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Nonlinear Schrödinger Initial Value Problem Cauchy Problem

Nonlinear Schrödinger Initial Value Problem

Consider the initial value problem NLS±p (Rd):{
i∂tu + ∆u = ±|u|p−1u

u(0, x) = u0(x)

We seek u : (−T∗,T
∗)× Rd 7−→ C.

(+ focusing, − defocusing)

Time Invariant Quantities

Mass = ‖u(t)‖L2
x

Hamiltonian =

∫
Rd

|∇u(t)|2dx∓ 2

p + 1
|u(t)|p+1dx
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Nonlinear Schrödinger Initial Value Problem Scaling

Dilation Invariance

I If u solves NLS±p (Rd) on (−T∗,T
∗)× R2 then

uλ(τ, y) := λ
2

1−p u(τλ−2, yλ−1)

solves NLS±p (Rd) on (−λ2T∗, λ
2T ∗)× R2.

I Dilation invariant norms play decisive role in the theory of
NLS±p (Rd) :

‖Dσ
y uλ‖Lq(Rd

y ) =

(
1

λ

) 2
p−1

+σ− d
q

‖Dσ
x u‖Lq(Rd

x ).

Ẇ σ,q is critical if 2
p−1 + σ − d

q = 0.

I NLS±p (Rd) is Ḣsc -critical for sc := d
2 −

2
p−1 .

I L2 and Ḣ1 critical cases distinguished by conservation laws.
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Ẇ σ,q is critical if 2
p−1 + σ − d

q = 0.
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Critical Regimes & Low Regularity GWP?

Critical Regimes

I Theory for NLS±p (Rd) is qualitatively similar in regimes:

I Mass subcritical (sc < 0)
I Mass critical (sc = 0)
I Mass supercritical/Energy subcritical (0 < sc < 1)
I Energy critical (sc = 1)
I Energy supercritical (sc > 1).

I Optimal local-in-time well-posedness (LWP) for NLS±p (Rd):
∀ s ≥ max(0, sc) ∃ unique continuous data-to-solution map

Hs 3 u0 7−→ u ∈ C ([0,Tlwp];H
s) ∩ Lq

t L
p
x

with Tlwp = Tlwp(‖u0‖Hs ) if s > sc and Tlwp = T (u0) if s = sc .

I Optimal maximal-in-time well-posedness (GWP) is known only in the
defocusing energy critical case. What is the fate of local-in-time
solutions with critical initial regularity?
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Critical Regimes & Low Regularity GWP?

Low Regularity Polemics

Why should we care about low regularity data?

I Envelope equation derivation of NLS is ”band limited”.

I Physically relevant solutions are smooth.

Some answers:

I ∃ global-in-time classical solutions of energy critical NLS was
unknown until finite energy solutions were shown to be global.

I Typical, slightly bigger than necessary, finite time blowup solutions of
mass critical NLS with nice initial data are ”L2-typical” after
removing the blowup.

I Invariant measures live on low regularity phase space.

The talk will first discuss ideas and questions in the L2 mass critical case,
the H1/2 critical case, and the H1 energy critical case. Then, I’ll discuss a
qualitative property of blowup in an H1/2 critical case.
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qualitative property of blowup in an H1/2 critical case.
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Critical Regimes & Low Regularity GWP?

Typical blowups leave an L2 stain at time T ∗

[Merle-Raphaël]

I Consider H1 ∩ {‖Q‖L2 < ‖u0‖L2 < ‖Q‖L2 + α∗} 3 u0 7−→ u solving
NLS−3 (R2) on [0,T ∗) (maximal) with T ∗ < ∞.

I ∃ λ(t), x(t), θ(t) ∈ R+, R2, R/(2πZ) and u∗ such that

u(t)− λ(t)−1Q

(
x − x(t)

λ(t)

)
e iθ(t) → u∗

strongly in L2(R2).

