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NONLINEAR SCHRODINGER INITIAL VALUE PROBLEM

Consider the initial value problem NLS;E(R"’):

iOru + Au = +|ulP~tuy
u(0, x) = up(x)

We seek u: (=T, T*) x R — C.
(+ focusing, — defocusing)

Time Invariant Quantities

Mass = [[u(t)].z

2
Hamiltonian = Vu(t)|PdxE——|u(t)|PTdx
[ IVute)Pacr—2lute)
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DILATION INVARIANCE
> If u solves NLSF(RY) on (—T,, T*) x R? then
-2 2 1
Ux(T,y) == ATPu(TAT5, yAT)

solves NLSF(R?) on (—A2T,, A T*) x R2.
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DILATION INVARIANCE

> If u solves NLS;E(RC’) on (=T, T*) x R? then

T 2 -1
ux(r,y) = AP u(TATS, yAT)

solves NLSF(R?) on (—A2T,, A T*) x R2.

» Dilation invariant norms play decisive role in the theory of
NLS;—L(]R") ;

2 4, d
. 1\ r-1 q o
1Dy ”>\||LQ(R§) - (X) 105 U||Lq(Rg)-

W9 is critical |f 1 +o0— ‘é =0.

> NLS;E(R") is HSC—crltlcaI for s, := g _ %_

> [2 and H? critical cases distinguished by conservation laws.
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CRITICAL REGIMES

» Theory for NLS;—L(]Rd) is qualitatively similar in regimes:

Mass subcritical (s. < 0)

Mass critical (s = 0)

Mass supercritical /Energy subcritical (0 < s. < 1)

Energy critical (s, = 1)

Energy supercritical (sc > 1).

» Optimal local-in-time well-posedness (LWP) for NLS;(R"’):
V s > max(0, sc) 3 unique continuous data-to-solution map

vV vy vy VvVyYy

H® 3 up — u € C([0, Thpl; H*) N LILP

with Tiwp = Thp(||tol|Hs) if s > sc and Tpyp = T(ug) if s = sc.

J. COLLIANDER (TORONTO) NLS Browup MibwesT PDE

5 /30



CRITICAL REGIMES & Low REGULARITY GWP?

CRITICAL REGIMES

> Theory for NLSpi(]Rd) is qualitatively similar in regimes:
» Mass subcritical (s. < 0)
Mass critical (s = 0)
Mass supercritical /Energy subcritical (0 < s. < 1)
Energy critical (s, = 1)
Energy supercritical (sc > 1).
» Optimal local-in-time well-posedness (LWP) for NLS;(R"’):
Vs > max(0, sc) 3 unique continuous data-to-solution map

vV vy VvYy

H* 3 ug — u € C([0, Thpl; H?) N L{LE

with Thyp = Tip(|luo||ps) if s > sc and Ty = T(u) if s = sc.

» Optimal maximal-in-time well-posedness (GWP) is known only in the
defocusing energy critical case. What is the fate of local-in-time
solutions with critical initial regularity?
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Low REGULARITY POLEMICS

Why should we care about low regularity data?
» Envelope equation derivation of NLS is "band limited".
» Physically relevant solutions are smooth.

Some answers:

» 1 global-in-time classical solutions of energy critical NLS was
unknown until finite energy solutions were shown to be global.
» Typical, slightly bigger than necessary, finite time blowup solutions of

mass critical NLS with nice initial data are " [*-typical” after
removing the blowup.

» Invariant measures live on low regularity phase space.

The talk will first discuss ideas and questions in the L2 mass critical case,
the H/2 critical case, and the H! energy critical case. Then, I'll discuss a
qualitative property of blowup in an H/2 critical case.
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» Consider HX N {||Q|l 2 < ||uoll2 < || Q|2 + @*} > up — u solving
NLS; (R?) on [0, T*) (maximal) with T* < oc.
» 3 A(t), x(t),0(t) € RY,R?, R/(27Z) and u* such that

u(t) = Mt)1Q (—X ;();)(t)) et ¥

strongly in L?(R?).
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TYPICAL BLOWUPS LEAVE AN [2 STAIN AT TIME T*

[Merle-Raphaél]

» Consider HX N {||Q|l 2 < ||uoll2 < || Q|2 + @*} > up — u solving
NLS; (R?) on [0, T*) (maximal) with T* < oc.
» 3 A(t), x(t),0(t) € RY,R?, R/(27Z) and u* such that

u(t) = Mt)1Q (—X ;();)(t)) et ¥

strongly in L?(R?).
» Typically, u*¢H* U LP for s > 0, p > 2!
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[? CriTiCAL CASE: LWP THEORY
Restrict attention to NLSF (R?). Typical L? critical case?

