist tiny concentrations?
- Extensions in [Merle-Vega], [Carles-Keraani], [Bégout-Vargas].

[Merle-Raphaël]:

$$\begin{array}{l} H^{1} \cap \{ \|Q\|_{L^{2}} < \|u_{0}\|_{L^{2}} < \|Q\|_{L^{2}} + \alpha^{*} \} \ni u_{0} \longmapsto u \text{ solving} \\ NLS_{3}^{-}(\mathbb{R}^{2}) \text{ on } [0, T^{*}) \text{ (maximal) with } T^{*} < \infty. \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

[Merle-Raphaël]:

$$\begin{split} & H^{1} \cap \{ \|Q\|_{L^{2}} < \|u_{0}\|_{L^{2}} < \|Q\|_{L^{2}} + \alpha^{*} \} \ni u_{0} \longmapsto u \text{ solving} \\ & \text{NLS}_{3}^{-}(\mathbb{R}^{2}) \text{ on } [0, T^{*}) \text{ (maximal) with } T^{*} < \infty. \\ & \exists \lambda(t), x(t), \theta(t) \in \mathbb{R}^{+}, \mathbb{R}^{2}, \mathbb{R}/(2\pi\mathbb{Z}) \text{ and } u^{*} \text{ such that} \\ & u(t) - \lambda(t)^{-1}Q\left(\frac{x - x(t)}{\lambda(t)}\right) e^{i\theta(t)} \to u^{*} \end{split}$$

strongly in $L^2(\mathbb{R}^2)$. Typically, $u^* \notin H^s \cup L^p$ for s > 0, p > 2!

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

L^2 CRITICAL CASE: CONJECTURES/QUESTIONS

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

L^2 CRITICAL CASE: CONJECTURES/QUESTIONS

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Consider focusing $NLS_3^-(\mathbb{R}^2)$:

L^2 CRITICAL CASE: CONJECTURES/QUESTIONS

Consider focusing $NLS_3^-(\mathbb{R}^2)$:

Scattering Below the Ground State Mass

 $\|u_0\|_{L^2} < \|Q\|_{L^2} \implies \stackrel{???}{\Longrightarrow} u_0 \longmapsto u \text{ with } \|u\|_{L^4_{tx}} < \infty.$ (Also, L^2 solutions of $NLS_3^+(\mathbb{R}^2)$ satisfy??? $\|u\|_{L^4_{tx}} < \infty.$)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
L^2 CRITICAL CASE: CONJECTURES/QUESTIONS

Consider focusing $NLS_3^-(\mathbb{R}^2)$:

Scattering Below the Ground State Mass

 $\|u_0\|_{L^2} < \|Q\|_{L^2} \implies \stackrel{???}{\Longrightarrow} u_0 \longmapsto u \text{ with } \|u\|_{L^4_{tx}} < \infty.$

(Also, L^2 solutions of $NLS_3^+(\mathbb{R}^2)$ satisfy??? $||u||_{L^4_{tx}} < \infty$.) Minimal Mass Blowup Characterization

$$\|u_0\|_{L^2} = \|Q\|_{L^2}, u_0 \longmapsto u, T^* < \infty \implies \stackrel{???}{\Longrightarrow} u = S,$$

modulo a solution symmetry. An intermediate step would extend characterization of the minimal mass blowup solutions in H^s for s < 1.

L^2 CRITICAL CASE: CONJECTURES/QUESTIONS

Consider focusing $NLS_3^-(\mathbb{R}^2)$:

Scattering Below the Ground State Mass

 $\|u_0\|_{L^2} < \|Q\|_{L^2} \implies \stackrel{???}{\Longrightarrow} u_0 \longmapsto u \text{ with } \|u\|_{L^4_{tx}} < \infty.$

(Also, L^2 solutions of $NLS_3^+(\mathbb{R}^2)$ satisfy??? $||u||_{L^4_{tx}} < \infty$.) Minimal Mass Blowup Characterization

$$\|u_0\|_{L^2} = \|Q\|_{L^2}, u_0 \longmapsto u, T^* < \infty \implies \stackrel{???}{\Longrightarrow} u = S,$$

modulo a solution symmetry. An intermediate step would extend characterization of the minimal mass blowup solutions in H^s for s < 1.