I Typically, u∗ /∈Hs ∪ Lp for s > 0, p > 2!
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Critical Regimes & Low Regularity GWP? Mass Critical Case

L2 Critical Case: LWP Theory

Restrict attention to NLS±3 (R2). Typical L2 critical case?

[Cazenave-Weissler]

I ∀u0 ∈ L2 there exists Tlwp(u0) determined by

‖e it∆u0‖L4
tx
([0,Tlwp]× R2) <

1

100
.

∃ unique solution u ∈ C ([0,Tlwp]; L
2) ∩ L4

tx([0,Tlwp]× R2).

I Define the maximal forward existence time T ∗(u0) by

‖u‖L4
tx ([0,T∗−δ]×R2) < ∞

for all δ > 0 but diverges to ∞ as δ ↓ 0.

I ∃ small data scattering threshold µ0 > 0

‖u0‖L2 < µ0 =⇒ ‖u‖L4
tx (R×R2) < 2µ0.
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Critical Regimes & Low Regularity GWP? Mass Critical Case

L2 Critical Case: GWP Theory

I H1-GWP for NLS+
3 (R2).

I H1-GWP mass threshold ‖Q‖L2 for NLS−3 (R2):

‖u0‖L2 < ‖Q‖L2 =⇒ H1 3 u0 7−→ u,T ∗ = ∞.

[Weinstein]

Here Q is the ground state solution to −Q + ∆Q = Q3. e itQ(x) is
the ground state soliton solution to NLS−3 (R2).

I ’I Method’ yields Hs -GWP for s > 4
7 (s > 1

2?).
[CKSTT]
NLS+

5 (R1) is similarly Hs -GWP for s > 4
9 .

[Tzirakis]
NLS+

4
d
+1

(Rd) is Hs -GWP for s > d+8
d+10 .

[Visan-Zhang]
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Critical Regimes & Low Regularity GWP? Mass Critical Case

L2 Critical Case: Blowup Solution Properties

Explicit Blowup Solutions

I Arise as pseudoconformal image of e itQ(x) :

S(t, x) =
1

t
Q

(x

t

)
e−i |x|

2

4t
+ i

t .

I S has minimal mass:

‖S(−1)‖L2
x

= ‖Q‖L2 .

All mass in S is conically concentrated into a point.

I Minimal mass H1 blowup solution characterization:
u0 ∈ H1, ‖u0‖L2 = ‖Q‖L2 , T ∗(u0) < ∞ implies that u = S up to an
explicit solution symmetry. [Merle]
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Critical Regimes & Low Regularity GWP? Mass Critical Case

L2 Critical Case: Blowup Solution Properties

Virial Identity =⇒ ∃ Many Blowup Solutions

I Integration by parts and the equation yields

∂2
t

∫
R2

x

|x |2|u(t, x)|2dx = 8H[u0].

[Vlasov-Petrischev-Talanov], [Glassey]

I H[u0] < 0,
∫
|x |2|u0(x)|2dx < ∞ blows up.

I How do these solutions blow up?
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Critical Regimes & Low Regularity GWP? Mass Critical Case

L2 Critical Case: Mass Concentration

H1 Theory of Mass Concentration

I H1 ∩ {radial} 3 u0 7−→ u,T ∗ < ∞ implies

lim inf
t↑T∗

∫
|x |<(T∗−t)1/2−

|u(t, x)|2dx ≥ ‖Q‖2
L2 .

[Merle-Tsutsumi]

I H1 blowups parabolically concentrate at least the ground state mass.
Explicit blowups S concentrate mass much faster.

I Fantastic recent progress on the H1 blowup theory. [Merle-Raphaël]

J. Colliander (Toronto) NLS Blowup Midwest PDE 12 / 30
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I For large L2 data, do there exist tiny concentrations?

I Extensions in [Merle-Vega], [Carles-Keraani], [Bégout-Vargas].
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Critical Regimes & Low Regularity GWP? Mass Critical Case

L2 Critical Case: Conjectures/Questions

Consider focusing NLS−3 (R2):

I Scattering Below the Ground State Mass

‖u0‖L2 < ‖Q‖L2 =⇒ ??? u0 7−→ u with ‖u‖L4
tx

< ∞.