[Cazenave-Weissler]
> Yug € L? there exists Tiwp(Uo) determined by
L
100
3 unique solution u € C([0, Thpl; L?) N LE([0, Thwp] x R?).

e uo|l 4 ([0, Thp] x R?) <

J. COLLIANDER (TORONTO) NLS Browup MibwesT PDE

8 /30



CRITICAL REGIMES & Low REGULARITY GWP? Mass CRITICAL CASE

L[> CriTiCAL CASE: LWP THEORY
Restrict attention to NLSF (R?). Typical L? critical case?

[Cazenave-Weissler]
> Yug € L? there exists Tiwp(Uo) determined by
L
100
3 unique solution u € C([0, Thpl; L?) N LE([0, Thwp] x R?).
» Define the maximal forward existence time T*(ug) by

le™uoll 3 ([0, Thp] x R?) <

[ull 2 (o, 7+—s)xr2) <

for all § > 0 but diverges to oo as § | 0.
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L[> CriTiCAL CASE: LWP THEORY
Restrict attention to NLSF (R?). Typical L? critical case?

[Cazenave-Weissler]
> Yug € L? there exists Tiwp(Uo) determined by
L
100
3 unique solution u € C([0, Thpl; L?) N LE([0, Thwp] x R?).
» Define the maximal forward existence time T*(ug) by

le™ uoll s ([0, Thp] x R?) <

[ull 2 (o, 7+—s)xr2) <

for all § > 0 but diverges to oo as § | 0.
» J small data scattering threshold pg > 0

luoll 2 < o == lull s rxm2) < 20-
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L2 CRITICAL CASE: GWP THEORY

» HL-GWP for NLS; (R?).
» H'-GWP mass threshold || Q||,> for NLS; (R?):

HUOHL2 < ||Q||[_2 - H1 S ug — u, T = co.

[Weinstein|
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[2 CRITICAL CASE: GWP THEORY

> HL-GWP for NLS; (R?).
» H'-GWP mass threshold || Q||,> for NLS; (R?):

HUOHL2 < ||Q”L2 — H! Sug— u, TF = oo.

[Weinstein|

Here Q is the ground state solution to —Q + AQ = Q3. e Q(x) is
the ground state soliton solution to NLS; (R?).
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CRITICAL REGIMES & Low REGULARITY GWP? Mass CRITICAL CASE

[2 CRITICAL CASE: GWP THEORY

> HL-GWP for NLS; (R?).
» H'-GWP mass threshold || Q||,> for NLS; (R?):

HUOHL2 < ||QHL2 — H! Sug— u, TF = oco.

[Weinstein|

Here Q is the ground state solution to —Q + AQ = Q3. e Q(x) is
the ground state soliton solution to NLS; (R?).
> '| Method' yields H*-GWP for s > 2 (s > 17).
[CKSTT]
NLS (RY) is similarly HS-GWP for s > 3.
[Tzirakis]
; s d+8
NLS;H(Rd) is H-GWP for s > S5
[Visan-Zhang]
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[2 CRITICAL CASE: BLOWUP SOLUTION PROPERTIES

Explicit Blowup Solutions

> Arise as pseudoconformal image of e Q(x) :
1 2
S(t,x) = ;Q (f) e A Tk,
» S has minimal mass:

IS(=Dllz = 1Rl 2.

All mass in S is conically concentrated into a point.

J. COLLIANDER (TORONTO) NLS Browup MibwesT PDE

10 / 30



CRITICAL REGIMES & Low REGULARITY GWP? Mass CRITICAL CASE

[? CRITICAL CASE: BLOWUP SOLUTION PROPERTIES

Explicit Blowup Solutions

> Arise as pseudoconformal image of e Q(x) :

St =1 (%) e

» S has minimal mass:

IS(=Dllz = 1Rl 2.

All mass in S is conically concentrated into a point.

» Minimal mass H! blowup solution characterization:
up € H, ||luoll2 = ||@ll 2, T*(uo) < oo implies that u =S up to an
explicit solution symmetry. [Merle]
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[2 CRITICAL CASE: BLOWUP SOLUTION PROPERTIES

Virial Identity — d Many Blowup Solutions

» Integration by parts and the equation yields

af/ x| u(t, x)Pdx = 8Hug).
R

[Vlasov-Petrischev-Talanov], [Glassey]

J. COLLIANDER (TORONTO) NLS Browup MibwesT PDE 11 / 30



CRITICAL REGIMES & Low REGULARITY GWP? Mass CRITICAL CASE

[? CRITICAL CASE: BLOWUP SOLUTION PROPERTIES

Virial Identity — d Many Blowup Solutions

» Integration by parts and the equation yields

af/ x| u(t, x)Pdx = 8Hug).
R

[Vlasov-Petrischev-Talanov], [Glassey]
> Hlug] <0, [ |x|?|uo(x)[>dx < oo blows up.