 Concentrated mass amounts are quantized
 The explicit blowups constructed by pseudoconformally transforming time periodic solutions with ground and excited state profiles are the only asymptotic profiles.

L^2 CRITICAL CASE: CONJECTURES/QUESTIONS

Consider focusing $NLS_3^-(\mathbb{R}^2)$:

Scattering Below the Ground State Mass

 $\|u_0\|_{L^2} < \|Q\|_{L^2} \implies \stackrel{???}{\Longrightarrow} u_0 \longmapsto u \text{ with } \|u\|_{L^4_{tx}} < \infty.$

(Also, L^2 solutions of $NLS_3^+(\mathbb{R}^2)$ satisfy??? $||u||_{L^4_{tx}} < \infty$.) Minimal Mass Blowup Characterization

$$\|u_0\|_{L^2} = \|Q\|_{L^2}, u_0 \longmapsto u, T^* < \infty \implies \stackrel{???}{\Longrightarrow} u = S,$$

modulo a solution symmetry. An intermediate step would extend characterization of the minimal mass blowup solutions in H^s for s < 1.

- Concentrated mass amounts are quantized
 The explicit blowups constructed by pseudoconformally transforming time periodic solutions with ground and excited state profiles are the only asymptotic profiles.
- Are there any general upper bounds?

•

For 0.86 ~
$$\frac{1}{5}(1 + \sqrt{11}) < s < 1, H^s \cap \{radial\} \ni u_0 \mapsto u, T^* < \infty \implies$$

$$\limsup_{t\uparrow T^*} \int_{|x|<(T^*-t)^{s/2-}} |u(t,x)|^2 dx \ge \|Q\|_{L^2}^2.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

H^s-blowup solutions concentrate ground state mass. [With Raynor, Sulem and Wright] (Third lecture)

For 0.86 ~
$$\frac{1}{5}(1 + \sqrt{11}) < s < 1, H^s \cap \{radial\} \ni u_0 \mapsto u, T^* < \infty \implies$$

$$\limsup_{t\uparrow \mathcal{T}^*} \int_{|x|<(\mathcal{T}^*-t)^{s/2-}} |u(t,x)|^2 dx \ge \|Q\|_{L^2}^2.$$

H^s-blowup solutions concentrate ground state mass. [With Raynor, Sulem and Wright] (Third lecture)

$$\| u_0 \|_{L^2} = \| Q \|_{L^2}, u_0 \in H^s, \sim 0.86 < s < 1, T^* < \infty \implies \\ \exists t_n \uparrow T^* \text{ s.t. } u(t_n) \to Q \text{ in } H^{\tilde{s}(s)} \text{ (mod symmetry sequence).}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For 0.86 ~
$$\frac{1}{5}(1 + \sqrt{11}) < s < 1, H^s \cap \{radial\} \ni u_0 \mapsto u, T^* < \infty \implies$$

$$\limsup_{t\uparrow \mathcal{T}^*} \int_{|x|<(\mathcal{T}^*-t)^{s/2-}} |u(t,x)|^2 dx \ge \|Q\|_{L^2}^2.$$

H^s-blowup solutions concentrate ground state mass. [With Raynor, Sulem and Wright] (Third lecture)

$$\| u_0 \|_{L^2} = \| Q \|_{L^2}, u_0 \in H^s, \sim 0.86 < s < 1, T^* < \infty \implies \\ \exists t_n \uparrow T^* \text{ s.t. } u(t_n) \to Q \text{ in } H^{\tilde{s}(s)} \text{ (mod symmetry sequence).}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

■ For 0.86 ~ $\frac{1}{5}(1 + \sqrt{11}) < s < 1, H^s \cap \{radial\} \ni u_0 \mapsto u, T^* < \infty \implies$

$$\limsup_{t\uparrow \mathcal{T}^*} \int_{|x|<(\mathcal{T}^*-t)^{s/2-}} |u(t,x)|^2 dx \ge \|Q\|_{L^2}^2.$$

H^s-blowup solutions concentrate ground state mass. [With Raynor, Sulem and Wright] (Third lecture)