(Also, L2 solutions of NLS+
3 (R2) satisfy??? ‖u‖L4

tx
< ∞.)

I Minimal Mass Blowup Characterization

‖u0‖L2 = ‖Q‖L2 , u0 7−→ u,T ∗ < ∞ =⇒ ??? u = S ,

modulo a solution symmetry. An intermediate step would extend
characterization of the minimal mass blowup solutions in Hs for s < 1.

I Concentrated mass amounts are quantized
The explicit blowups constructed by pseudoconformally transforming
time periodic solutions with ground and excited state profiles are the
only asymptotic profiles.

I Are there any general upper bounds?

J. Colliander (Toronto) NLS Blowup Midwest PDE 14 / 30



Critical Regimes & Low Regularity GWP? Mass Critical Case

L2 Critical Case: Conjectures/Questions

Consider focusing NLS−3 (R2):

I Scattering Below the Ground State Mass

‖u0‖L2 < ‖Q‖L2 =⇒ ??? u0 7−→ u with ‖u‖L4
tx

< ∞.

(Also, L2 solutions of NLS+
3 (R2) satisfy??? ‖u‖L4

tx
< ∞.)

I Minimal Mass Blowup Characterization

‖u0‖L2 = ‖Q‖L2 , u0 7−→ u,T ∗ < ∞ =⇒ ??? u = S ,

modulo a solution symmetry. An intermediate step would extend
characterization of the minimal mass blowup solutions in Hs for s < 1.

I Concentrated mass amounts are quantized
The explicit blowups constructed by pseudoconformally transforming
time periodic solutions with ground and excited state profiles are the
only asymptotic profiles.

I Are there any general upper bounds?

J. Colliander (Toronto) NLS Blowup Midwest PDE 14 / 30



Critical Regimes & Low Regularity GWP? Mass Critical Case

L2 Critical Case: Conjectures/Questions

Consider focusing NLS−3 (R2):

I Scattering Below the Ground State Mass

‖u0‖L2 < ‖Q‖L2 =⇒ ??? u0 7−→ u with ‖u‖L4
tx

< ∞.

(Also, L2 solutions of NLS+
3 (R2) satisfy??? ‖u‖L4

tx
< ∞.)

I Minimal Mass Blowup Characterization

‖u0‖L2 = ‖Q‖L2 , u0 7−→ u,T ∗ < ∞ =⇒ ??? u = S ,

modulo a solution symmetry. An intermediate step would extend
characterization of the minimal mass blowup solutions in Hs for s < 1.

I Concentrated mass amounts are quantized
The explicit blowups constructed by pseudoconformally transforming
time periodic solutions with ground and excited state profiles are the
only asymptotic profiles.

I Are there any general upper bounds?

J. Colliander (Toronto) NLS Blowup Midwest PDE 14 / 30



Critical Regimes & Low Regularity GWP? Mass Critical Case

L2 Critical Case: Conjectures/Questions

Consider focusing NLS−3 (R2):

I Scattering Below the Ground State Mass

‖u0‖L2 < ‖Q‖L2 =⇒ ??? u0 7−→ u with ‖u‖L4
tx

< ∞.

(Also, L2 solutions of NLS+
3 (R2) satisfy??? ‖u‖L4

tx
< ∞.)

I Minimal Mass Blowup Characterization

‖u0‖L2 = ‖Q‖L2 , u0 7−→ u,T ∗ < ∞ =⇒ ??? u = S ,

modulo a solution symmetry. An intermediate step would extend
characterization of the minimal mass blowup solutions in Hs for s < 1.

I Concentrated mass amounts are quantized
The explicit blowups constructed by pseudoconformally transforming
time periodic solutions with ground and excited state profiles are the
only asymptotic profiles.

I Are there any general upper bounds?