J. COLLIANDER (TORONTO) NLS Browup MibwesT PDE

11 / 30



CRITICAL REGIMES & Low REGULARITY GWP? Mass CRITICAL CASE

[? CRITICAL CASE: BLOWUP SOLUTION PROPERTIES

Virial Identity — d Many Blowup Solutions

» Integration by parts and the equation yields
af/ Ix|u(t, )2 dx = 8H[uo].
RZ

[Vlasov-Petrischev-Talanov], [Glassey]
> Hlug] <0, [ |x|?|uo(x)[>dx < oo blows up.

» How do these solutions blow up?
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[?> CRITICAL CASE: MASS CONCENTRATION
H' Theory of Mass Concentration
» H! N {radial} > ug — u, T* < oo implies

lim inf / lu(t, x)2dx > || Q||%.
AT Jx<(T—ey2

[Merle-Tsutsumi]
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[?2 CRITICAL CASE: MASS CONCENTRATION

H! Theory of Mass Concentration

» H! N {radial} > ug — u, T* < oo implies

lim inf / lu(t, x)2dx > || Q||%.
AT Jx<(T—ey2

[Merle-Tsutsumi]

» H?! blowups parabolically concentrate at least the ground state mass.
Explicit blowups S concentrate mass much faster.

» Fantastic recent progress on the H' blowup theory. [Merle-Raphaél]
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[2 CRITICAL CASE: MASS CONCENTRATION

L? Theory of Mass Concentration

> 123 ug— u, T* < oo implies

lim sup sup /|u(t,x)|2dx > ||uo||Z2M.
tTT*  cubes I side(1)<(T*—t)1/2J1

[Bourgain]
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» For large L? data, do there exist tiny concentrations?
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[?2 CRITICAL CASE: MASS CONCENTRATION

L? Theory of Mass Concentration

> 123 ug— u, T* < oo implies

lim sup sup /|u(t,x)|2dx > ||uo||Z2M.
tTT*  cubes I side(1)<(T*—t)1/2J1

[Bourgain]
L? blowups parabolically concentrate some mass.

» For large L? data, do there exist tiny concentrations?

» Extensions in [Merle-Vega], [Carles-Keraani|, [Bégout-Vargas].
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[? CriTICAL CASE: CONJECTURES/QUESTIONS

Consider focusing NLS; (R?):
» Scattering Below the Ground State Mass

777

Huo||/_2 < ||Q”L2 — " ug —— u with HUHL‘t‘X < 00.

Also, L2 solutions of NLS; (R?) satisfy’*’ |jul|;s < co.
3 L4
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[? CRITICAL CASE: CONJECTURES/QUESTIONS

Consider focusing NLS; (R?):
» Scattering Below the Ground State Mass

777

Hu0HL2 < ||Q”L2 — T u+——u with HUHL‘,}X < 0.

(Also, L? solutions of NLS; (R?) satisfy”"’ lullp2, < o0.)
» Minimal Mass Blowup Characterization

luoll2 = QI 2, o — u, T* <00 = " u=5,

modulo a solution symmetry. An intermediate step would extend
characterization of the minimal mass blowup solutions in H® for s < 1.
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Hu0HL2 < ||Q”L2 — T u+——u with HUHL‘,}X < 0.

(Also, L? solutions of NLS; (R?) satisfy”"’ lullp2, < o0.)
» Minimal Mass Blowup Characterization

uollz = |@l 2, o = u, T" < 00 = oy = S,

modulo a solution symmetry. An intermediate step would extend
characterization of the minimal mass blowup solutions in H® for s < 1.

» Concentrated mass amounts are quantized
The explicit blowups constructed by pseudoconformally transforming
time periodic solutions with ground and excited state profiles are the
only asymptotic profiles.
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[? CRITICAL CASE: CONJECTURES/QUESTIONS

Consider focusing NLS; (R?):
» Scattering Below the Ground State Mass

77

Hu0HL2 < ||Q”L2 — * ug — u with HUHL‘,}X < 00.

(Also, L? solutions of NLS; (R?) satisfy”"’ lullp2, < o0.)
» Minimal Mass Blowup Characterization

uollz = |@l 2, o = u, T" < 00 = oy = S,

modulo a solution symmetry. An intermediate step would extend

characterization of the minimal mass blowup solutions in H® for s < 1.
» Concentrated mass amounts are quantized

The explicit blowups constructed by pseudoconformally transforming

time periodic solutions with ground and excited state profiles are the

only asymptotic profiles.

