Blowup properties for critical and supercritical NLS at low regularity

J. Colliander

Toronto and M.S.R.I.
Blowup properties for critical and supercritical NLS at low regularity

J. Colliander

1. **Nonlinear Schrödinger Initial Value Problem**

2. **Critical Regimes & Low Regularity GWP?**

3. \(H^{1/2} \) Critical Case

4. **Energy Critical Case**

5. **Energy Supercritical Case**

6. **Critical Norm Explosion for \(H^{1/2} \) Critical Case**
Nonlinear Schrödinger Initial Value Problem

Blowup properties for critical and supercritical NLS at low regularity

J. Colliander

Nonlinear Schrödinger Initial Value Problem

Critical Regimes & Low Regularity

GWP?

$H^{1/2}$ Critical Case

Energy Critical Case

Energy Supercritical Case
Consider the initial value problem $NLS_p^{\pm}(\mathbb{R}^d)$:

\[
\begin{cases}
i \partial_t u + \Delta u = \pm |u|^{p-1} u \\
u(0, x) = u_0(x)
\end{cases}
\]
Consider the initial value problem $\text{NLS}_p^\pm(\mathbb{R}^d)$:

\[
\begin{cases}
 i \partial_t u + \Delta u = \pm|u|^{p-1}u \\
 u(0, x) = u_0(x)
\end{cases}
\]

We seek $u : (-T_*, T^*) \times \mathbb{R}^d \rightarrow \mathbb{C}$. (+ focusing, − defocusing)
Consider the initial value problem $\text{NLS}^\pm_p(\mathbb{R}^d)$:

\[
\begin{align*}
\left\{ \begin{array}{l}
 i\partial_t u + \Delta u &= \pm |u|^{p-1}u \\
 u(0, x) &= u_0(x)
\end{array} \right.
\end{align*}
\]

We seek $u : (-T^*, T^*) \times \mathbb{R}^d \mapsto \mathbb{C}$.
(+ focusing, $-$ defocusing)

Time Invariant Quantities

Mass

$$\text{Mass} = \|u(t)\|_{L^2}^2$$

Hamiltonian

$$\text{Hamiltonian} = \int_{\mathbb{R}^d} |\nabla u(t)|^2 dx \mp \frac{2}{p+1} |u(t)|^{p+1} dx$$
Dilation Invariance

Blowup properties for critical and super-critical NLS at low regularity

J. Colliander

Nonlinear Schrödinger Initial Value Problem

Critical Regimes & Low Regularity

$H^{1/2}$ Critical Case

Energy Critical Case

Energy Supercritical Case
Dilation Invariance

- If u solves $\text{NLS}_p^\pm(\mathbb{R}^d)$ on $(-T_*, T*) \times \mathbb{R}^2$ then

 $$u_\lambda(\tau, y) := \lambda^{\frac{2}{1-p}} u(\tau \lambda^{-2}, y \lambda^{-1})$$

 solves $\text{NLS}_p^\pm(\mathbb{R}^d)$ on $(-\lambda^2 T_*, \lambda^2 T*) \times \mathbb{R}^2$.
Dilation Invariance

- If u solves $\text{NLS}_p^\pm(\mathbb{R}^d)$ on $(-T_*, T^*) \times \mathbb{R}^2$ then

 $$u_\lambda(\tau, y) := \lambda^{\frac{2}{1-p}} u(\tau \lambda^{-2}, y \lambda^{-1})$$

 solves $\text{NLS}_p^\pm(\mathbb{R}^d)$ on $(-\lambda^2 T_*, \lambda^2 T^*) \times \mathbb{R}^2$.

- Dilation invariant norms play decisive role in the theory of $\text{NLS}_p^\pm(\mathbb{R}^d)$.
Dilation Invariance

- If \(u \) solves \(NLS_p^\pm(\mathbb{R}^d) \) on \((-T_*, T^*) \times \mathbb{R}^2\) then

\[
u_\lambda(\tau, y) := \lambda^{\frac{2}{1-p}} u(\tau \lambda^{-2}, y \lambda^{-1})
\]
solves \(NLS_p^\pm(\mathbb{R}^d) \) on \((-\lambda^2 T_*, \lambda^2 T^*) \times \mathbb{R}^2\).

- Dilation invariant norms play decisive role in the theory of \(NLS_p^\pm(\mathbb{R}^d) \):

\[\hat{W}_\sigma, q \text{ is critical if } 2 \frac{1}{p} - 1 + \sigma - d q = 0.\]
Dilation Invariance

- If u solves $NLS_{\pm}^p(\mathbb{R}^d)$ on $(-T_*, T*) \times \mathbb{R}^2$ then

 $$u_\lambda(\tau, y) := \lambda^{\frac{2}{1-p}} u(\tau \lambda^{-2}, y \lambda^{-1})$$

 solves $NLS_{\pm}^p(\mathbb{R}^d)$ on $(-\lambda^2 T_*, \lambda^2 T*) \times \mathbb{R}^2$.

- Dilation invariant norms play decisive role in the theory of $NLS_{\pm}^p(\mathbb{R}^d)$:

 $$\|D_\sigma y u_\lambda\|_{L^q(\mathbb{R}^d_y)} = \left(\frac{1}{\lambda}\right)^{\frac{2}{p-1} + \sigma - \frac{d}{q}} \|D_\sigma x u\|_{L^q(\mathbb{R}^d_x)}.$$
Dilation Invariance

- If u solves $NLS_p^\pm(\mathbb{R}^d)$ on $(-T_*, T^*) \times \mathbb{R}^2$ then

 $$u_\lambda(\tau, y) := \lambda^{\frac{2}{1-p}} u(\tau \lambda^{-2}, y \lambda^{-1})$$

 solves $NLS_p^\pm(\mathbb{R}^d)$ on $(-\lambda^2 T_*, \lambda^2 T^*) \times \mathbb{R}^2$.

- Dilation invariant norms play decisive role in the theory of $NLS_p^\pm(\mathbb{R}^d)$:

 $$\|D^\sigma_y u_\lambda\|_{L^q(\mathbb{R}^d_y)} = \left(\frac{1}{\lambda}\right)^{\frac{2}{p-1} + \sigma - \frac{d}{q}} \|D^\sigma_x u\|_{L^q(\mathbb{R}^d_x)}.$$

 $\dot{W}^{\sigma, q}$ is critical if $\frac{2}{p-1} + \sigma - \frac{d}{q} = 0$.