J. Colliander (Toronto) NLS Blowup Midwest PDE 14 / 30



Critical Regimes & Low Regularity GWP? Mass Critical Case

L2 Critical Case: Conjectures/Questions

Consider focusing NLS−3 (R2):

I Scattering Below the Ground State Mass

‖u0‖L2 < ‖Q‖L2 =⇒ ??? u0 7−→ u with ‖u‖L4
tx

< ∞.

(Also, L2 solutions of NLS+
3 (R2) satisfy??? ‖u‖L4

tx
< ∞.)

I Minimal Mass Blowup Characterization

‖u0‖L2 = ‖Q‖L2 , u0 7−→ u,T ∗ < ∞ =⇒ ??? u = S ,

modulo a solution symmetry. An intermediate step would extend
characterization of the minimal mass blowup solutions in Hs for s < 1.

I Concentrated mass amounts are quantized
The explicit blowups constructed by pseudoconformally transforming
time periodic solutions with ground and excited state profiles are the
only asymptotic profiles.

I Are there any general upper bounds?

J. Colliander (Toronto) NLS Blowup Midwest PDE 14 / 30



Critical Regimes & Low Regularity GWP? Mass Critical Case

L2 Critical Case: Conjectures/Questions

Consider focusing NLS−3 (R2):

I Scattering Below the Ground State Mass

‖u0‖L2 < ‖Q‖L2 =⇒ ??? u0 7−→ u with ‖u‖L4
tx

< ∞.

(Also, L2 solutions of NLS+
3 (R2) satisfy??? ‖u‖L4

tx
< ∞.)

I Minimal Mass Blowup Characterization

‖u0‖L2 = ‖Q‖L2 , u0 7−→ u,T ∗ < ∞ =⇒ ??? u = S ,

modulo a solution symmetry. An intermediate step would extend
characterization of the minimal mass blowup solutions in Hs for s < 1.

I Concentrated mass amounts are quantized
The explicit blowups constructed by pseudoconformally transforming
time periodic solutions with ground and excited state profiles are the
only asymptotic profiles.

I Are there any general upper bounds?
J. Colliander (Toronto) NLS Blowup Midwest PDE 14 / 30



Critical Regimes & Low Regularity GWP? Mass Critical Case

L2 Critical Case: Partial Results

I For
0.86 ∼ 1

5(1 +
√

11) < s < 1,Hs ∩ {radial} 3 u0 7−→ u,T ∗ < ∞ =⇒

lim supt↑T∗

∫
|x |<(T∗−t)s/2−

|u(t, x)|2dx ≥ ‖Q‖2
L2 .

Hs -blowup solutions concentrate ground state mass.
[With Raynor, Sulem and Wright]

I ‖u0‖L2 = ‖Q‖L2 , u0 ∈ Hs , ∼ 0.86 < s < 1,T ∗ < ∞ =⇒ ∃ tn ↑ T ∗

s.t. u(tn) → Q in H s̃(s) (mod symmetry sequence). For Hs blowups
with ‖u0‖L2 > ‖Q‖L2 , u(tn) ⇀ V ∈ H1 (mod symmetry sequence).
[Hmidi-Keraani] This is an Hs analog of an H1 result of [Weinstein]
which preceded the minimal H1 blowup solution characterization.

I Same results for NLS−4
d
+1

(Rd) in Hs , s > d+8
d+10 . [Visan-Zhang]
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Critical Regimes & Low Regularity GWP? Mass Critical Case

L2 Critical Case: Partial Results

I Spacetime norm divergence rate

‖u‖L4
tx ([0,t]×R2) & (T ∗ − t)−β

is linked with mass concentration rate

lim sup
t↑T∗

sup

cubes I ,side(I )≤(T∗−t)
1
2 +

β
2

∫
I
|u(t, x)|2dx ≥ ‖u0‖−M

L2 .

[Work in progress with Roudenko]
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Critical Regimes & Low Regularity GWP? H1/2 Critical Case

H1/2 Critical Case

Consider NLS−3 (R3). Also L3
x -Critical. Typical Case?

