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Consider the initial value problem NLS;(R?):

iOu + Au = +|ulP~tu
u(0, x) = up(x).

We seek u: (=T, T*) x R — C.
(+ focusing, — defocusing)

Time Invariant Quantities

Mass = [[u(t)].z

2
Hamiltonian = [ |Vu(t)*d t)|Ptid
amiltonian /Rd| u(t)] X$p+1|u( )| Ix
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DILATION INVARIANCE

m If u solves NLS;E(]Rd) on (— Ty, T*) x R? then

u = AT P u(rA 2 yA L
)\(T,}/) T PU(T Y )

solves NLSF(R?) on (—A2T,, A*T*) x R,

m Dilation invariant norms play decisive role in the theory of
NLSF(RY) -

Qla

1\ F1to-
-
07lisssy = (3) " 10wl

W9 is critical |f 1 +o0— 5 =0.

= NLS:(Rd) is HSC—crltlcaI for s. := g — p21

m L2 and H! critical cases distinguished by conservation laws.
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m Mass critical (s = 0)
m Mass supercritical /Energy subcritical (0 < s < 1)
m Energy critical (s. = 1)
m Energy supercritical (s > 1).
= Optimal local-in-time well-posedness (LWP) for NLS(R?):
Vs > max(0, sc) 3 unique continuous data-to-solution map

H* > up — u € C([0, Tiwp); H?) N LILE

with lep = T/Wp(HUOHHS) if s > s. and lep = T(U()) if
S = s.

m Optimal maximal-in-time well-posedness (GWP) is known
only in the defocusing energy critical case. What is the fate of
local-in-time solutions with critical initial regularity?
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Restrict attention to NLSF (R?). Typical L2 critical case?

[Cazenave-Weissler|

m Vug € L? there exists Tj,p(uo) determined by

itA
le®®uoll 2 ([0, Tip] x R?) < 100"

3 unique solution u € C([0, Thpl; L2) N LE([0, Thwp] x R?).
m Define the maximal forward existence time T*(up) by
lull 2 (o, 7+—s)xr2) <
for all 6 > 0 but diverges to oo as § | 0.
m J small data scattering threshold g > 0

HUOHL2 < Mo = HUHL?X(RXR2) < 2up.
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[? CRITICAL CASE: GWP THEORY

m H-GWP for NLSS (R?).
m H-GWP mass threshold || Q|| for NLS; (R?):

[uoll2 < [|Qllz = H 5 up — u, T" = oco.

[Weinstein]

Here Q is the ground state solution to —Q + AQ = Q3.

et Q(x) is the ground state soliton solution to NLS; (R?).
m '/ Method' yields H5-GWP for s > % (s > 1 soon).

[Grillakis-Fang], [CKSTT]

NLSS (RY) is similarly HS-GWP for s > 3.

[Tzirakis]

NL5§+1(RC’) is H-GWP for s > 218

[Visan-Zhang]
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[? CRITICAL CASE: BLOWUP SOLUTION PROPERTIES

Explicit Blowup Solutions

m Arise as pseudoconformal image of e Q(x) :

1 X x|
S(t,x) == (7>e_’T+’.
(tx)=2Q (3 e
m S has minimal mass:

IS(=Dllz = 1Rl 2.

All mass in S is conically concentrated into a point.

m Minimal mass H! blowup solution characterization:
up € HY, |luoll 2 = |Qll 2, T*(uo) < oo implies that u= S up
to an explicit solution symmetry. [Merle]
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[? CRITICAL CASE: BLOWUP SOLUTION PROPERTIES

Virial Identity —> 3 Many Blowup Solutions
m Integration by parts and the equation yields

af/ x| u(t, x)Pdx = 8H[ug).
R

m Hlup] <0, [ |x[?|uo(x)|?dx < oo blows up.

m How do these solutions blow up?
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H' Theory of Mass Concentration

m H! N {radial} > up — u, T* < oo implies

Iiminf/ lu(t, x)[Pdx > || Q%
T J|x|<(T*—t)1/2-

[Merle-Tsutsumi]

m H! blowups parabolically concentrate at least the ground
state mass. Explicit blowups S concentrate mass much faster.

m Fantastic recent progress on the H! blowup theory.
[Merle-Raphaél]



DA



[? CRITICAL CASE: MASS CONCENTRATION

L? Theory of Mass Concentration



[? CRITICAL CASE: MASS CONCENTRATION

L? Theory of Mass Concentration

m (%235 uy— u, T* < co implies

lim sup sup /|u(t,x)|2dx > ||u0||22M.
tTT*  cubes I side(1)<(T*—t)1/2J1

[Bourgain]

L2 blowups parabolically concentrate some mass.



