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Nonlinear Schrödinger Initial Value Problem

Consider the initial value problem NLS±p (Rd):{
i∂tu + ∆u = ±|u|p−1u

u(0, x) = u0(x).

We seek u : (−T∗,T
∗)× Rd 7−→ C.

(+ focusing, − defocusing)

Time Invariant Quantities

Mass = ‖u(t)‖L2
x

Hamiltonian =

∫
Rd

|∇u(t)|2dx∓ 2

p + 1
|u(t)|p+1dx
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Dilation Invariance

If u solves NLS±p (Rd) on (−T∗,T
∗)× R2 then

uλ(τ, y) := λ
2

1−p u(τλ−2, yλ−1)

solves NLS±p (Rd) on (−λ2T∗, λ
2T ∗)× R2.

Dilation invariant norms play decisive role in the theory of
NLS±p (Rd) :

‖Dσ
y uλ‖Lq(Rd

y ) =

(
1

λ

) 2
p−1

+σ− d
q

‖Dσ
x u‖Lq(Rd

x ).

Ẇ σ,q is critical if 2
p−1 + σ − d

q = 0.

NLS±p (Rd) is Ḣsc -critical for sc := d
2 −

2
p−1 .

L2 and Ḣ1 critical cases distinguished by conservation laws.
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L2 and Ḣ1 critical cases distinguished by conservation laws.



Dilation Invariance

If u solves NLS±p (Rd) on (−T∗,T
∗)× R2 then

uλ(τ, y) := λ
2

1−p u(τλ−2, yλ−1)

solves NLS±p (Rd) on (−λ2T∗, λ
2T ∗)× R2.

Dilation invariant norms play decisive role in the theory of
NLS±p (Rd) :

‖Dσ
y uλ‖Lq(Rd

y ) =

(
1

λ

) 2
p−1

+σ− d
q

‖Dσ
x u‖Lq(Rd

x ).
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Critical Regimes

Theory for NLS±p (Rd) is qualitatively similar in regimes:

Mass subcritical (sc < 0)
Mass critical (sc = 0)
Mass supercritical/Energy subcritical (0 < sc < 1)
Energy critical (sc = 1)
Energy supercritical (sc > 1).

Optimal local-in-time well-posedness (LWP) for NLS±p (Rd):
∀ s ≥ max(0, sc) ∃ unique continuous data-to-solution map

Hs 3 u0 7−→ u ∈ C ([0,Tlwp];H
s) ∩ Lq

t L
p
x

with Tlwp = Tlwp(‖u0‖Hs ) if s > sc and Tlwp = T (u0) if
s = sc .

Optimal maximal-in-time well-posedness (GWP) is known
only in the defocusing energy critical case. What is the fate of
local-in-time solutions with critical initial regularity?
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L2 Critical Case: LWP Theory

Restrict attention to NLS±3 (R2). Typical L2 critical case?

[Cazenave-Weissler]

∀u0 ∈ L2 there exists Tlwp(u0) determined by

‖e it∆u0‖L4
tx
([0,Tlwp]× R2) <

1

100
.

∃ unique solution u ∈ C ([0,Tlwp]; L
2) ∩ L4

tx([0,Tlwp]× R2).

Define the maximal forward existence time T ∗(u0) by

‖u‖L4
tx ([0,T∗−δ]×R2) < ∞

for all δ > 0 but diverges to ∞ as δ ↓ 0.

∃ small data scattering threshold µ0 > 0

‖u0‖L2 < µ0 =⇒ ‖u‖L4
tx (R×R2) < 2µ0.
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L2 Critical Case: GWP Theory

H1-GWP for NLS+
3 (R2).

H1-GWP mass threshold ‖Q‖L2 for NLS−3 (R2):

‖u0‖L2 < ‖Q‖L2 =⇒ H1 3 u0 7−→ u,T ∗ = ∞.

[Weinstein]

Here Q is the ground state solution to −Q + ∆Q = Q3.
e itQ(x) is the ground state soliton solution to NLS−3 (R2).

’I Method’ yields Hs -GWP for s > 4
7 (s > 1

2 soon).
[Grillakis-Fang], [CKSTT]
NLS+

5 (R1) is similarly Hs -GWP for s > 4
9 .

[Tzirakis]
NLS+

4
d
+1

(Rd) is Hs -GWP for s > d+8
d+10 .

[Visan-Zhang]
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L2 Critical Case: Blowup Solution Properties

Explicit Blowup Solutions

Arise as pseudoconformal image of e itQ(x) :

S(t, x) =
1

t
Q

(x

t

)
e−i |x|

2

4t
+ i

t .

S has minimal mass:

‖S(−1)‖L2
x

= ‖Q‖L2 .