I LWP theory similar to NLS±3 (R2):

L2(R2) 7−→ H1/2(R3)

L4
tx 7−→ L5

tx .

I There cannot be an H1-GWP mass threshold.

I No explicit blowup solutions are known.

I Virial identity =⇒ ∃ many blowup solutions.

I H1 ∩ {radial} 3 u0 7−→ u,T ∗ < ∞ then for any a > 0

‖∇u(t)‖L2
|x|<a

↑ ∞ as t ↑ T ∗.

Thus, radial solutions must explode at the origin.
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Critical Regimes & Low Regularity GWP? H1/2 Critical Case

H1/2 Critical Case: Radial NLS−3 (R3)

Proof.

By Hamiltonian conservation,

‖∇u(t)‖2
L2 = H[u0] +

1

2
‖u(t)‖4

L4
|x|<a

+
1

2
‖u(t)‖4

L4
|x|>a

.

Inner contribution estimated using Gagliardo-Nirenberg by
C (Mass, a)‖∇u(t)‖3

L2
|x|<a

. Exterior region estimated by pulling out two

factors in L∞x then using radial Sobolev to get control by
‖u(t)‖3

L2‖∇u(t)‖L2 . Absorb the exterior kinetic energy to left side

‖∇u(t)‖2
L2 . C (a,Mass[u0],H[u0]) + C (a,Mass[u0])‖∇u(t)‖3

L2
|x|<a

.
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Critical Regimes & Low Regularity GWP? H1/2 Critical Case

H1/2 Critical Case: Remarks

I Radial blowup solutions of energy subcritical NLSp(Rd) with p < 5
must explode at the origin.

I For H1/2-critical NLS−5 (R2), there exists
H1 ∩ {radial} 3 v0 7−→ v , T ∗(v0) < ∞ which blows up precisely on a
circle! [Raphaël]

I Numerics/heuristics suggest: Finite time blowup solutions of
NLS3(R3) satisfy ‖u(t)‖L3

x
↑ ∞ as t ↑ T ∗.

[Work in progress with Raynor, Sulem, Wright]
(Analogous to [Escauriaza-Seregin-Šverák] on Navier-Stokes)

I H1/2-blowups parabolically concentrate in L3 and H1/2.
[Work in progress with Roudenko]
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I H1/2-blowups parabolically concentrate in L3 and H1/2.
[Work in progress with Roudenko]

J. Colliander (Toronto) NLS Blowup Midwest PDE 19 / 30



Critical Regimes & Low Regularity GWP? H1/2 Critical Case

H1/2 Critical Case: Remarks

I Radial blowup solutions of energy subcritical NLSp(Rd) with p < 5
must explode at the origin.

I For H1/2-critical NLS−5 (R2), there exists
H1 ∩ {radial} 3 v0 7−→ v , T ∗(v0) < ∞ which blows up precisely on a
circle! [Raphaël]
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I Numerics/heuristics suggest: Finite time blowup solutions of
NLS3(R3) satisfy ‖u(t)‖L3

x
↑ ∞ as t ↑ T ∗.

[Work in progress with Raynor, Sulem, Wright]
(Analogous to [Escauriaza-Seregin-Šverák] on Navier-Stokes)
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Critical Regimes & Low Regularity GWP? Energy Critical Case

H1(Rd), d ≥ 3 Critical Case

I Defocusing energy critical NLS+
1+4/(d−2)(R

d), d ≥ 3 is globally

well-posed and scatters in H1:
[Bourgain], [Grillakis]: Radial Case for d = 3
[CKSTT]: d = 3
[Tao]: Radial Case for d = 4
[Ryckman-Visan], [Visan], [Tao-Visan]: d ≥ 4

Induction on Energy; Interaction Morawetz; Mass Freezing

I Focusing energy critical case?
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Critical Regimes & Low Regularity GWP? Energy Critical Case

H1(R2) ”Critical” Case

I NLSp(R2) is energy subcritical for all p. Is there an ”energy critical”
NLS equation on R2?