[? CRITICAL CASE: MASS CONCENTRATION

L? Theory of Mass Concentration

m (%235 uy— u, T* < co implies

lim sup sup /|u(t,x)|2dx > ||u0||22M.
tTT*  cubes I side(1)<(T*—t)1/2J1

[Bourgain]

L2 blowups parabolically concentrate some mass.

m For large L2 data, do there exist tiny concentrations?



[? CRITICAL CASE: MASS CONCENTRATION

L? Theory of Mass Concentration

m (%235 uy— u, T* < co implies

lim sup sup /|u(t,x)|2dx > ||u0||22M.
tTT*  cubes I side(1)<(T*—t)1/2J1

[Bourgain]
L2 blowups parabolically concentrate some mass.

m For large L2 data, do there exist tiny concentrations?

m Extensions in [Merle-Vega], [Carles-Keraani], [Bégout-Vargas|.



TYPICAL BLOWUPS LEAVE AN L2 STAIN AT TIME T*

[Merle-Raphaél]:

HE Ol Qllez < lluolliz < [[Qll2 + "} 5 to — u solving
NLS; (R?) on [0, T*) (maximal) with T* < oo.
3 A(t), x(t),0(t) € RY,R? R/(27Z) and u* such that

u(t) = A(t)1Q <X ;();)(t)> et

strongly in L?(R?). Typically, u*¢H® U LP for s > 0, p > 2!
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Consider focusing NLS; (R?):
m Scattering Below the Ground State Mass

77

uollz < [|Qllz2 = " up = u with [uf| s < oo

(Also, L? solutions of NLS; (R?) satisfy’”’ [ulls < oc.)

= Minimal Mass Blowup Characterization
luoll 2 = || Q| 2y o — u, T* <00 = " u=S,

modulo a solution symmetry. An intermediate step would

extend characterization of the minimal mass blowup solutions

in H® for s < 1.
m Concentrated mass amounts are quantized
The explicit blowups constructed by pseudoconformally

transforming time periodic solutions with ground and excited

state profiles are the only asymptotic profiles.
m Are there any general upper bounds?
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m For 0.86 ~ $(1+V/11) < s < 1, H* N {radial} > up —
u, T" <oo =

umsupm*/ u(t, )P > Q2.
|x|<(T*—t)s/2~

H*-blowup solutions concentrate ground state mass.
[With Raynor, Sulem and Wright]

m |ull2 = ||Q2,u0 € H5,~ 086 <s<1,T"<o0o =
Ity T T st u(ty) — Q in H¥S) (mod symmetry sequence).
For H® blowups with [[ug||;2 > ||Q]|;2, u(t,) — V € H (mod
symmetry sequence). [Hmidi-Keraani] This is an H® analog of
an H' result of [Weinstein] which preceded the minimal H?!
blowup solution characterization.

m Same results for NLS;H(R") in H®, s > %. [Visan-Zhang]
d






[? CRITICAL CASE: PARTIAL RESULTS

m Spacetime norm divergence rate
-8
ull 2 (o,gxm2) 2 (T — 1)
is linked with mass concentration rate

lim sup sup |u(t,x)|2dx2 ||uo||Z2M.
I

@

1,
cubes Iside(1)<(T*—t)2T2

[Work in progress with Roudenko]
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H'/2 CriTicAL CASE

Consider NLS; (R3). Also L3-Critical. Typical Case?
= LWP theory similar to NLS;(R?):

L2(R?) —s HY2(R®)

4 5
th th'

m There cannot be an H1-GWP mass threshold.

No explicit blowup solutions are known.
m Virial identity = 3 many blowup solutions.
H* N {radial} > up — u, T* < oo then for any a > 0

IVu(®)li,_ Tooas el T

Thus, radial solutions must explode at the origin.
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PROOF.