» Are there any general upper bounds?
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[2 CRITICAL CASE: PARTIAL RESULTS

» For
0.86 ~ 2(1+ V11) < s < 1,H N {radial} 3 up — u, T* < 0o =

imsupyg 7. [ Ju(t, )P > Q1.
x| <(T*—t)s/2~

H?-blowup solutions concentrate ground state mass.
[With Raynor, Sulem and Wright]
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[?2 CrITICAL CASE: PARTIAL RESULTS

» For
0.86 ~ 2(1+ V11) < s < 1,H N {radial} 3 up — u, T* < 0o =

lim SUptTT*/ |U(t,X)|2dX > ||Q||%2
x| <(T*—t)"/>~

H?-blowup solutions concentrate ground state mass.
[With Raynor, Sulem and Wright]

> |lwoll2 = ||Ql 2, u0 € H5,~086<s<1, T "<oo = Jt,7T*
sit. u(t,) — Q in H3() (mod symmetry sequence).
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[?2 CrITICAL CASE: PARTIAL RESULTS

» For
0.86 ~ 2(1+ V11) < s < 1,H N {radial} 3 up — u, T* < 0o =

lim SuPtTT*/ |U(t,X)|2dX > ||Q||%2
x| <(T*—t)"/>~

H?-blowup solutions concentrate ground state mass.
[With Raynor, Sulem and Wright]

> |lwoll2 = ||Ql 2, u0 € H5,~086<s<1, T "<oo = Jt,7T*
sit. u(t,) — Q in H3() (mod symmetry sequence). For H* blowups
with |[ug 2 > [| Q]| 2, u(ts) — V € H' (mod symmetry sequence).
[Hmidi-Keraani]
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[?2 CrITICAL CASE: PARTIAL RESULTS

» For
0.86 ~ (1 + V1) <5 < L H* N {radial} 3 up — u, T* < 00 =

lim suptTT*/ lu(t,x)|?dx > [|Q||%.
M<(Te /2

H?-blowup solutions concentrate ground state mass.
[With Raynor, Sulem and Wright]

> |lwoll2 = ||Ql 2, u0 € H5,~086<s<1, T "<oo = Jt,7T*
sit. u(t,) — Q in H3() (mod symmetry sequence). For H* blowups
with |[ug 2 > [| Q]| 2, u(ts) — V € H' (mod symmetry sequence).
[Hmidi-Keraani] This is an H* analog of an H' result of [Weinstein]
which preceded the minimal H® blowup solution characterization.
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[?2 CrITICAL CASE: PARTIAL RESULTS

> For
0.86 ~ 2(1+ V11) < s < 1,H N {radial} 3 up — u, T* < 0o =

lim suptTT*/ lu(t,x)|?dx > [|Q||%.
X</

H?-blowup solutions concentrate ground state mass.
[With Raynor, Sulem and Wright]

> |lwoll2 = ||Ql 2, u0 € H5,~086<s<1, T "<oo = Jt,7T*
sit. u(t,) — Q in H3() (mod symmetry sequence). For H* blowups
with |[ug 2 > [| Q]| 2, u(ts) — V € H' (mod symmetry sequence).
[Hmidi-Keraani] This is an H* analog of an H' result of [Weinstein]
which preceded the minimal H® blowup solution characterization.

» Same results for NL54_ (]Rd) in H®, s > j_:rfo [Visan-Zhang]
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[2 CRITICAL CASE: PARTIAL RESULTS

» Spacetime norm divergence rate

* —p
lull 2 (o,gxmr2) 2 (T — 1)
is linked with mass concentration rate
jim sup sup /yu(t,x)|2dxz ol .
T ) 1,8
cubes |,side()<(T*—t)272
[Work in progress with Roudenko]
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HY/2 CriTicAL CASE

Consider NLS; (R3). Also L3-Critical. Typical Case?
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HY/2 CriTicaL CASE

Consider NLS; (R3). Also L3-Critical. Typical Case?
> LWP theory similar to NLS{ (R?):

L2(R?) s HY2(R®)

4 5
LtX th'
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Consider NLS; (R3). Also L3-Critical. Typical Case?
> LWP theory similar to NLS{ (R?):

L2(R2) — H1/2(R3)
LE— L3
» There cannot be an H1-GWP mass threshold.

» No explicit blowup solutions are known.

» Virial identity = 3 many blowup solutions.
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HY/2 CriTicaL CASE

Consider NLS; (R3). Also L3-Critical. Typical Case?
> LWP theory similar to NLS{ (R?):
L2(R2) — H1/2(R3)
Ly — L3
» There cannot be an H1-GWP mass threshold.
» No explicit blowup solutions are known.