Dilation Invariance

- If u solves $NLS_p^\pm(\mathbb{R}^d)$ on $(−T_*, T^*) \times \mathbb{R}^2$ then
 \[u_\lambda(\tau, y) := \lambda^{\frac{2}{1-p}} u(\tau \lambda^{-2}, y \lambda^{-1}) \]
 solves $NLS_p^\pm(\mathbb{R}^d)$ on $(−\lambda^2 T_*, \lambda^2 T^*) \times \mathbb{R}^2$.

- Dilation invariant norms play decisive role in the theory of $NLS_p^\pm(\mathbb{R}^d)$:
 \[\| D^\sigma_y u_\lambda \|_{L_q(\mathbb{R}^d_y)} = \left(\frac{1}{\lambda} \right)^\frac{2}{p-1} + \sigma - \frac{d}{q} \| D^\sigma_x u \|_{L_q(\mathbb{R}^d_x)}. \]

 $\dot{W}^{\sigma,q}$ is critical if $\frac{2}{p-1} + \sigma - \frac{d}{q} = 0$.

- $NLS_p^\pm(\mathbb{R}^d)$ is \dot{H}^{s_c}-critical for $s_c := \frac{d}{2} - \frac{2}{p-1}$.
Dilation Invariance

- If u solves $\text{NLS}_p^\pm(\mathbb{R}^d)$ on $(-T_*, T*) \times \mathbb{R}^2$ then

$$u_\lambda(\tau, y) := \lambda^{\frac{2}{1-p}} u(\tau \lambda^{-2}, y \lambda^{-1})$$

solves $\text{NLS}_p^\pm(\mathbb{R}^d)$ on $(-\lambda^2 T_*, \lambda^2 T*) \times \mathbb{R}^2$.

- Dilation invariant norms play decisive role in the theory of $\text{NLS}_p^\pm(\mathbb{R}^d)$:

$$\|D^\sigma_y u_\lambda\|_{L^q(\mathbb{R}^d_y)} = \left(\frac{1}{\lambda}\right)^{\frac{2}{p-1} + \sigma - \frac{d}{q}} \|D^\sigma_x u\|_{L^q(\mathbb{R}^d_x)}.$$

$\dot{W}^{\sigma,q}$ is critical if $\frac{2}{p-1} + \sigma - \frac{d}{q} = 0$.

- $\text{NLS}_p^\pm(\mathbb{R}^d)$ is \dot{H}^{s_c}-critical for $s_c := \frac{d}{2} - \frac{2}{p-1}$.

- L^2 and \dot{H}^1 critical cases distinguished by conservation laws.
Critical Regimes

Blowup properties for critical and super-critical NLS at low regularity

J. Colliander

Nonlinear Schrödinger Initial Value Problem

Critical Regimes & Low Regularity GWP?

$H^{1/2}$ Critical Case

Energy Critical Case

Energy Super-critical Case
Critical Regimes

- Theory for $NLS_p^\pm(\mathbb{R}^d)$ is qualitatively similar in regimes:

 - Mass subcritical ($s_0 < 0$)
 - Mass critical ($s_0 = 0$)
 - Mass supercritical/Energy subcritical ($0 < s_0 < 1$)
 - Energy critical ($s_0 = 1$)
 - Energy supercritical ($s_0 > 1$).
Critical Regimes

- Theory for $\text{NLS}_p^\pm(\mathbb{R}^d)$ is qualitatively similar in regimes:
- Mass subcritical ($s_c < 0$)
Critical Regimes

- Theory for $NLS_p^\pm(\mathbb{R}^d)$ is qualitatively similar in regimes:
 - Mass subcritical ($s_c < 0$)
 - Mass critical ($s_c = 0$)
Critical Regimes

- Theory for $\mathcal{NLS}_p^{\pm}(\mathbb{R}^d)$ is qualitatively similar in regimes:
 - Mass subcritical ($s_c < 0$)
 - Mass critical ($s_c = 0$)
 - Mass supercritical/Energy subcritical ($0 < s_c < 1$)
Critical Regimes

- Theory for $NLS_p^{\pm}(\mathbb{R}^d)$ is qualitatively similar in regimes:
 - Mass subcritical ($s_c < 0$)
 - Mass critical ($s_c = 0$)
 - Mass supercritical/Energy subcritical ($0 < s_c < 1$)
 - Energy critical ($s_c = 1$)
Critical Regimes

- Theory for $NLS_p^{\pm}(\mathbb{R}^d)$ is qualitatively similar in regimes:
 - Mass subcritical ($s_c < 0$)
 - Mass critical ($s_c = 0$)
 - Mass supercritical/Energy subcritical ($0 < s_c < 1$)
 - Energy critical ($s_c = 1$)
 - Energy supercritical ($s_c > 1$).
Critical Regimes

- Theory for $NLS^\pm_p(\mathbb{R}^d)$ is qualitatively similar in regimes:
 - Mass subcritical ($s_c < 0$)
 - Mass critical ($s_c = 0$)
 - Mass supercritical/Energy subcritical ($0 < s_c < 1$)
 - Energy critical ($s_c = 1$)
 - Energy supercritical ($s_c > 1$).

- Optimal local-in-time well-posedness (LWP) for $NLS^\pm_p(\mathbb{R}^d)$:
Critical Regimes

- Theory for $NLS_{p}^{±}(\mathbb{R}^{d})$ is qualitatively similar in regimes:
 - Mass subcritical ($s_{c} < 0$)
 - Mass critical ($s_{c} = 0$)
 - Mass supercritical/Energy subcritical ($0 < s_{c} < 1$)
 - Energy critical ($s_{c} = 1$)
 - Energy supercritical ($s_{c} > 1$).

- Optimal local-in-time well-posedness (LWP) for $NLS_{p}^{±}(\mathbb{R}^{d})$:

 $\forall s \geq \max(0, s_{c}) \exists$ unique continuous data-to-solution map $H^{s} \ni u_{0} \mapsto u \in C([0, T_{lwp}); H^{s}) \cap L^{q}_{t}L^{p}_{x}$ with $T_{lwp} = T_{lwp}(\|u_{0}\|_{H^{s}})$ if $s > s_{c}$ and $T_{lwp} = T(u_{0})$ if $s = s_{c}$.