By Hamiltonian conservation,

1 1
2 4 4
|| u(t)HLz [UO] 2||U(t)||L‘|l)<|<a 2||U(t)||L?X\>a

Inner contribution estimated using Gagliardo-Nirenberg by
C(Mass, a)||Vu(t )H . Exterior region estimated by pulling out

two factors in L3° then usmg radial Sobolev to get control by
u(t) |13, Vu(t )HLz. Absorb the exterior kinetic energy to left side

IVu(t)lIz. < C(a, Mass[uo], H[uo]) + C(a, /\/’rBSS[IJo])HVU(t)Hf‘zx‘<
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m Radial blowup solutions of energy subcritical NLS,(R9) with
p < 5 must explode at the origin.

m For H'/?-critical NLS; (R?), there exists
H' N {radial} > vo — v, T*(v) < oo which blows up
precisely on a circle! [Raphaél]

m Numerics/heuristics suggest: Finite time blowup solutions of
NLS3(R3) satisfy ||u(t)[|;z T oo as t 1 T*.
[Recently proved for H! N {radial} data by Merle-Raphaél]
[Work in progress with Raynor, Sulem, Wright, different proof]
(Analogous to [Escauriaza-Seregin-Sverdk] on Navier-Stokes)

= H/2-blowups parabolically concentrate in L3 and H/2?
[Work in progress with Roudenko]
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HY(R?),d > 3 CRITICAL CASE

m Defocusing energy critical NL51++4/(d_2)(Rd), d > 3 is globally
well-posed and scatters in H':
[Bourgain], [Grillakis]: Radial Case for d =3
[CKSTT]: d =3
[Tao]: Radial Case for d =4
[Ryckman-Visan], [Visan], [Tao-Visan]: d > 4
Induction on Energy; Interaction Morawetz; Mass Freezing
m Focusing energy critical case?
[Kenig-Merle]: E[up] < E[Q] and |[Vup||2 < V@2 =
global-in-time and scatters.
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L NLSP(]RQ) is energy subcritical for all p. Is there an "energy
critical” NLS equation on R??

m Consider the defocusing initial value problem NLSe,(IR?)

iOiu+ Au = u(e‘”“'“‘2 — 1)
u(0,-) = w() € Hl(Rz)
with Hamiltonian

e47r|u(t,x)|2 -1

Hu(8)] = /R IVt )2 + /R e
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H'(R?) ” CrRITICAL” CASE

m If H[ug] — M[ug] < 1 then NLSe,(R?) is globally well-posed.
Uniform continuity of data-to-solution map fails to hold for
data satisfying H[ug] — M[ug] > 1.

[Work in progress with lbrahim, Majdoub, Masmoudi]

m Well-posedness result relies upon Strichartz estimates,
Moser-Trudinger inequality, and a log-Sobolev inequality.
(Largely based on similar result for NLKG by
[Ibrahim-Majdoub-Masmoudi])

m lll-posedness result relies upon optimizing sequence for
Moser-Trudinger and small dispersion approximation following
[Christ-C-Tao].

m Scattering?
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ENERGY SUPERCRITICAL CASE

Consider NLS;(R3). Typical case?

m Numerical experiments by [Blue-Sulem] and also for
corresponding NLKG [Strauss-Vazquez] suggest GWP and
scattering.

= Conjecture: NLS; (R3) is GWP and scatters in H7/%(R3).
[See discussion by Bourgain, GAFA Special Volume, 2000]
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CRITICAL NORM EXPLOSION?

[Work in progress with Raynor, Sulem, Wright....details remain.]

Question: Qualitative properties mass supercritical NLS blowup?
Restrict attention to H'/2-critical NLS; (R3).

m T* defined via divergence of ||u]|;s or HD1/2UHL10/3.
X tx
m Finite energy radial blowups explode at spatial origin.

m Heuristics and numerics suggest asymptotic profile @ which
decays near spatial infinity like |y|! = Q@ ¢ L3(R3).
Sobolev embedding HY/2 < L3 suggests as t T T*

[u(t)][ /2 ~ |log(T™ = t)] — oo

m Frequency heuristic: Bounded H/2 blowup inconsistent with
mass conservation.
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CONTRADICTION STRATEGY

m Contradiction Hypothesis (CH): Assume 3 A < oo such that

2o H (0, T <

[l
m Concentration Property: If H* N {radial} > ug — u solves
NLS; (R3), T* < 0o and we assume (CH) then