■ $||u_0||_{L^2} = ||Q||_{L^2}, u_0 \in H^s, \sim 0.86 < s < 1, T^* < \infty \implies$ $\exists t_n \uparrow T^* \text{ s.t. } u(t_n) \rightarrow Q \text{ in } H^{\tilde{s}(s)} \text{ (mod symmetry sequence).}$ For H^s blowups with $||u_0||_{L^2} > ||Q||_{L^2}, u(t_n) \rightarrow V \in H^1 \text{ (mod symmetry sequence).}$ [Hmidi-Keraani]

(日) (同) (三) (三) (三) (○) (○)

■ For 0.86 ~ $\frac{1}{5}(1 + \sqrt{11}) < s < 1, H^s \cap \{radial\} \ni u_0 \mapsto u, T^* < \infty \implies$

$$\limsup_{t\uparrow \mathcal{T}^*} \int_{|x|<(\mathcal{T}^*-t)^{s/2-}} |u(t,x)|^2 dx \ge \|Q\|_{L^2}^2.$$

H^s-blowup solutions concentrate ground state mass. [With Raynor, Sulem and Wright] (Third lecture)

||u₀||_{L²} = ||Q||_{L²}, u₀ ∈ H^s, ~ 0.86 < s < 1, T^{*} < ∞ ⇒
 ∃ t_n ↑ T^{*} s.t. u(t_n) → Q in H^{š(s)} (mod symmetry sequence).
 For H^s blowups with ||u₀||_{L²} > ||Q||_{L²}, u(t_n) → V ∈ H¹ (mod symmetry sequence). [Hmidi-Keraani] This is an H^s analog of an H¹ result of [Weinstein] which preceded the minimal H¹ blowup solution characterization.

■ For 0.86 ~ $\frac{1}{5}(1 + \sqrt{11}) < s < 1, H^s \cap \{radial\} \ni u_0 \mapsto u, T^* < \infty \implies$

$$\limsup_{t\uparrow T^*} \int_{|x|<(T^*-t)^{s/2-}} |u(t,x)|^2 dx \ge \|Q\|_{L^2}^2.$$

H^s-blowup solutions concentrate ground state mass. [With Raynor, Sulem and Wright] (Third lecture)

- $||u_0||_{L^2} = ||Q||_{L^2}, u_0 \in H^s, \sim 0.86 < s < 1, T^* < \infty \implies$ $\exists t_n \uparrow T^* \text{ s.t. } u(t_n) \to Q \text{ in } H^{\tilde{s}(s)} \pmod{\text{symmetry sequence}}.$ For H^s blowups with $||u_0||_{L^2} > ||Q||_{L^2}, u(t_n) \rightharpoonup V \in H^1 \pmod{\text{symmetry sequence}}.$ [Hmidi-Keraani] This is an H^s analog of an H^1 result of [Weinstein] which preceded the minimal H^1 blowup solution characterization.
- Same results for $NLS^{-}_{\frac{4}{d}+1}(\mathbb{R}^d)$ in H^s , $s > \frac{d+8}{d+10}$. [Visan-Zhang]

Spacetime norm divergence rate

$$\|u\|_{L^4_{tx}([0,t] imes \mathbb{R}^2)} \gtrsim (T^*-t)^{-eta}$$

Spacetime norm divergence rate

$$\|u\|_{L^4_{tx}([0,t] imes \mathbb{R}^2)} \gtrsim (T^*-t)^{-eta}$$

Spacetime norm divergence rate

$$\|u\|_{L^4_{tx}([0,t] imes \mathbb{R}^2)}\gtrsim (T^*-t)^{-eta}$$

is linked with mass concentration rate

$$\limsup_{t \uparrow T^*} \sup_{cubes \ I, side(I) \le (T^* - t)^{\frac{1}{2} + \frac{\beta}{2}}} \int_{I} |u(t, x)|^2 dx \ge ||u_0||_{L^2}^{-M}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

[with Roudenko] (Third Lecture)

Spacetime norm divergence rate

$$\|u\|_{L^4_{tx}([0,t] imes \mathbb{R}^2)}\gtrsim (T^*-t)^{-eta}$$

is linked with mass concentration rate

$$\limsup_{t\uparrow T^*} \sup_{cubes \ I, side(I) \leq (T^*-t)^{\frac{1}{2}+\frac{\beta}{2}}} \int_I |u(t,x)|^2 dx \geq \|u_0\|_{L^2}^{-M}.$$

[with Roudenko] (Third Lecture)

 Ruling out tight concentrations provides spacetime divergence rate upper bounds.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

<□ > < @ > < E > < E > E のQ @

Consider $NLS_3^-(\mathbb{R}^3)$. Also L_x^3 -Critical. Typical Case?