» Virial identity = 3 many blowup solutions.
» H! N {radial} > ug — u, T* < oo then for any a > 0

IVu(e)lz,  Tooast] T

Thus, radial solutions must explode at the origin.
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HY/2 CriTicAL CASE: RADIAL NLS; (R3)

PROOF.
By Hamiltonian conservation,

1 1
2 4 4
IVu(e)f: = Hieo] + 10Ol +5u®lfs
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HY/2 CriTicAL CASE: RADIAL NLS; (R3)

PROOF.
By Hamiltonian conservation,

1 1
IV u(e): = Hisol + Sllu(®)lfy -+ 5@l

Inner contribution estimated using Gagliardo-Nirenberg by
C(Mass, a)HVu(t)H:zXKa
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HY/2 CriTicAL CASE: RADIAL NLS; (R3)

PROOF.
By Hamiltonian conservation,

1 1
2 4 4
IVu(e): = Hiuol + S lu(@)lfs  + 5l

Inner contribution estimated using Gagliardo-Nirenberg by
C(Miass, a)HVu(t)H?z . Exterior region estimated by pulling out two

|x|<a
factors in L3° then using radial Sobolev to get control by

lu() 1221V u(t)]] 2.
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HY/2 CriTicAL CASE: RADIAL NLS; (R3)

PROOF.
By Hamiltonian conservation,

1 1
2 4 4
IVu(e): = Hiuol + S lu(@)lfs  + 5l

Inner contribution estimated using Gagliardo-Nirenberg by
C(Miass, a)HVu(t)Hiz . Exterior region estimated by pulling out two

|x|<a
factors in L3° then using radial Sobolev to get control by

|u(£) ]3IV u(t)|| ;2. Absorb the exterior kinetic energy to left side
IVu(t)[[f2 S C(a, Mass[uo], H[uo]) + C(a, Mass[uo]) || Vu(t)|
L L\x\<a

O
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HY/2 CriTicAL CASE: REMARKS

» Radial blowup solutions of energy subcritical NLSP(R"') with p <5
must explode at the origin.
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HY/2 CriTicAL CASE: REMARKS

» Radial blowup solutions of energy subcritical NLSP(]Rd) with p <5
must explode at the origin.

> For H'/2critical NLS; (R?), there exists
H N {radial} > vo — v, T*(v) < oo which blows up precisely on a
circle! [Raphaél]
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HY/2 CriTicAL CASE: REMARKS

» Radial blowup solutions of energy subcritical NLSp(Rd) with p <5
must explode at the origin.

> For H'/2critical NLS; (R?), there exists
H N {radial} > vo — v, T*(v) < oo which blows up precisely on a
circle! [Raphaél]

» Numerics/heuristics suggest: Finite time blowup solutions of
NLS3(R3) satisfy Ju(t)|lz Tooast T T
[Work in progress with Raynor, Sulem, Wright]
(Analogous to [Escauriaza-Seregin-Sverdk] on Navier-Stokes)

J. COLLIANDER (TORONTO) NLS Browup MibwesT PDE 19 / 30



CRITICAL REGIMES & Low REGULARITY GWP? INZRAN® Sy eIV NI}

HY/2 CriTicAL CASE: REMARKS

» Radial blowup solutions of energy subcritical NLSp(Rd) with p <5

must explode at the origin.
> For H'/2critical NLS; (R?), there exists

H N {radial} > vo — v, T*(v) < oo which blows up precisely on a

circle! [Raphaél]
» Numerics/heuristics suggest: Finite time blowup solutions of
NLS3(R3) satisfy Ju(t)|lz Tooast T T
[Work in progress with Raynor, Sulem, Wright]
(Analogous to [Escauriaza-Seregin-Sverdk] on Navier-Stokes)

» H'/2_blowups parabolically concentrate in L3 and H/2.
[Work in progress with Roudenko]
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HY(R?),d > 3 CriTicaL CASE

» Defocusing energy critical NL51++4/(d_2)(]Rd), d > 3 is globally

well-posed and scatters in H':
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HY(R?),d > 3 CriTicaL CASE

» Defocusing energy critical NL51++4/(0,_2)(]Rd)7 d > 3 is globally
well-posed and scatters in H':
[Bourgain], [Grillakis]: Radial Case for d =3
[CKSTT]: d = 3
[Tao]: Radial Case for d = 4
[Ryckman-Visan], [Visan], [Tao-Visan]: d > 4
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HY(R?),d > 3 CriTicaL CASE

» Defocusing energy critical NL51++4/(0,_2)(]Rd)7 d > 3 is globally
well-posed and scatters in H':
[Bourgain], [Grillakis]: Radial Case for d =3
[CKSTT]: d =3
[Tao]: Radial Case for d = 4
[Ryckman-Visan], [Visan], [Tao-Visan]: d > 4
Induction on Energy; Interaction Morawetz; Mass Freezing
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CRITICAL REGIMES & Low REGULARITY GWP? ENERGY CRITICAL CASE

HY(R?),d > 3 CriTicaL CASE

» Defocusing energy critical NL51++4/(d_2)(]Rd), d > 3 is globally
well-posed and scatters in H':
[Bourgain], [Grillakis]: Radial Case for d =3
[CKSTT]: d =3
[Tao]: Radial Case for d = 4
[Ryckman-Visan], [Visan], [Tao-Visan]: d > 4
Induction on Energy; Interaction Morawetz; Mass Freezing

» Focusing energy critical case?
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H(R?) ” CriTICAL” CASE

> NLSP(RQ) is energy subcritical for all p. Is there an "energy critical”
NLS equation on R??
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H(R?) ” CRITICAL” CASE

> NLSP(Rz) is energy subcritical for all p. Is there an "energy critical”
NLS equation on R??