All mass in S is conically concentrated into a point.

Minimal mass H1 blowup solution characterization:
u0 ∈ H1, ‖u0‖L2 = ‖Q‖L2 , T ∗(u0) < ∞ implies that u = S up
to an explicit solution symmetry. [Merle]
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L2 Critical Case: Blowup Solution Properties

Virial Identity =⇒ ∃ Many Blowup Solutions

Integration by parts and the equation yields

∂2
t

∫
R2

x

|x |2|u(t, x)|2dx = 8H[u0].

H[u0] < 0,
∫
|x |2|u0(x)|2dx < ∞ blows up.

How do these solutions blow up?
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L2 Critical Case: Mass Concentration

H1 Theory of Mass Concentration

H1 ∩ {radial} 3 u0 7−→ u,T ∗ < ∞ implies

lim inf
t↑T∗

∫
|x |<(T∗−t)1/2−

|u(t, x)|2dx ≥ ‖Q‖2
L2 .

[Merle-Tsutsumi]

H1 blowups parabolically concentrate at least the ground
state mass. Explicit blowups S concentrate mass much faster.

Fantastic recent progress on the H1 blowup theory.
[Merle-Raphaël]
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L2 Critical Case: Mass Concentration

H1 Theory of Mass Concentration

H1 ∩ {radial} 3 u0 7−→ u,T ∗ < ∞ implies

lim inf
t↑T∗

∫
|x |<(T∗−t)1/2−

|u(t, x)|2dx ≥ ‖Q‖2
L2 .

[Merle-Tsutsumi]

H1 blowups parabolically concentrate at least the ground
state mass. Explicit blowups S concentrate mass much faster.

Fantastic recent progress on the H1 blowup theory.
[Merle-Raphaël]
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∫
I
|u(t, x)|2dx ≥ ‖u0‖−M

L2 .

[Bourgain]

L2 blowups parabolically concentrate some mass.

For large L2 data, do there exist tiny concentrations?

Extensions in [Merle-Vega], [Carles-Keraani], [Bégout-Vargas].
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Typical blowups leave an L2 stain at time T ∗

[Merle-Raphaël]:

H1 ∩ {‖Q‖L2 < ‖u0‖L2 < ‖Q‖L2 + α∗} 3 u0 7−→ u solving
NLS−3 (R2) on [0,T ∗) (maximal) with T ∗ < ∞.
∃ λ(t), x(t), θ(t) ∈ R+, R2, R/(2πZ) and u∗ such that

u(t)− λ(t)−1Q

(
x − x(t)

λ(t)

)
e iθ(t) → u∗

strongly in L2(R2). Typically, u∗ /∈Hs ∪ Lp for s > 0, p > 2!



L2 Critical Case: Conjectures/Questions

Consider focusing NLS−3 (R2):

Scattering Below the Ground State Mass

‖u0‖L2 < ‖Q‖L2 =⇒ ??? u0 7−→ u with ‖u‖L4
tx

< ∞.

(Also, L2 solutions of NLS+
3 (R2) satisfy??? ‖u‖L4

tx
< ∞.)

Minimal Mass Blowup Characterization

‖u0‖L2 = ‖Q‖L2 , u0 7−→ u,T ∗ < ∞ =⇒ ??? u = S ,

modulo a solution symmetry. An intermediate step would
extend characterization of the minimal mass blowup solutions
in Hs for s < 1.

Concentrated mass amounts are quantized
The explicit blowups constructed by pseudoconformally
transforming time periodic solutions with ground and excited
state profiles are the only asymptotic profiles.

Are there any general upper bounds?
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L2 Critical Case: Partial Results

For 0.86 ∼ 1
5(1 +

√
11) < s < 1,Hs ∩ {radial} 3 u0 7−→

u,T ∗ < ∞ =⇒

lim supt↑T∗

∫
|x |<(T∗−t)s/2−

|u(t, x)|2dx ≥ ‖Q‖2
L2 .

Hs -blowup solutions concentrate ground state mass.
[With Raynor, Sulem and Wright]

‖u0‖L2 = ‖Q‖L2 , u0 ∈ Hs , ∼ 0.86 < s < 1,T ∗ < ∞ =⇒
∃ tn ↑ T ∗ s.t. u(tn) → Q in H s̃(s) (mod symmetry sequence).
For Hs blowups with ‖u0‖L2 > ‖Q‖L2 , u(tn) ⇀ V ∈ H1 (mod
symmetry sequence). [Hmidi-Keraani] This is an Hs analog of
an H1 result of [Weinstein] which preceded the minimal H1

blowup solution characterization.