Consider NLS₃⁻(ℝ³). Also L_x³-Critical. Typical Case?
LWP theory similar to NLS₃[±](ℝ²):

$$\mathcal{L}^{2}(\mathbb{R}^{2})\longmapsto\mathcal{H}^{1/2}(\mathbb{R}^{3})$$

 $\mathcal{L}^{4}_{tx}\longmapsto\mathcal{L}^{5}_{tx}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Consider $NLS_3^-(\mathbb{R}^3)$. Also L_x^3 -Critical. Typical Case? • LWP theory similar to $NLS_3^{\pm}(\mathbb{R}^2)$:

$$\mathcal{L}^{2}(\mathbb{R}^{2})\longmapsto\mathcal{H}^{1/2}(\mathbb{R}^{3})$$

 $\mathcal{L}^{4}_{tx}\longmapsto\mathcal{L}^{5}_{tx}.$

• There cannot be an *H*¹-GWP mass threshold.

Consider $NLS_3^-(\mathbb{R}^3)$. Also L_x^3 -Critical. Typical Case? • LWP theory similar to $NLS_3^{\pm}(\mathbb{R}^2)$:

$$L^2(\mathbb{R}^2)\longmapsto H^{1/2}(\mathbb{R}^3)$$

 $L^4_{tx}\longmapsto L^5_{tx}.$

- There cannot be an H^1 -GWP mass threshold.
- No explicit blowup solutions are known.

Consider $NLS_3^-(\mathbb{R}^3)$. Also L_x^3 -Critical. Typical Case? • LWP theory similar to $NLS_3^{\pm}(\mathbb{R}^2)$:

$$\mathcal{L}^{2}(\mathbb{R}^{2})\longmapsto\mathcal{H}^{1/2}(\mathbb{R}^{3})$$

 $\mathcal{L}^{4}_{tx}\longmapsto\mathcal{L}^{5}_{tx}.$

- There cannot be an H^1 -GWP mass threshold.
- No explicit blowup solutions are known.
- Virial identity $\implies \exists$ many blowup solutions.

Consider $NLS_3^-(\mathbb{R}^3)$. Also L_x^3 -Critical. Typical Case? • LWP theory similar to $NLS_3^{\pm}(\mathbb{R}^2)$:

$$L^2(\mathbb{R}^2)\longmapsto H^{1/2}(\mathbb{R}^3)$$

 $L^4_{tx}\longmapsto L^5_{tx}.$

- There cannot be an *H*¹-GWP mass threshold.
- No explicit blowup solutions are known.
- Virial identity $\implies \exists$ many blowup solutions.
- $H^1 \cap \{ radial \} \ni u_0 \longmapsto u, T^* < \infty$ then for any a > 0

$$\|
abla u(t)\|_{L^2_{|x| as $t\uparrow T^*$$$

Thus, radial solutions must explode at the origin.

$H^{1/2}$ CRITICAL CASE: RADIAL $NLS_3^-(\mathbb{R}^3)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Proof.

 $H^{1/2}$ CRITICAL CASE: RADIAL $NLS_3^-(\mathbb{R}^3)$

By Hamiltonian conservation,

$$\|\nabla u(t)\|_{L^2}^2 = H[u_0] + \frac{1}{2} \|u(t)\|_{L^4_{|x| < a}}^4 + \frac{1}{2} \|u(t)\|_{L^4_{|x| > a}}^4$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $H^{1/2}$ CRITICAL CASE: RADIAL $NLS_3^-(\mathbb{R}^3)$

By Hamiltonian conservation,

$$\|\nabla u(t)\|_{L^2}^2 = H[u_0] + \frac{1}{2} \|u(t)\|_{L^4_{|x|s}}^4$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Inner contribution estimated using Gagliardo-Nirenberg by $C(Mass, a) \|\nabla u(t)\|^3_{L^2_{|x| < a}}$.