Optimal maximal-in-time well-posedness (GWP) is known only in the defocusing energy critical case.

What is the fate of local-in-time solutions with critical initial regularity?
Critical Regimes

- Theory for $NLS_p^\pm(\mathbb{R}^d)$ is qualitatively similar in regimes:
 - Mass subcritical ($s_c < 0$)
 - Mass critical ($s_c = 0$)
 - Mass supercritical/Energy subcritical ($0 < s_c < 1$)
 - Energy critical ($s_c = 1$)
 - Energy supercritical ($s_c > 1$).

- Optimal local-in-time well-posedness (LWP) for $NLS_p^\pm(\mathbb{R}^d)$: $\forall \ s \geq \max(0, s_c) \ \exists$ unique continuous data-to-solution map $H^s \ni u_0 \mapsto u \in C([0, T_{lwp}]; H^s) \cap L_t^q L_x^p$
 with $T_{lwp} = T_{lwp}(\|u_0\|_{H^s})$ if $s > s_c$ and $T_{lwp} = T(u_0)$ if $s = s_c$.
Critical Regimes

- Theory for $NLS_p^\pm(\mathbb{R}^d)$ is qualitatively similar in regimes:
 - Mass subcritical ($s_c < 0$)
 - Mass critical ($s_c = 0$)
 - Mass supercritical/Energy subcritical ($0 < s_c < 1$)
 - Energy critical ($s_c = 1$)
 - Energy supercritical ($s_c > 1$).

- Optimal local-in-time well-posedness (LWP) for $NLS_p^\pm(\mathbb{R}^d)$: $\forall s \geq \max(0, s_c) \exists$ unique continuous data-to-solution map

$\mathcal{H}^s \ni u_0 \longmapsto u \in C([0, T_{lwp}); \mathcal{H}^s) \cap L^q_t L^p_x$

with $T_{lwp} = T_{lwp}(\|u_0\|_{\mathcal{H}^s})$ if $s > s_c$ and $T_{lwp} = T(u_0)$ if $s = s_c$.

- Optimal maximal-in-time well-posedness (GWP) is known only in the defocusing energy critical case. What is the fate of local-in-time solutions with critical initial regularity?
LOW REGULARITY POLEMICS

Blowup properties for critical and supercritical NLS at low regularity

J. Colliander

Nonlinear Schrödinger Initial Value Problem

Critical Regimes & Low Regularity GWP?

$H^{1/2}$ Critical Case

Energy Critical Case

Energy Supercritical Case
Why should we care about low regularity data?
Why should we care about low regularity data?

- Envelope equation derivation of NLS is ”band limited”.
Low Regularity Polemics

Why should we care about low regularity data?

- Envelope equation derivation of NLS is "band limited".
- Physically relevant solutions are smooth.
Low Regularity Polemics

Why should we care about low regularity data?

- Envelope equation derivation of NLS is "band limited".
- Physically relevant solutions are smooth.

Some answers:

- \exists global-in-time classical solutions of energy critical NLS was unknown until finite energy solutions were shown to be global.
- Typical, slightly bigger than necessary, finite time blowup solutions of mass critical NLS with nice initial data are "L^2-typical" after removing the blowup.
- Invariant measures live on low regularity phase space.
LOW REGULARITY POLEMICS

Why should we care about low regularity data?

- Envelope equation derivation of NLS is "band limited".
- Physically relevant solutions are smooth.

Some answers:

- ∃ global-in-time classical solutions of energy critical NLS was unknown until finite energy solutions were shown to be global.
LOW REGULARITY POLEMICS

Why should we care about low regularity data?

- Envelope equation derivation of NLS is "band limited".
- Physically relevant solutions are smooth.

Some answers:

- ∃ global-in-time classical solutions of energy critical NLS was unknown until finite energy solutions were shown to be global.
- Typical, slightly bigger than necessary, finite time blowup solutions of mass critical NLS with nice initial data are "L^2-typical" after removing the blowup.
LOW REGULARITY POLEMICS

Why should we care about low regularity data?

- Envelope equation derivation of NLS is "band limited".
- Physically relevant solutions are smooth.

Some answers:

- \(\exists \) global-in-time classical solutions of energy critical NLS was unknown until finite energy solutions were shown to be global.
- Typical, slightly bigger than necessary, finite time blowup solutions of mass critical NLS with nice initial data are "\(L^2 \)-typical" after removing the blowup.
- Invariant measures live on low regularity phase space.
LOW REGULARITY POLEMICS

Why should we care about low regularity data?

- Envelope equation derivation of NLS is "band limited".
- Physically relevant solutions are smooth.

Some answers:

- \exists global-in-time classical solutions of energy critical NLS was unknown until finite energy solutions were shown to be global.
- Typical, slightly bigger than necessary, finite time blowup solutions of mass critical NLS with nice initial data are "L^2-typical" after removing the blowup.
- Invariant measures live on low regularity phase space.

The talk will first discuss ideas and questions in the L^2 mass critical case, the $H^{1/2}$ critical case, and the H^1 energy critical case. Then, I’ll discuss a qualitative property of blowup in an $H^{1/2}$ critical case.
Typical blowups leave an L^2 stain at time T^*

[Merle-Raphaël]:

$$H^1 \cap \{ \| Q \|_{L^2} < \| u_0 \|_{L^2} < \| Q \|_{L^2} + \alpha^* \} \ni u_0 \mapsto u$$ solving

$NLS^\sim_3(\mathbb{R}^2)$ on $[0, T^*)$ (maximal) with $T^* < \infty$.

$\exists \lambda(t), x(t), \theta(t) \in \mathbb{R}^+, \mathbb{R}^2, \mathbb{R}/(2\pi\mathbb{Z})$ and u^* such that

$$u(t) - \lambda(t)^{-1}Q \left(\frac{x - x(t)}{\lambda(t)} \right) e^{i\theta(t)} \rightarrow u^*$$

strongly in $L^2(\mathbb{R}^2)$. Typically, $u^* \notin H^s \cup L^p$ for $s > 0, p > 2$!
L^2 Critical Case: LWP Theory

Blowup properties for critical and super-critical NLS at low regularity

J. Colliander

Nonlinear Schrödinger Initial Value Problem

Critical Regimes & Low Regularity GWP?