» Consider the defocusing initial value problem NLS,(R?)

{i@tu +Au= u(e“”'“|2 -1)
u(0,-) = up(-) € HY(R?)
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H(R?) ” CRITICAL” CASE

> NLSP(Rz) is energy subcritical for all p. Is there an "energy critical”
NLS equation on R??

» Consider the defocusing initial value problem NLS,(R?)

{i@tu +Au= u(e“”'“|2 -1)
u(0,-) = up(-) € HY(R?)

with Hamiltonian

edmlu(tx)? _ 1

Hlu(t)] := /R2 |Vu(t,x)[? +/R2 de.
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H(R?) ” CRITICAL” CASE

> If H[up] — M[ug] < 1 then NLSe,(R2) is globally well-posed. Uniform
continuity of data-to-solution map fails to hold for data satisfying
H[UO] — M[UO] > 1.
[Work in progress with lbrahim, Majdoub, Masmoudi]
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> If H[up] — M[ug] < 1 then NLSe,(R2) is globally well-posed. Uniform
continuity of data-to-solution map fails to hold for data satisfying
H[uo] — M[uo] > 1.
[Work in progress with lbrahim, Majdoub, Masmoudi]

» Well-posedness result relies upon Strichartz estimates,
Moser-Trudinger inequality, and a log-Sobolev inequality. (Largely
based on similar result for NLKG by [Ibrahim-Majdoub-Masmoudi])
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> If H[up] — M[ug] < 1 then NLSe,(R2) is globally well-posed. Uniform
continuity of data-to-solution map fails to hold for data satisfying
H[uo] — M[uo] > 1.
[Work in progress with lbrahim, Majdoub, Masmoudi]

» Well-posedness result relies upon Strichartz estimates,

Moser-Trudinger inequality, and a log-Sobolev inequality. (Largely
based on similar result for NLKG by [Ibrahim-Majdoub-Masmoudi])

> lll-posedness result relies upon optimizing sequence for
Moser-Trudinger and small dispersion approximation following
[Christ-C-Tao].
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H(R?) ” CRITICAL” CASE

> If H[up] — M[ug] < 1 then NLSe,(R2) is globally well-posed. Uniform
continuity of data-to-solution map fails to hold for data satisfying
H[uo] — M[uo] > 1.
[Work in progress with lbrahim, Majdoub, Masmoudi]

» Well-posedness result relies upon Strichartz estimates,
Moser-Trudinger inequality, and a log-Sobolev inequality. (Largely
based on similar result for NLKG by [Ibrahim-Majdoub-Masmoudi])

> lll-posedness result relies upon optimizing sequence for
Moser-Trudinger and small dispersion approximation following
[Christ-C-Tao].

» Scattering?
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ENERGY SUPERCRITICAL CASE

Consider NLS; (R3). Typical case?

» Numerical experiments by [Blue-Sulem] and also for corresponding
NLKG [Strauss-Vazquez] suggest GWP and scattering.
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ENERGY SUPERCRITICAL CASE

Consider NLS; (R3). Typical case?

» Numerical experiments by [Blue-Sulem] and also for corresponding
NLKG [Strauss-Vazquez] suggest GWP and scattering.

» Conjecture: NLSS(R3) is GWP and scatters in H'/%(R3). [See
discussion by Bourgain, GAFA Special Volume, 2000]
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CRITICAL NORM EXPLOSION?

[Work in progress with Raynor, Sulem, Wright....details remain.]
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CRITICAL NORM EXPLOSION?
[Work in progress with Raynor, Sulem, Wright....details remain.]

Question: Qualitative properties mass supercritical NLS blowup?

NLS BLowup MmDWEST PDE 24 / 30



CRITICAL NORM EXPLOSION FOR H*/“ CRITICAL CASE HEURISTICS

CRITICAL NORM EXPLOSION?

[Work in progress with Raynor, Sulem, Wright....details remain.]

Question: Qualitative properties mass supercritical NLS blowup? Restrict
attention to H'/2-critical NLS; (R3).
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CRITICAL NORM EXPLOSION?
[Work in progress with Raynor, Sulem, Wright....details remain.]
Question: Qualitative properties mass supercritical NLS blowup? Restrict

attention to H'/2-critical NLS; (R3).
> T defined via divergence of |[uf[;s or “D1/2UHL10/3.
X tx
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CRITICAL NORM EXPLOSION?
[Work in progress with Raynor, Sulem, Wright....details remain.]