 $H^{1/2}$ CRITICAL CASE: RADIAL $NLS_3^-(\mathbb{R}^3)$

By Hamiltonian conservation,

$$\|\nabla u(t)\|_{L^2}^2 = H[u_0] + \frac{1}{2} \|u(t)\|_{L^4_{|x|a}}^4$$

Inner contribution estimated using Gagliardo-Nirenberg by $C(Mass, a) \|\nabla u(t)\|_{L^{2}_{|x| < a}}^{3}$. Exterior region estimated by pulling out two factors in L^{∞}_{x} then using radial Sobolev to get control by $C_{a} \|u(t)\|_{L^{2}}^{3} \|\nabla u(t)\|_{L^{2}}$.

 $H^{1/2}$ CRITICAL CASE: RADIAL $NLS_3^-(\mathbb{R}^3)$

By Hamiltonian conservation,

$$\|\nabla u(t)\|_{L^2}^2 = H[u_0] + \frac{1}{2} \|u(t)\|_{L^4_{|x|a}}^4$$

Inner contribution estimated using Gagliardo-Nirenberg by $C(Mass, a) \|\nabla u(t)\|_{L^2_{|x| < a}}^3$. Exterior region estimated by pulling out two factors in L^{∞}_{x} then using radial Sobolev to get control by $C_a \|u(t)\|_{L^2}^3 \|\nabla u(t)\|_{L^2}$. Absorb the exterior kinetic energy to left side

 $\|
abla u(t)\|_{L^2}^2 \lesssim C(a, \mathit{Mass}[u_0], H[u_0]) + C(a, \mathit{Mass}[u_0]) \|
abla u(t)\|_{L^2_{|x| < a}}^3$

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

<ロ> <0</p>

Radial blowup solutions of energy subcritical NLS_p(R^d) with p < 5 must explode at the origin.</p>

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Radial blowup solutions of energy subcritical $NLS_p(\mathbb{R}^d)$ with p < 5 must explode at the origin.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For H^{1/2}-critical NLS₅⁻(ℝ²), there exists H¹ ∩ {radial} ∋ v₀ → v, T^{*}(v₀) < ∞ which blows up precisely on a circle! [Raphaël]

- Radial blowup solutions of energy subcritical $NLS_p(\mathbb{R}^d)$ with p < 5 must explode at the origin.
- For H^{1/2}-critical NLS₅⁻(ℝ²), there exists H¹ ∩ {radial} ∋ v₀ → v, T^{*}(v₀) < ∞ which blows up precisely on a circle! [Raphaël]

 Numerics/heuristics suggest: Finite time blowup solutions of NLS₃(ℝ³) satisfy ||u(t)||_{L³} ↑ ∞ as t ↑ T*. [Recently proved for H¹ ∩ {radial} data by Merle-Raphaël with log lower bounds.] [Work in progress with Raynor, Sulem, Wright; different proof]
 (Analogous to [Escauriaza-Seregin-Šverák] on Navier-Stokes)

- Radial blowup solutions of energy subcritical $NLS_p(\mathbb{R}^d)$ with p < 5 must explode at the origin.
- For H^{1/2}-critical NLS₅⁻(ℝ²), there exists H¹ ∩ {radial} ∋ v₀ → v, T^{*}(v₀) < ∞ which blows up precisely on a circle! [Raphaël]
- Numerics/heuristics suggest: Finite time blowup solutions of NLS₃(ℝ³) satisfy ||u(t)||_{L³} ↑ ∞ as t ↑ T*. [Recently proved for H¹ ∩ {radial} data by Merle-Raphaël with log lower bounds.] [Work in progress with Raynor, Sulem, Wright; different proof] (Analogous to [Escauriaza-Seregin-Šverák] on Navier-Stokes)
 H^{1/2}-blowups parabolically concentrate in L³ and H^{1/2}? [Work in progress with Roudenko]

■ Defocusing energy critical NLS⁺_{1+4/(d-2)}(ℝ^d), d ≥ 3 is globally well-posed and scatters in H¹:

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ● ●

 ■ Defocusing energy critical NLS⁺_{1+4/(d-2)}(ℝ^d), d ≥ 3 is globally well-posed and scatters in H¹: [Bourgain], [Grillakis]: Radial Case for d = 3,4