$H^{1/2}$ Critical Case

Energy Critical Case

Energy Supercritical Case
L^2 Critical Case: LWP Theory

Restrict attention to $NLS_3^\pm(\mathbb{R}^2)$. Typical L^2 critical case?
L^2 Critical Case: LWP Theory

Restrict attention to $NLS_3^\pm(\mathbb{R}^2)$. Typical L^2 critical case?

[Cazenave-Weissler]
L^2 Critical Case: LWP Theory

Restrict attention to $NLS_3^\pm(\mathbb{R}^2)$. Typical L^2 critical case?

[Cazenave-Weissler]

$\forall u_0 \in L^2$ there exists $T_{lwp}(u_0)$ determined by

$$\| e^{it\Delta} u_0 \|_{L^4_{tx}([0, T_{lwp}] \times \mathbb{R}^2)} < \frac{1}{100}.$$

\exists unique solution $u \in C([0, T_{lwp}]; L^2) \cap L^4_{tx}([0, T_{lwp}] \times \mathbb{R}^2)$.

\[\begin{aligned}
\text{Blowup properties for critical and super-critical NLS at low regularity} \\
\text{J. Colliander} \\
\text{Nonlinear Schrödinger Initial Value Problem} \\
\text{Critical Regimes & Low Regularity GWP?} \\
\text{$H^{1/2}$ Critical Case} \\
\text{Energy Critical Case} \\
\text{Energy Super-}
\end{aligned}\]
L^2 Critical Case: LWP Theory

Restrict attention to $NLS^\pm_3(\mathbb{R}^2)$. Typical L^2 critical case?

[Cazenave-Weissler]

- $\forall u_0 \in L^2$ there exists $T_{lwp}(u_0)$ determined by
 \[\| e^{it\Delta} u_0 \|_{L^4_{tx}([0, T_{lwp}] \times \mathbb{R}^2)} < \frac{1}{100}. \]

 \exists unique solution $u \in C([0, T_{lwp}]; L^2) \cap L^4_{tx}([0, T_{lwp}] \times \mathbb{R}^2)$.

- Define the maximal forward existence time $T^*(u_0)$ by
 \[\| u \|_{L^4_{tx}([0, T^*-\delta] \times \mathbb{R}^2)} < \infty \]
 for all $\delta > 0$ but diverges to ∞ as $\delta \downarrow 0$.
\[L^2 \text{ Critical Case: LWP Theory} \]

Restrict attention to \(NLS_3^\pm(\mathbb{R}^2) \). Typical \(L^2 \) critical case?

[Cazenave-Weissler]

- \(\forall u_0 \in L^2 \) there exists \(T_{lwp}(u_0) \) determined by
 \[
 \| e^{it\Delta} u_0 \|_{L^4_t([0, T_{lwp}] \times \mathbb{R}^2)} < \frac{1}{100}.
 \]

- \(\exists \) unique solution \(u \in C([0, T_{lwp}]; L^2) \cap L^4_{tx}([0, T_{lwp}] \times \mathbb{R}^2) \).

- Define the maximal forward existence time \(T^*(u_0) \) by
 \[
 \| u \|_{L^4_t([0, T^* - \delta] \times \mathbb{R}^2)} < \infty
 \]
 for all \(\delta > 0 \) but diverges to \(\infty \) as \(\delta \downarrow 0 \).

- \(\exists \) small data scattering threshold \(\mu_0 > 0 \)
 \[
 \| u_0 \|_{L^2} < \mu_0 \implies \| u \|_{L^4_{tx}(\mathbb{R} \times \mathbb{R}^2)} < 2\mu_0.
 \]
L^2 Critical Case: GWP Theory

Blowup properties for critical and super-critical NLS at low regularity

J. Colliander

Nonlinear Schrödinger Initial Value Problem

Critical Regimes & Low Regularity

GWP?

H^{1/2} Critical Case

Energy Critical Case

Energy Super-critical Case
L^2 Critical Case: GWP Theory

- H^1-GWP for $NLS_3^+(\mathbb{R}^2)$.

J. Colliander
L^2 Critical Case: GWP Theory

- H^1-GWP for $NLS_3^+(\mathbb{R}^2)$.
- H^1-GWP mass threshold $\|Q\|_{L^2}$ for $NLS_3^-(\mathbb{R}^2)$.
\(L^2\) Critical Case: GWP Theory

- \(H^1\)-GWP for \(NLS^+_3(\mathbb{R}^2)\).
- \(H^1\)-GWP mass threshold \(\|Q\|_{L^2}\) for \(NLS^-_3(\mathbb{R}^2)\):

\[
\text{Weinstein} \\
\text{Here } Q \text{ is the ground state solution to } -Q + \Delta Q = Q^3. \\
e^{itQ}(x) \text{ is the ground state soliton solution to } NLS^-_3(R^2). \\
\text{I Method} \text{ yields } H^s\text{-GWP for } s > \frac{47}{2}. \\
\text{CKSTT} \text{ NLS}^+ + 5(R^1) \text{ is similarly } H^s\text{-GWP for } s > \frac{49}{2}. \\
\text{Tzirakis} \text{ NLS} + d + 1(R^d) \text{ is } H^s\text{-GWP for } s > d + 8d + 10. \\
\text{Visan-Zhang} \text{ NLS} + d + 1(R^d) \text{ is } H^s\text{-GWP for } s > d + 8d + 10.
L^2 Critical Case: GWP Theory

- H^1-GWP for $NLS^+_3(\mathbb{R}^2)$.
- H^1-GWP mass threshold $\|Q\|_{L^2}$ for $NLS^-_3(\mathbb{R}^2)$:

 $$\|u_0\|_{L^2} < \|Q\|_{L^2} \implies H^1 \ni u_0 \mapsto u, T^* = \infty.$$

[Weinstein]
L^2 Critical Case: GWP Theory

- H^1-GWP for $NLS_3^+ (\mathbb{R}^2)$.
- H^1-GWP mass threshold $\|Q\|_{L^2}$ for $NLS_3^- (\mathbb{R}^2)$:

$$\|u_0\|_{L^2} < \|Q\|_{L^2} \implies H^1 \ni u_0 \mapsto u, T^* = \infty.$$

[Weinstein]

Here Q is the ground state solution to $-Q + \Delta Q = Q^3$. $e^{it}Q(x)$ is the ground state soliton solution to $NLS_3^- (\mathbb{R}^2)$.
L^2 Critical Case: GWP Theory

- H^1-GWP for $NLS^+_3(\mathbb{R}^2)$.
- H^1-GWP mass threshold $\|Q\|_{L^2}$ for $NLS^-_3(\mathbb{R}^2)$:

\[\|u_0\|_{L^2} < \|Q\|_{L^2} \implies H^1 \ni u_0 \mapsto u, T^* = \infty. \]

[Weinstein]

Here Q is the ground state solution to $-Q + \Delta Q = Q^3$. $e^{it}Q(x)$ is the ground state soliton solution to $NLS^-_3(\mathbb{R}^2)$.