Same results for NLS−4
d
+1

(Rd) in Hs , s > d+8
d+10 . [Visan-Zhang]
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L2 Critical Case: Partial Results

Spacetime norm divergence rate
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H1/2 Critical Case

Consider NLS−3 (R3). Also L3
x -Critical. Typical Case?

LWP theory similar to NLS±3 (R2):

L2(R2) 7−→ H1/2(R3)

L4
tx 7−→ L5

tx .

There cannot be an H1-GWP mass threshold.

No explicit blowup solutions are known.

Virial identity =⇒ ∃ many blowup solutions.

H1 ∩ {radial} 3 u0 7−→ u,T ∗ < ∞ then for any a > 0

‖∇u(t)‖L2
|x|<a

↑ ∞ as t ↑ T ∗.

Thus, radial solutions must explode at the origin.
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H1/2 Critical Case: Radial NLS−3 (R3)

Proof.

By Hamiltonian conservation,

‖∇u(t)‖2
L2 = H[u0] +

1

2
‖u(t)‖4

L4
|x|<a

+
1

2
‖u(t)‖4

L4
|x|>a

.

Inner contribution estimated using Gagliardo-Nirenberg by
C (Mass, a)‖∇u(t)‖3

L2
|x|<a

. Exterior region estimated by pulling out

two factors in L∞x then using radial Sobolev to get control by
‖u(t)‖3

L2‖∇u(t)‖L2 . Absorb the exterior kinetic energy to left side

‖∇u(t)‖2
L2 . C (a,Mass[u0],H[u0]) + C (a,Mass[u0])‖∇u(t)‖3

L2
|x|<a

.
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H1/2 Critical Case: Remarks

Radial blowup solutions of energy subcritical NLSp(Rd) with
p < 5 must explode at the origin.

For H1/2-critical NLS−5 (R2), there exists
H1 ∩ {radial} 3 v0 7−→ v , T ∗(v0) < ∞ which blows up
precisely on a circle! [Raphaël]

Numerics/heuristics suggest: Finite time blowup solutions of
NLS3(R3) satisfy ‖u(t)‖L3

x
↑ ∞ as t ↑ T ∗.

[Recently proved for H1 ∩ {radial} data by Merle-Raphaël]
[Work in progress with Raynor, Sulem, Wright, different proof]
(Analogous to [Escauriaza-Seregin-Šverák] on Navier-Stokes)

H1/2-blowups parabolically concentrate in L3 and H1/2?
[Work in progress with Roudenko]
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[Work in progress with Raynor, Sulem, Wright, different proof]
(Analogous to [Escauriaza-Seregin-Šverák] on Navier-Stokes)
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H1(Rd), d ≥ 3 Critical Case

Defocusing energy critical NLS+
1+4/(d−2)(R

d), d ≥ 3 is globally

well-posed and scatters in H1:
[Bourgain], [Grillakis]: Radial Case for d = 3
[CKSTT]: d = 3
[Tao]: Radial Case for d = 4
[Ryckman-Visan], [Visan], [Tao-Visan]: d ≥ 4

Induction on Energy; Interaction Morawetz; Mass Freezing

Focusing energy critical case?
[Kenig-Merle]: E [u0] < E [Q] and ‖∇u0‖L2 < ‖∇Q‖L2 =⇒
global-in-time and scatters.
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H1(R2) ”Critical” Case

NLSp(R2) is energy subcritical for all p. Is there an ”energy
critical” NLS equation on R2?

Consider the defocusing initial value problem NLSexp(R2){
i∂tu + ∆u = u

(
e4π|u|2 − 1

)
u(0, ·) = u0(·) ∈ H1(R2)

with Hamiltonian

H[u(t)] :=

∫
R2

|∇u(t, x)|2 +

∫
R2

e4π|u(t,x)|2 − 1

4π
dx .
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H1(R2) ”Critical” Case

If H[u0]−M[u0] ≤ 1 then NLSexp(R2) is globally well-posed.
Uniform continuity of data-to-solution map fails to hold for
data satisfying H[u0]−M[u0] > 1.
[Work in progress with Ibrahim, Majdoub, Masmoudi]

Well-posedness result relies upon Strichartz estimates,
Moser-Trudinger inequality, and a log-Sobolev inequality.
(Largely based on similar result for NLKG by
[Ibrahim-Majdoub-Masmoudi])

Ill-posedness result relies upon optimizing sequence for
Moser-Trudinger and small dispersion approximation following
[Christ-C-Tao].

Scattering?
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Energy Supercritical Case

Consider NLS+
7 (R3). Typical case?

Numerical experiments by [Blue-Sulem] and also for
corresponding NLKG [Strauss-Vazquez] suggest GWP and
scattering.

Conjecture: NLS+
7 (R3) is GWP and scatters in H7/6(R3).

[See discussion by Bourgain, GAFA Special Volume, 2000]
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Critical Norm Explosion?