I Consider the defocusing initial value problem NLSexp(R2){
i∂tu + ∆u = u

(
e4π|u|2 − 1

)
u(0, ·) = u0(·) ∈ H1(R2)

with Hamiltonian

H[u(t)] :=

∫
R2

|∇u(t, x)|2 +

∫
R2

e4π|u(t,x)|2 − 1

4π
dx .
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Critical Regimes & Low Regularity GWP? Energy Critical Case

H1(R2) ”Critical” Case

I If H[u0]−M[u0] ≤ 1 then NLSexp(R2) is globally well-posed. Uniform
continuity of data-to-solution map fails to hold for data satisfying
H[u0]−M[u0] > 1.
[Work in progress with Ibrahim, Majdoub, Masmoudi]

I Well-posedness result relies upon Strichartz estimates,
Moser-Trudinger inequality, and a log-Sobolev inequality. (Largely
based on similar result for NLKG by [Ibrahim-Majdoub-Masmoudi])

I Ill-posedness result relies upon optimizing sequence for
Moser-Trudinger and small dispersion approximation following
[Christ-C-Tao].

I Scattering?
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Critical Regimes & Low Regularity GWP? Energy Supercritical Case

Energy Supercritical Case

Consider NLS+
7 (R3). Typical case?

I Numerical experiments by [Blue-Sulem] and also for corresponding
NLKG [Strauss-Vazquez] suggest GWP and scattering.

I Conjecture: NLS+
7 (R3) is GWP and scatters in H7/6(R3). [See

discussion by Bourgain, GAFA Special Volume, 2000]
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Critical Norm Explosion for H1/2 Critical Case Heuristics

Critical Norm Explosion?

[Work in progress with Raynor, Sulem, Wright....details remain.]

Question: Qualitative properties mass supercritical NLS blowup? Restrict
attention to H1/2-critical NLS−3 (R3).

I T ∗ defined via divergence of ‖u‖L5
tx

or ‖D1/2u‖
L

10/3
tx

.

I Finite energy radial blowups explode at spatial origin.

I Heuristics and numerics suggest asymptotic profile Q which decays
near spatial infinity like |y |−1 =⇒ Q /∈ L3(R3). Sobolev embedding
H1/2 ↪→ L3 suggests as t ↑ T ∗

‖u(t)‖H1/2 ∼ | log(T ∗ − t)| → ∞.

I Frequency heuristic: Bounded H1/2 blowup inconsistent with mass
conservation.
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Critical Norm Explosion for H1/2 Critical Case Contradiction Strategy

Contradiction Strategy

I Contradiction Hypothesis (CH): Assume ∃ Λ < ∞ such that

‖u‖
L∞t H

1/2
x ([0,T∗)×R3)

< Λ.

I Concentration Property: If H1 ∩ {radial} 3 u0 7−→ u solves
NLS−3 (R3), T ∗ < ∞ and we assume (CH) then

lim inf
t↑T∗

‖u(t)‖L3

|x|<(T∗−t)1/2−
≥

√
2

π2/3
= c∗.

The proof follows [Merle-Tsutsumi] with the (CH) upper bound as a
proxy for L2 conservation. Explicit constant from sharp
Gagliardo-Nirenberg estimate. [Delpino-Dolbeaut]
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Critical Norm Explosion for H1/2 Critical Case Contradiction Strategy

Contradiction Strategy

I Frequency level Sets:

Rµ(t) := sup{R : ‖P|ξ|>Ru(t)‖
Ḣ

1/2
x

> µ}

Concentration =⇒ Rc∗(t) ≥ (T ∗ − t)−1/2.

M := sup{µ : Rµ(t) = O(Rc∗(t)) as t ↑ T ∗}

By design RM+γ0(t) = o(RM(t)) for all γ0 > 0 as t ↑ T ∗. There
exists µ0 > 0 such that RM(t) ∼ RM−µ0(t) as t ↑ T ∗.