- 'I Method' yields H^s-GWP for $s > \frac{4}{7}$ ($s > \frac{1}{2}$?). [CKSTT]
L^2 Critical Case: GWP Theory

- H^1-GWP for $NLS_3^+(\mathbb{R}^2)$.
- H^1-GWP mass threshold $\| Q \|_{L^2}$ for $NLS_3^-(\mathbb{R}^2)$:

 $$\| u_0 \|_{L^2} < \| Q \|_{L^2} \implies H^1 \ni u_0 \rightarrow u, T^* = \infty.$$

 [Weinstein]

 Here Q is the ground state solution to $-Q + \Delta Q = Q^3$. $e^{it}Q(x)$ is the ground state soliton solution to $NLS_3^-(\mathbb{R}^2)$.

- 'I Method' yields H^s-GWP for $s > \frac{4}{7}$ ($s > \frac{1}{2}$?). [CKSTT]
L^2 Critical Case: GWP Theory

- H^1-GWP for $NLS_3^+(\mathbb{R}^2)$.
- H^1-GWP mass threshold $\|Q\|_{L^2}$ for $NLS_3^-(\mathbb{R}^2)$:

 $$\|u_0\|_{L^2} < \|Q\|_{L^2} \implies H^1 \ni u_0 \mapsto u, T^* = \infty.$$

[Weinstein]

Here Q is the ground state solution to $-Q + \Delta Q = Q^3$. $e^{it}Q(x)$ is the ground state soliton solution to $NLS_3^-(\mathbb{R}^2)$.

- 'I Method' yields H^s-GWP for $s > \frac{4}{7}$ ($s > \frac{1}{2}$?).

 [CKSTT]
 $NLS_5^+(\mathbb{R}^1)$ is similarly H^s-GWP for $s > \frac{4}{9}$.

 [Tzirakis]
 $NLS_{4d+1}^+(\mathbb{R}^d)$ is H^s-GWP for $s > \frac{d+8}{d+10}$.

 [Visan-Zhang]
L^2 Critical Case: Blowup Solution Properties

Blowup properties for critical and supercritical NLS at low regularity

J. Colliander

Nonlinear Schrödinger Initial Value Problem

Critical Regimes & Low Regularity GWP?

$H^{1/2}$ Critical Case

Energy Critical Case

Energy Supercritical Case
Explicit Blowup Solutions
L^2 Critical Case: Blowup Solution Properties

Explicit Blowup Solutions

- Arise as *pseudoconformal* image of $e^{it}Q(x)$:

 $$S(t, x) = \frac{1}{t} Q \left(\frac{x}{t} \right) e^{-i \frac{|x|^2}{4t} + \frac{i}{t}}.$$
L^2 Critical Case: Blowup Solution Properties

Explicit Blowup Solutions

- Arise as *pseudoconformal* image of $e^{it} Q(x)$:

 $$S(t, x) = \frac{1}{t} Q \left(\frac{x}{t} \right) e^{-i \frac{|x|^2}{4t}} + i.$$

- S has minimal mass:

 $$\|S(-1)\|_{L^2_x} = \|Q\|_{L^2}.$$

 All mass in S is *conically* concentrated into a point.
Explicit Blowup Solutions

- Arise as *pseudoconformal* image of $e^{it} Q(x)$:
 \[S(t, x) = \frac{1}{t} Q \left(\frac{x}{t} \right) e^{-i \frac{|x|^2}{4t} + i} . \]

- S has minimal mass:
 \[\| S(-1) \|_{L^2_x} = \| Q \|_{L^2} . \]

All mass in S is *conically* concentrated into a point.

- Minimal mass H^1 blowup solution characterization:
 $u_0 \in H^1$, $\| u_0 \|_{L^2} = \| Q \|_{L^2}$, $T^*(u_0) < \infty$ implies that $u = S$ up to an explicit solution symmetry. [Merle]
L^2 CRITICAL CASE: BLOWUP SOLUTION PROPERTIES

Blowup properties for critical and super-critical NLS at low regularity

J. Colliander

Nonlinear Schrödinger Initial Value Problem

Critical Regimes & Low Regularity GWP?

$H^{1/2}$ Critical Case

Energy Critical Case

Energy Supercritical Case

Virial Identity $\implies \exists$ Many Blowup Solutions

Integration by parts and the equation yields

$$\frac{\partial^2}{\partial t^2} \int_{\mathbb{R}^2} |u(t, x)|^2 \, dx = 8 H[u_0].$$

$H[u_0] < 0$, $\int |x|^2 |u_0(x)|^2 \, dx < \infty$ blows up.

How do these solutions blow up?
L^2 Critical Case: Blowup Solution Properties

Virial Identity $\implies \exists$ Many Blowup Solutions

- Integration by parts and the equation yields

\[\partial_t^2 \int_{\mathbb{R}^2_x} |u(t, x)|^2 dx = 8H[u_0]. \]
Virial Identity $\implies \exists$ Many Blowup Solutions

- Integration by parts and the equation yields

$$\partial^2_t \int_{\mathbb{R}^2_x} |u(t, x)|^2 \, dx = 8H[u_0].$$

- $H[u_0] < 0, \int |x|^2 |u_0(x)|^2 \, dx < \infty$ blows up.
L^2 Critical Case: Blowup Solution Properties

Virial Identity $\implies \exists$ Many Blowup Solutions
- Integration by parts and the equation yields
 \[\partial_t^2 \int_{\mathbb{R}^2_x} |u(t, x)|^2 dx = 8H[u_0]. \]
- $H[u_0] < 0$, $\int |x|^2 |u_0(x)|^2 dx < \infty$ blows up.
- How do these solutions blow up?
L^2 Critical Case: Mass Concentration

Blowup properties for critical and supercritical NLS at low regularity

J. Colliander

Nonlinear Schrödinger Initial Value Problem

Critical Regimes & Low Regularity GWP?