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ■ Defocusing energy critical NLS⁺_{1+4/(d-2)}(ℝ^d), d ≥ 3 is globally well-posed and scatters in H¹: [Bourgain], [Grillakis]: Radial Case for d = 3, 4 [CKSTT]: d = 3

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

 Defocusing energy critical NLS⁺_{1+4/(d-2)}(ℝ^d), d ≥ 3 is globally well-posed and scatters in H¹: [Bourgain], [Grillakis]: Radial Case for d = 3, 4 [CKSTT]: d = 3 [Tao]: Radial Case for d ≥ 4 [Ryckman-Visan], [Visan], [Tao-Visan]: d ≥ 4

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
Defocusing energy critical NLS⁺_{1+4/(d-2)}(ℝ^d), d ≥ 3 is globally well-posed and scatters in H¹: [Bourgain], [Grillakis]: Radial Case for d = 3, 4 [CKSTT]: d = 3 [Tao]: Radial Case for d ≥ 4 [Ryckman-Visan], [Visan], [Tao-Visan]: d ≥ 4 Induction on Energy; Interaction Morawetz; Mass Freezing

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Defocusing energy critical NLS⁺_{1+4/(d-2)}(ℝ^d), d ≥ 3 is globally well-posed and scatters in H¹: [Bourgain], [Grillakis]: Radial Case for d = 3, 4 [CKSTT]: d = 3 [Tao]: Radial Case for d ≥ 4 [Ryckman-Visan], [Visan], [Tao-Visan]: d ≥ 4 Induction on Energy; Interaction Morawetz; Mass Freezing

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Focusing energy critical case?

- Defocusing energy critical NLS⁺_{1+4/(d-2)}(ℝ^d), d ≥ 3 is globally well-posed and scatters in H¹: [Bourgain], [Grillakis]: Radial Case for d = 3, 4 [CKSTT]: d = 3 [Tao]: Radial Case for d ≥ 4 [Ryckman-Visan], [Visan], [Tao-Visan]: d ≥ 4 Induction on Energy; Interaction Morawetz; Mass Freezing
- Focusing energy critical case? For ℝ^d, d = 3, 4, 5, recently [Kenig-Merle] proved: Scattering below stationary solution energy. E[u₀] < E[W] and ||∇u₀||_{L²} < ||∇W||_{L²} ⇒ global-in-time and scatters.
 (ΔW = −|W|^{4/(d-2)}W, W = [1 + C_d|x|²]^{(2-d)/d})

- ロ ト - 4 回 ト - 4 □ - 4

- Defocusing energy critical NLS⁺_{1+4/(d-2)}(ℝ^d), d ≥ 3 is globally well-posed and scatters in H¹: [Bourgain], [Grillakis]: Radial Case for d = 3, 4 [CKSTT]: d = 3 [Tao]: Radial Case for d ≥ 4 [Ryckman-Visan], [Visan], [Tao-Visan]: d ≥ 4 Induction on Energy; Interaction Morawetz; Mass Freezing
- Focusing energy critical case? For ℝ^d, d = 3, 4, 5, recently [Kenig-Merle] proved: Scattering below stationary solution energy. E[u₀] < E[W] and ||∇u₀||_{L²} < ||∇W||_{L²} ⇒ global-in-time and scatters. (ΔW = −|W|^{4/(d-2)}W, W = [1 + C_d|x|²]^{(2-d)/d})

Scattering below W extended to $d \ge 6$ by [Visan-Zhang].

ENERGY SUPERCRITICAL CASE

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

ENERGY SUPERCRITICAL CASE

Consider $NLS_7^+(\mathbb{R}^3)$. Typical case?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Consider $NLS_7^+(\mathbb{R}^3)$. Typical case?

 Numerical experiments by [Blue-Sulem] and also for corresponding NLKG [Strauss-Vazquez] suggest GWP and scattering.

Consider $NLS_7^+(\mathbb{R}^3)$. Typical case?

- Numerical experiments by [Blue-Sulem] and also for corresponding NLKG [Strauss-Vazquez] suggest GWP and scattering.
- **Conjecture:** $NLS_7^+(\mathbb{R}^3)$ is GWP and scatters in $H^{7/6}(\mathbb{R}^3)$. [See discussion by Bourgain, GAFA Special Volume, 2000]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・