I Fix a number K by the condition

K 1/2µ0 = 3Λ.
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Critical Norm Explosion for H1/2 Critical Case Contradiction Strategy

Contradiction Strategy

I Solution Decomposition: At a time t0 < T ∗, decompose

u(t0) = ulow (t0) + ugap(t0) + uhi (t0)

with respect to frequency regions

|ξ| < RM+γ0(t0)

RM+γ0(t0) < |ξ| < RM(t0)

RM(t0) < |ξ|.

Evolve ul and ug forward on [t0,T
∗) using NLS−3 (R3). Evolve uh

according to ÑLS so that

u(t) = ul(t) + ug (t) + uh(t).

I K th Doubling Time after t0:

t1 := inf{t ∈ (t0,T
∗) : RM(t1) > KRM−µ0(t0)}
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Critical Norm Explosion for H1/2 Critical Case Contradiction Strategy

Contradiction Strategy

I High Frequency Mass Freezing Contradiction: Suppose we show the
high frequency mass freezing property

‖P|ξ|>RM(t0)u(t1)‖L2 ≥
1

2
‖P|ξ|>RM

(t0)u(t0)‖L2

& µ0R
−1/2
M−µ0

(t0).

I For small γ0, we can not park this mass inside the gap
RM(t0) < |ξ| < RM(t1) so we have to put it in the high frequency
boondox |ξ| > RM(t1).

I Since, at time t1,RM(t1) ≥ KRM−µ0(t0), we conclude

‖u(t1)‖H1/2 ≥ 3Λ,

a contradiction.
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Critical Norm Explosion for H1/2 Critical Case Mass Freezing

High Frequency Mass Freezing Property

I Main issue is to control the L2 mass increment of P|ξ|>RM(t0)u
h(·)

under the ÑLS evolution from t0 to t1.

I We must control 4-linear spacetime integrals like∫ t1

t0

∫
R3

P>RM(t0)(u
luguh) P>RM(t0)u

h dxdt.

I Since L4
tx is H1/4-critical and we have H1/2 control on u we can

control such integrals with some gain:

.
{

(t1 − t0)
1/5‖u‖L5

t,x ([t0,t1]×R3)

}5/2
Λ3/2.

I Assuming that ‖u‖L5
tx ([0,t]×R3) . (T ∗− t)−1/5+ and the Concentration

Property we contradict (CH) proving critical norm explosion.
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under the ÑLS evolution from t0 to t1.

I We must control 4-linear spacetime integrals like∫ t1

t0

∫
R3

P>RM(t0)(u
luguh) P>RM(t0)u

h dxdt.

I Since L4
tx is H1/4-critical and we have H1/2 control on u we can

control such integrals with some gain:

.
{

(t1 − t0)
1/5‖u‖L5

t,x ([t0,t1]×R3)

}5/2
Λ3/2.

I Assuming that ‖u‖L5
tx ([0,t]×R3) . (T ∗− t)−1/5+ and the Concentration

Property we contradict (CH) proving critical norm explosion.

J. Colliander (Toronto) NLS Blowup Midwest PDE 29 / 30



Critical Norm Explosion for H1/2 Critical Case Mass Freezing

High Frequency Mass Freezing Property

I Main issue is to control the L2 mass increment of P|ξ|>RM(t0)u
h(·)
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Critical Norm Explosion for H1/2 Critical Case Mass Freezing

Remarks

I Spacetime L5
tx upper bound is consistent with heuristics.

I Concentration Property following [Merle-Tsutsumi] proof assumed
H1 ∩ {radial} data. The rest of the argument is at the critical level.

I Under (CH) bound, Bourgain’s L2 critical concentration result
extends to the NLS−3 (R3) case to prove L3 and H1/2 concentration.
[with Roudenko]
This relaxes the H1 ∩ {radial} assumptions to H1/2.

I Extends to the general mass supercritical case?
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