$H^{1/2}$ Critical Case

Energy Critical Case

Energy Supercritical Case

H^1 blowups parabolically concentrate at least the ground state mass. Explicit blowups S concentrate mass much faster. Fantastic recent progress on the H^1 blowup theory.

[Merle-Tsutsumi]

[Merle-Raphaël]
L^2 Critical Case: Mass Concentration

H^1 Theory of Mass Concentration
\(\mathbb{L}^2 \textbf{ Critical Case: Mass Concentration} \)

H^1 Theory of Mass Concentration

- \(H^1 \cap \{ \text{radial} \} \ni u_0 \mapsto u, \ T^* < \infty \) implies

\[
\liminf_{t \uparrow T^*} \int_{|x| < (T^* - t)^{1/2}} |u(t, x)|^2 \, dx \geq \|Q\|^2_{L^2}.
\]

[Merle-Tsutsumi]

Blowup properties for critical and supercritical NLS at low regularity

J. Colliander

Nonlinear Schrödinger Initial Value Problem

Critical Regimes & Low Regularity GWP?

\(H^{1/2} \) Critical Case

Energy Critical Case

Energy Super-
L^2 Critical Case: Mass Concentration

H^1 Theory of Mass Concentration

- $H^1 \cap \{ \text{radial} \} \ni u_0 \mapsto u, T^* < \infty$ implies

$$\liminf_{t \uparrow T^*} \int_{|x| < (T^* - t)^{1/2}} |u(t, x)|^2 \, dx \geq \|Q\|_{L^2}^2.$$

[Merle-Tsutsumi]

- H^1 blowups parabolically concentrate at least the ground state mass. Explicit blowups S concentrate mass much faster.
\textbf{L^2 Critical Case: Mass Concentration}

\textit{H}^1 \textbf{Theory of Mass Concentration}

\begin{itemize}
 \item $H^1 \cap \{radial\} \ni u_0 \mapsto u, T^* < \infty$ implies
 \begin{equation*}
 \liminf_{t \uparrow T^*} \int_{|x| < (T^* - t)^{1/2}} |u(t, x)|^2 dx \geq \|Q\|^2_{L^2}.
 \end{equation*}
 \textbf{[Merle-Tsutsumi]}
 \item H^1 blowups \textit{parabolically} concentrate at least the ground state mass. Explicit blowups S concentrate mass much faster.
 \item Fantastic recent progress on the H^1 blowup theory. \textbf{[Merle-Raphaël]}
\end{itemize}
L^2 Critical Case: Mass Concentration

Blowup properties for critical and supercritical NLS at low regularity

J. Colliander

Nonlinear Schrödinger Initial Value Problem

Critical Regimes & Low Regularity GWP?

$H^{1/2}$ Critical Case

Energy Critical Case

Energy Super-

[Bourgain] L^2 blowups parabolically concentrate some mass. For large L^2 data, do there exist tiny concentrations? Extensions in [Merle-Vega], [Carles-Keraani], [Begout-Vargas].
\textbf{L}^2 \textbf{Critical Case: Mass Concentration}

\textit{L}^2 \textit{Theory of Mass Concentration}
\(L^2 \text{ Critical Case: Mass Concentration} \)

\(L^2 \text{ Theory of Mass Concentration} \)

- \(L^2 \ni u_0 \longrightarrow u, T^* < \infty \) implies

\[
\limsup_{t \uparrow T^*} \sup_{\text{cubes } l, \text{side}(l) \lesssim (T^* - t)^{1/2}} \int_I |u(t, x)|^2 dx \geq \| u_0 \|_{L^2}^{-M}.
\]

[Bourgain]

\(L^2 \) blowups parabolically concentrate some mass.
\[L^2 \text{ Critical Case: Mass Concentration} \]

L^2 Theory of Mass Concentration

- \(L^2 \ni u_0 \mapsto u, T^* < \infty \) implies

\[
\limsup_{t \uparrow T^*} \sup_{\text{cubes } I, \text{side}(I) \leq (T^* - t)^{1/2}} \int_I |u(t, x)|^2 \, dx \geq \|u_0\|_{L^2}^{-M}.
\]

[Bourgain]

\(L^2 \) blowups *parabolically* concentrate some mass.

- For large \(L^2 \) data, do there exist *tiny* concentrations?
\[L^2 \text{ Critical Case: Mass Concentration} \]

\[L^2 \text{ Theory of Mass Concentration} \]

- \(L^2 \ni u_0 \rightarrow u, \quad T^* < \infty \) implies

\[
\limsup_{t \uparrow T^*} \sup_{\text{cubes } I, \text{side}(I) \leq (T^* - t)^{1/2}} \int_I |u(t, x)|^2 \, dx \geq \| u_0 \|^2_{L^2}.
\]

[Bourgain]

\(L^2 \) blowups \textit{parabolically} concentrate some mass.

- For large \(L^2 \) data, do there exist \textit{tiny} concentrations?

- Extensions in [Merle-Vega], [Carles-Keraani], [Bégout-Vargas].
L^2 CRITICAL CASE: CONJECTURES/QUESTIONS
L^2 Critical Case: Conjectures/Questions

Consider focusing $NLS_3^-(\mathbb{R}^2)$:
Consider focusing $NLS_3^-(\mathbb{R}^2)$:

- **Scattering Below the Ground State Mass**

 $$\|u_0\|_{L^2} < \|Q\|_{L^2} \implies ??? \quad u_0 \mapsto u \text{ with } \|u\|_{L^4_{tx}} < \infty.$$

 (Also, L^2 solutions of $NLS_3^+(\mathbb{R}^2)$ satisfy $??? \quad \|u\|_{L^4_{tx}} < \infty$.)
Consider focusing $NLS_3^-(\mathbb{R}^2)$:

- **Scattering Below the Ground State Mass**
 \[
 \|u_0\|_{L^2} < \|Q\|_{L^2} \implies u_0 \longrightarrow u \text{ with } \|u\|_{L^4_{tx}} < \infty.
 \]

 (Also, L^2 solutions of $NLS_3^+(\mathbb{R}^2)$ satisfy $\|u\|_{L^4_{tx}} < \infty$.)