Question: Qualitative properties mass supercritical NLS blowup? Restrict
attention to H'/2-critical NLS; (R3).

> T defined via divergence of |[uf[;s or HD1/2UHL10/3.
X tx

» Finite energy radial blowups explode at spatial origin.
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CRITICAL NORM EXPLOSION?

[Work in progress with Raynor, Sulem, Wright....details remain.]

Question: Qualitative properties mass supercritical NLS blowup? Restrict
attention to H'/2-critical NLS; (R3).
> T~ defined via divergence of ||u|[;s or HD1/2UHL10/3.
X tx
» Finite energy radial blowups explode at spatial origin.

» Heuristics and numerics suggest asymptotic profile @ which decays
near spatial infinity like |y|! = Q ¢ L3(R3). Sobolev embedding
HY/2 < |3 suggests as t | T*

[u(t)|[ /2 ~ [log(T™ — )] — oc.
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CRITICAL NORM EXPLOSION?
[Work in progress with Raynor, Sulem, Wright....details remain.]

Question: Qualitative properties mass supercritical NLS blowup? Restrict
attention to H'/2-critical NLS; (R3).
> T~ defined via divergence of ||u|[;s or HD1/2UHL10/3.
X tx
» Finite energy radial blowups explode at spatial origin.

» Heuristics and numerics suggest asymptotic profile @ which decays
near spatial infinity like |y|! = Q ¢ L3(R3). Sobolev embedding
HY/2 < |3 suggests as t | T*

[u(t)|[ /2 ~ [log(T™ — )] — oc.

» Frequency heuristic: Bounded H/2 blowup inconsistent with mass
conservation.

J. COLLIANDER (TORONTO) NLS BrLowup
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CONTRADICTION STRATEGY

» Contradiction Hypothesis (CH): Assume 3 A < oo such that

1l e 220,70y sy < A

» Concentration Property: If H* N {radial} > up — u solves
NLS; (R3), T* < oo and we assume (CH) then

\/§ *

—5 — C .
= 23

liminf ||u(t
minflu(O)
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CONTRADICTION STRATEGY

» Contradiction Hypothesis (CH): Assume 3 A < oo such that

HUHL?OHi/z([O,T*)XR?’) <A
» Concentration Property: If H* N {radial} > up — u solves
NLS; (R3), T* < oo and we assume (CH) then

COIEINES
The proof follows [Merle-Tsutsumi] with the (CH) upper bound as a
proxy for L2 conservation. Explicit constant from sharp
Gagliardo-Nirenberg estimate. [Delpino-Dolbeaut]
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CONTRADICTION STRATEGY

> Frequency level Sets:
Ru(t) == sup{R : [ Pigj> ru(t)ll sz > 1}

Concentration = Re«(t) > (T* — t)~1/2.
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> Frequency level Sets:
Ru(t) == sup{R : [ Pigj> ru(t)ll sz > 1}
Concentration == R+(t) > (T* — t)~Y/2.

M= sup{p: Ru(t) = O(Re<(t)) as t 1 T7}
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CONTRADICTION STRATEGY

» Frequency level Sets:
Ru(t) == sup{R : [ Pigj> ru(t)ll sz > 1}
Concentration == R+(t) > (T* — t)~Y/2.
M = sup{ju: Ru(t) = O(Re- (1)) as £ 1 T*)

By design Ruj4+o(t) = o(Rum(t)) for all 7o > 0as t T T*. There
exists po > 0 such that Ry(t) ~ Ry—po(t) as t T T%.
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CONTRADICTION STRATEGY

» Frequency level Sets:
Ru(t) == sup{R : [ Pigj> ru(t)ll sz > 1}
Concentration = Re«(t) > (T* — t)~1/2.
M = sup{ju: Ru(t) = O(Re- (1)) as £ 1 T*)

By design Ruj4+o(t) = o(Rum(t)) for all 7o > 0as t T T*. There
exists po > 0 such that Ry(t) ~ Ry—po(t) as t T T%.

» Fix a number K by the condition

K21 = 3A.
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CONTRADICTION STRATEGY
» Solution Decomposition: At a time tg < T*, decompose

U(to) = Ll’ow(to) =+ ugap(to) + Uhi(t())
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CONTRADICTION STRATEGY
» Solution Decomposition: At a time tg < T*, decompose
u(to) = u'(ty) + uEP(ty) + uM (o)
with respect to frequency regions

€] < Rngro (t0)
Rm++0(t0) < €] < Rm(to)
Rm(to) < [€].
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CONTRADICTION STRATEGY
» Solution Decomposition: At a time tg < T*, decompose
u(to) = u’™(to) + uE(to) + u"(to)
with respect to frequency regions

€] < Rm0(to)
Rum-+0(t0) < €] < Rm(to)
Ru(to) < [€]-
Evolve u' and u& forward on [to, T*) using NLS; (R3). Evolve u”
according to NLS so that

u(t) = u'(t) + u(t) + u"(2).
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CONTRADICTION STRATEGY
» Solution Decomposition: At a time tg < T*, decompose
u(to) = u’™(to) + uE(to) + u"(to)
with respect to frequency regions

€] < Rngro (t0)
R4+ (t0) < [€] < Rm(to)
Rm(to) < [¢]-

Evolve u' and u& forward on [to, T*) using NLS; (R3). Evolve u”
according to NLS so that

u(t) = u'(t) + u(t) + u"(2).