[Work in progress with Raynor, Sulem, Wright....details remain.]

Question: Qualitative properties mass supercritical NLS blowup?
Restrict attention to H1/2-critical NLS−3 (R3).

T ∗ defined via divergence of ‖u‖L5
tx

or ‖D1/2u‖
L

10/3
tx

.

Finite energy radial blowups explode at spatial origin.

Heuristics and numerics suggest asymptotic profile Q which
decays near spatial infinity like |y |−1 =⇒ Q /∈ L3(R3).
Sobolev embedding H1/2 ↪→ L3 suggests as t ↑ T ∗

‖u(t)‖H1/2 ∼ | log(T ∗ − t)| → ∞.

Frequency heuristic: Bounded H1/2 blowup inconsistent with
mass conservation.
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Contradiction Strategy

Contradiction Hypothesis (CH): Assume ∃ Λ < ∞ such that

‖u‖
L∞t H

1/2
x ([0,T∗)×R3)

< Λ.

Concentration Property: If H1 ∩ {radial} 3 u0 7−→ u solves
NLS−3 (R3), T ∗ < ∞ and we assume (CH) then

lim inf
t↑T∗

‖u(t)‖L3

|x|<(T∗−t)1/2−
≥

√
2

π2/3
= c∗.

The proof follows [Merle-Tsutsumi] with the (CH) upper
bound as a proxy for L2 conservation. Explicit constant from
sharp Gagliardo-Nirenberg estimate. [Delpino-Dolbeaut]
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Contradiction Strategy

Frequency level Sets:

Rµ(t) := sup{R : ‖P|ξ|>Ru(t)‖
Ḣ

1/2
x

> µ}

Concentration =⇒ Rc∗(t) ≥ (T ∗ − t)−1/2.

M := sup{µ : Rµ(t) = O(Rc∗(t)) as t ↑ T ∗}

By design RM+γ0(t) = o(RM(t)) for all γ0 > 0 as t ↑ T ∗.
There exists µ0 > 0 such that RM(t) ∼ RM−µ0(t) as t ↑ T ∗.

Fix a number K by the condition

K 1/2µ0 = 3Λ.
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Contradiction Strategy

Solution Decomposition: At a time t0 < T ∗, decompose

u(t0) = ulow (t0) + ugap(t0) + uhi (t0)

with respect to frequency regions

|ξ| < RM+γ0(t0)

RM+γ0(t0) < |ξ| < RM(t0)

RM(t0) < |ξ|.

Evolve ul and ug forward on [t0,T
∗) using NLS−3 (R3). Evolve

uh according to ÑLS so that

u(t) = ul(t) + ug (t) + uh(t).

K th Doubling Time after t0:

t1 := inf{t ∈ (t0,T
∗) : RM(t1) > KRM−µ0(t0)}
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Contradiction Strategy

High Frequency Mass Freezing Contradiction: Suppose we
show the high frequency mass freezing property

‖P|ξ|>RM(t0)u(t1)‖L2 ≥
1

2
‖P|ξ|>RM

(t0)u(t0)‖L2

& µ0R
−1/2
M−µ0

(t0).

For small γ0, we can not park this mass inside the gap
RM(t0) < |ξ| < RM(t1) so we have to put it in the high
frequency boondox |ξ| > RM(t1).

Since, at time t1,RM(t1) ≥ KRM−µ0(t0), we conclude

‖u(t1)‖H1/2 ≥ 3Λ,

a contradiction.
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High Frequency Mass Freezing Property

Main issue is to control the L2 mass increment of
P|ξ|>RM(t0)u

h(·) under the ÑLS evolution from t0 to t1.

We must control 4-linear spacetime integrals like∫ t1

t0

∫
R3

P>RM(t0)(u
luguh) P>RM(t0)u

h dxdt.

Since L4
tx is H1/4-critical and we have H1/2 control on u we

can control such integrals with some gain:

.
{

(t1 − t0)
1/5‖u‖L5

t,x ([t0,t1]×R3)

}5/2
Λ3/2.

Assuming that ‖u‖L5
tx ([0,t]×R3) . (T ∗ − t)−1/5+ and the

Concentration Property we contradict (CH) proving critical
norm explosion.
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Remarks

Spacetime L5
tx upper bound is consistent with heuristics.

Concentration Property following [Merle-Tsutsumi] proof
assumed H1 ∩ {radial} data. The rest of the argument is at
the critical level.

Under (CH) bound, Bourgain’s L2 critical concentration result
extends to the NLS−3 (R3) case to prove L3 and H1/2

concentration. [with Roudenko]
This relaxes the H1 ∩ {radial} assumptions to H1/2.

Extends to the general mass supercritical case?
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