- **Minimal Mass Blowup Characterization**
 \[
 \|u_0\|_{L^2} = \|Q\|_{L^2}, \ u_0 \longrightarrow u, \ T^* < \infty \implies u = S,
 \]
 modulo a solution symmetry. An intermediate step would extend characterization of the minimal mass blowup solutions in H^s for $s < 1$.
Consider focusing $NLS_3^-(\mathbb{R}^2)$:

- **Scattering Below the Ground State Mass**
 \[\| u_0 \|_{L^2} < \| Q \|_{L^2} \quad \Rightarrow \quad ??? \quad u_0 \mapsto u \quad \text{with} \quad \| u \|_{L^4_{tx}} < \infty. \]

 (Also, L^2 solutions of $NLS_3^+(\mathbb{R}^2)$ satisfy $??? \quad \| u \|_{L^4_{tx}} < \infty$.)

- **Minimal Mass Blowup Characterization**
 \[\| u_0 \|_{L^2} = \| Q \|_{L^2}, \quad u_0 \mapsto u, \quad T^* < \infty \quad \Rightarrow \quad ??? \quad u = S, \]

 modulo a solution symmetry. An intermediate step would extend characterization of the minimal mass blowup solutions in H^s for $s < 1$.

- **Concentrated mass amounts are quantized**
 The explicit blowups constructed by pseudoconformally transforming time periodic solutions with ground and excited state profiles are the only asymptotic profiles.
L^2 Critical Case:
Conjectures/Questions

Consider focusing $NLS_3^-(\mathbb{R}^2)$:

- **Scattering Below the Ground State Mass**
 \[\|u_0\|_{L^2} < \|Q\|_{L^2} \implies ??? \quad u_0 \mapsto u \text{ with } \|u\|_{L^4_{tx}} < \infty. \]

 (Also, L^2 solutions of $NLS_3^+(\mathbb{R}^2)$ satisfy ??? $\|u\|_{L^4_{tx}} < \infty$.)

- **Minimal Mass Blowup Characterization**
 \[\|u_0\|_{L^2} = \|Q\|_{L^2}, \quad u_0 \mapsto u, \quad T^* < \infty \implies ??? \quad u = S, \]
 modulo a solution symmetry. An intermediate step would extend characterization of the minimal mass blowup solutions in H^s for $s < 1$.

- **Concentrated mass amounts are quantized**
 The explicit blowups constructed by pseudoconformally transforming time periodic solutions with ground and excited state profiles are the only asymptotic profiles.

- **Are there any general upper bounds?**
\textbf{L}^2 \textbf{C}RITICAL \textbf{C}ASE: \textbf{P}ARTIAL \textbf{R}ESULTS

\textbf{Blowup properties for critical and super-critical NLS at low regularity}

J. Colliander

\textbf{Nonlinear Schrödinger Initial Value Problem}

\textbf{Critical Regimes & Low Regularity GWP?}

\textbf{H}^{1/2} \textbf{Critical Case}

\textbf{Energy Critical Case}

\textbf{Energy Supercritical Case}
L^2 Critical Case: Partial Results

For $0.86 \sim \frac{1}{5} (1 + \sqrt{11}) < s < 1$, $H^s \cap \{radial\} \ni u_0 \mapsto u, T^* < \infty \implies$

$$\limsup_{t \uparrow T^*} \int_{|x| < (T^* - t)^{s/2-}} |u(t, x)|^2 dx \geq \|Q\|_{L^2}^2.$$

H^s-blowup solutions concentrate ground state mass. [With Raynor, Sulem and Wright]
\[\mathcal{L}^2 \textbf{Critical Case: Partial Results} \]

- For \(0.86 \sim \frac{1}{5} (1 + \sqrt{11}) < s < 1, \ H^s \cap \{ \text{radial} \} \ni u_0 \mapsto u, \ T^* < \infty \implies \]

 \[
 \limsup_{t \uparrow T^*} \int_{|x| < (T^* - t)^{s/2}} |u(t, x)|^2 \, dx \geq \| Q \|_{L^2}^2.
 \]

 \(H^s \)-blowup solutions concentrate ground state mass. [With Raynor, Sulem and Wright]

- \(\| u_0 \|_{L^2} = \| Q \|_{L^2}, u_0 \in H^s, \sim 0.86 < s < 1, \ T^* < \infty \implies \exists \ t_n \uparrow T^* \text{ s.t. } u(t_n) \rightarrow Q \text{ in } H^{\tilde{s}(s)} \text{ (mod symmetry sequence).} \)
L^2 Critical Case: Partial Results

- For $0.86 \sim \frac{1}{5}(1 + \sqrt{11}) < s < 1$, $H^s \cap \{\text{radial}\} \ni u_0 \mapsto u, T^* < \infty \implies \limsup_{t \uparrow T^*} \int_{|x| < (T^* - t)^{s/2-}} |u(t, x)|^2 dx \geq \|Q\|_{L^2}^2$.