» Kth Doubling Time after ty:
ty ;= inf{t € (to, T*) : Rm(t1) > KRm—p0(t0)}
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CONTRADICTION STRATEGY

» High Frequency Mass Freezing Contradiction: Suppose we show the
high frequency mass freezing property

1
I Pie|>Ru(to) t(t)ll 2 = §HP|§|>RM(t0)U(t0)HL2

12
> poRy2 (to).
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CONTRADICTION STRATEGY

» High Frequency Mass Freezing Contradiction: Suppose we show the
high frequency mass freezing property

1
I Pie|>Ru(to) t(t)ll 2 = §HP|§|>RM(1“0)U(t0)HL2

12
> poRy2 (to).

» For small 7o, we can not park this mass inside the gap
Rm(to) < [€] < Rm(t1) so we have to put it in the high frequency
boondox [£| > Rum(t1).
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CONTRADICTION STRATEGY

» High Frequency Mass Freezing Contradiction: Suppose we show the
high frequency mass freezing property
1
1Pet>Ru(to) u(t1)ll 2 = 511 Plej>ry (to) ulto) [ 2
—-1/2
> poRy2 (to).

» For small 7o, we can not park this mass inside the gap
Rm(to) < [€] < Rm(t1) so we have to put it in the high frequency
boondox [£| > Rum(t1).

» Since, at time t1, Ry(t1) > KRp—p(to), we conclude

lu(t)ll sz = 3N,

a contradiction.
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HicH FREQUENCY MASS FREEZING PROPERTY

» Main issue is to control the L? mass increment of P|§|>RM(t0)uh(-)

under the NLS evolution from to to ty.
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HicH FREQUENCY MASS FREEZING PROPERTY

» Main issue is to control the L? mass increment of P|£‘>RM(t0)uh(-)
under the NLS evolution from ty to t;.

» We must control 4-linear spacetime integrals like

t1 o
/ / P>RM(to)(quguh) P>RM(t0)Uh dxdt.
to R3
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HicH FREQUENCY MASS FREEZING PROPERTY

» Main issue is to control the L? mass increment of P|£‘>RM(t0)uh(-)
under the NLS evolution from ty to t;.
» We must control 4-linear spacetime integrals like

ty o
/ / P>RM(to)(uluguh) P>RM(t0)Uh dxdt.
to R3

> Since L4 is H'/*-critical and we have H/2 control on u we can
control such integrals with some gain:

5/2
S {(tl - tO)l/SHUHLE’X([tO,tl]X]I@)} N2,
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HiGH FREQUENCY MASS FREEZING PROPERTY

» Main issue is to control the L? mass increment of P|§‘>RM(t0)uh(-)
under the NLS evolution from ty to t;.
» We must control 4-linear spacetime integrals like

t1 o L
/ / 'D>RM(to)(UlugUh) P Ryy(t) U™ dxdt.
to R3

> Since L4 is H'/*-critical and we have H/2 control on u we can
control such integrals with some gain:

5/2
S {(fl - fo)l/SH”HL?,X([tom]XM} N2

> Assuming that [lul|;s jo,gqxr3) S (T7— t)~1/5+ and the Concentration
Property we contradict (CH) proving critical norm explosion.
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REMARKS

» Spacetime L3, upper bound is consistent with heuristics.

» Concentration Property following [Merle-Tsutsumi] proof assumed
H N {radial} data. The rest of the argument is at the critical level.
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REMARKS

» Spacetime L3, upper bound is consistent with heuristics.

» Concentration Property following [Merle-Tsutsumi] proof assumed
H N {radial} data. The rest of the argument is at the critical level.

» Under (CH) bound, Bourgain's L? critical concentration result
extends to the NLS; (R3) case to prove L3 and H'/? concentration.
[with Roudenko]

This relaxes the H! N {radial} assumptions to H/2.
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REMARKS

» Spacetime L3, upper bound is consistent with heuristics.
» Concentration Property following [Merle-Tsutsumi] proof assumed
H N {radial} data. The rest of the argument is at the critical level.

» Under (CH) bound, Bourgain's L? critical concentration result
extends to the NLS; (R3?) case to prove L3 and H'/2 concentration.
[with Roudenko]

This relaxes the H! N {radial} assumptions to H/2.

» Extends to the general mass supercritical case?
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