\/§ *

u(t > — =cC .
| ( )HL|3><|<(T*7t)1/2_ - 7T2/3

liminf
T

The proof follows [Merle-Tsutsumi] with the (CH) upper
bound as a proxy for L2 conservation. Explicit constant from
sharp Gagliardo-Nirenberg estimate. [Delpino-Dolbeaut]
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CONTRADICTION STRATEGY

m Frequency level Sets:
Ru(t) == sup{R : [|Po ()2 > 1}
Concentration = Re«(t) > (T* — t)~1/2.
M= sup{u: Ru(t) = O(Re-(t)) as ¢ 1 T}

By design Rur4+,(t) = o(Rm(t)) forall v >0as t 1 T
There exists 1o > 0 such that Ry (t) ~ Ry—p(t) as t T T*.

m Fix a number K by the condition

K210 = 3A.
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m Solution Decomposition: At a time ty < T*, decompose
u(to) = u' (o) + usP(ty) + uM (o)
with respect to frequency regions
€] < R4 (to)
R4 (t0) < [§] < Rm(to)
Rum(to) < [€].

Evolve u’ and u€ forward on [tg, T*) using NLS; (R3). Evolve
u" according to NLS so that

u(t) = u'(t) + v8(t) + u"(1).

m Kth Doubling Time after ty:
t1 ;= inf{t € (to, T*) : Rm(t1) > KRm—,(t0)}
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CONTRADICTION STRATEGY

m High Frequency Mass Freezing Contradiction: Suppose we
show the high frequency mass freezing property

1
1 Pie>Ru(to) u(t)ll 2 = §||P\§|>RM(t0)U(t0)HL2
~1/2
2 MORM_/MO(tO)'

m For small «p, we can not park this mass inside the gap
Rm(to) < |€] < Rm(t1) so we have to put it in the high
frequency boondox |£| > Ru(t1).

m Since, at time t1, Ry(t1) > KRy—p,(to), we conclude
[u(t)|| 2 = 3A,

a contradiction.
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HicH FREQUENCY MASS FREEZING PROPERTY

m Main issue is to control theALE mass increment of
P|§‘>RM(t0)uh(-) under the NLS evolution from ty to t;.

m We must control 4-linear spacetime integrals like

t1 o L
/ / P>RM(to)(UIUgUh) P>RM(t0)uh dxdt.
to R3

m Since L% is H'/*-critical and we have H'/? control on u we
can control such integrals with some gain:

5/2
S {(fl - to)l/SHUHLgx([to,rl]xRﬂ} N2,

= Assuming that [lull;s (jo,¢xr3) S (T — t)~1/5* and the
Concentration Property we contradict (CH) proving critical
norm explosion.



<

=]

=




REMARKS

m Spacetime L2 upper bound is consistent with heuristics.



REMARKS

m Spacetime L2 upper bound is consistent with heuristics.

m Concentration Property following [Merle-Tsutsumi] proof
assumed H! N {radial} data. The rest of the argument is at
the critical level.



REMARKS

m Spacetime L2 upper bound is consistent with heuristics.

m Concentration Property following [Merle-Tsutsumi] proof
assumed H! N {radial} data. The rest of the argument is at
the critical level.

m Under (CH) bound, Bourgain's L? critical concentration result
extends to the NLS; (R3) case to prove L3 and HY/2
concentration. [with Roudenko]

This relaxes the H! N {radial} assumptions to H'/2.



REMARKS

Spacetime L2, upper bound is consistent with heuristics.

Concentration Property following [Merle-Tsutsumi] proof
assumed H! N {radial} data. The rest of the argument is at
the critical level.

Under (CH) bound, Bourgain's L2 critical concentration result
extends to the NLS; (R3) case to prove L3 and HY/2
concentration. [with Roudenko]

This relaxes the H! N {radial} assumptions to H'/2.

Extends to the general mass supercritical case?



	Nonlinear Schrödinger Initial Value Problem
	Critical Regimes & Low Regularity GWP?
	H1/2 Critical Case
	Energy Critical Case
	Energy Supercritical Case
	Critical Norm Explosion for H1/2 Critical Case