H^s-blowup solutions concentrate ground state mass. [With Raynor, Sulem and Wright]

- $\|u_0\|_{L^2} = \|Q\|_{L^2}, u_0 \in H^s, \sim 0.86 < s < 1, T^* < \infty \implies \exists t_n \uparrow T^*$ s.t. $u(t_n) \to Q$ in $H^\tilde{s}(s)$ (mod symmetry sequence).
L^2 Critical Case: Partial Results

- For $0.86 \sim \frac{1}{5}(1 + \sqrt{11}) < s < 1$, $H^s \cap \{ \text{radial} \} \ni u_0 \mapsto u, \ T^* < \infty \implies$
 \[\limsup_{t \uparrow T^*} \int_{|x| < (T^* - t)^{s/2-}} |u(t, x)|^2 \, dx \geq \|Q\|_{L^2}^2. \]

H^s-blowup solutions concentrate ground state mass. [With Raynor, Sulem and Wright]

- $\|u_0\|_{L^2} = \|Q\|_{L^2}, u_0 \in H^s, \sim 0.86 < s < 1, \ T^* < \infty \implies$
 $\exists \ t_n \uparrow T^* \ s.t. \ u(t_n) \to Q \ in \ H^{\tilde{s}(s)} \ (\text{mod symmetry sequence}).$ For H^s blowups with
 $\|u_0\|_{L^2} > \|Q\|_{L^2}, u(t_n) \to V \in H^1 \ (\text{mod symmetry sequence}).$ [Hmidi-Keraani]
\textbf{L}^2 \textbf{C}ritical \textbf{C}ase: \textbf{P}artial \textbf{R}esults

- For $0.86 \sim \frac{1}{5}(1 + \sqrt{11}) < s < 1$, $H^s \cap \{\text{radial}\} \ni u_0 \mapsto u, T^* < \infty \implies$

\[\limsup_{t \uparrow T^*} \int_{|x| < (T^*-t)^{s/2-}} |u(t,x)|^2 \, dx \geq \|Q\|_{L^2}^2. \]

H^s-blowup solutions concentrate ground state mass. [With Raynor, Sulem and Wright]

- $\|u_0\|_{L^2} = \|Q\|_{L^2}$, $u_0 \in H^s$, $\sim 0.86 < s < 1$, $T^* < \infty \implies \exists t_n \uparrow T^*$ s.t. $u(t_n) \to Q$ in $H^{\tilde{s}(s)}$ (mod symmetry sequence). For H^s blowups with $\|u_0\|_{L^2} > \|Q\|_{L^2}$, $u(t_n) \rightharpoonup V \in H^1$ (mod symmetry sequence). [Hmidi-Keraani] This is an H^s analog of an H^1 result of [Weinstein] which preceded the minimal H^1 blowup solution characterization.
L² CRITICAL CASE: PARTIAL RESULTS

- For $0.86 \sim \frac{1}{5}(1 + \sqrt{11}) < s < 1$, $H^s \cap \{radial\} \ni u_0 \mapsto u, T^* < \infty \implies$

 $\lim \sup_{t \uparrow T^*} \int_{|x| < (T^* - t)^{s/2-}} |u(t, x)|^2 dx \geq \|Q\|_{L^2}^2$.

H^s-blowup solutions concentrate ground state mass. [With Raynor, Sulem and Wright]

- $\|u_0\|_{L^2} = \|Q\|_{L^2}, u_0 \in H^s, \sim 0.86 < s < 1, T^* < \infty \implies$

 $\exists \ t_n \uparrow T^* \text{ s.t. } u(t_n) \rightarrow Q \text{ in } H^\tilde{s}(s) \text{ (mod symmetry sequence)}. \text{ For } H^s \text{ blowups with}$

 $\|u_0\|_{L^2} > \|Q\|_{L^2}, u(t_n) \rightharpoonup V \in H^1 \text{ (mod symmetry sequence).} \text{ [Hmidi-Keraani] This is an } H^s \text{ analog of an } H^1 \text{ result of [Weinstein] which preceded the minimal } H^1 \text{ blowup solution characterization.}$

- Same results for $NLS_{4^{-}}_{d+1}^{d} (\mathbb{R}^d)$ in H^s, $s > \frac{d+8}{d+10}$. [Visan-Zhang]
L^2 Critical Case: Partial Results
\[L^2 \text{ Critical Case: Partial Results} \]

- Spacetime norm divergence rate
 \[\|u\|_{L^4_t([0,t] \times \mathbb{R}^2)} \gtrsim (T^* - t)^{-\beta} \]
 is linked with mass concentration rate
 \[\limsup_{t \uparrow T^*} \sup_{\text{cubes } I, \text{side}(I) \leq (T^* - t)^{\frac{1}{2} + \frac{\beta}{2}}} \int_I |u(t, x)|^2 dx \geq \|u_0\|_{L^2}^{-M}. \]

[Work in progress with Roudenko]
$H^{1/2}$ Critical Case

Blowup properties for critical and super-critical NLS at low regularity

J. Colliander

Nonlinear Schrödinger Initial Value Problem

Critical Regimes & Low Regularity GWP?

$H^{1/2}$ Critical Case

Energy Critical Case
$H^{1/2}$ Critical Case

Consider $NLS^-_3(\mathbb{R}^3)$. Also L^3_x-Critical. Typical Case?
Consider $\text{NLS}_3^-(\mathbb{R}^3)$. Also L^3_x-Critical. Typical Case?

- LWP theory similar to $\text{NLS}_3^{\pm}(\mathbb{R}^2)$:

\[
L^2(\mathbb{R}^2) \hookrightarrow H^{1/2}(\mathbb{R}^3) \hookrightarrow L^4_{tx} \hookrightarrow L^5_{tx}.
\]
H^{1/2} Critical Case

Consider NLS_{3}^{-}(\mathbb{R}^{3}). Also L_{x}^{3}-Critical. Typical Case?

- LWP theory similar to NLS_{3}^{\pm}(\mathbb{R}^{2}):
 \[L^{2}(\mathbb{R}^{2}) \leftrightarrow H^{1/2}(\mathbb{R}^{3}) \]
 \[L_{t,x}^{4} \leftrightarrow L_{t,x}^{5}. \]

- There cannot be an H^{1}-GWP mass threshold.
$H^{1/2}$ Critical Case

Consider $NLS_3^{-}(\mathbb{R}^3)$. Also L^3_x-Critical. Typical Case?

- LWP theory similar to $NLS_3^{\pm}(\mathbb{R}^2)$:

\[
L^2(\mathbb{R}^2) \leftrightarrow H^{1/2}(\mathbb{R}^3)
\]
\[
L^4_{tx} \leftrightarrow L^5_{tx}.
\]

- There cannot be an H^1-GWP mass threshold.
- No explicit blowup solutions are known.
$H^{1/2}$ Critical Case

Consider $NLS_3^- (\mathbb{R}^3)$. Also L^3_x-Critical. Typical Case?

- LWP theory similar to $NLS_3^{\pm} (\mathbb{R}^2)$:

$$L^2(\mathbb{R}^2) \hookrightarrow H^{1/2}(\mathbb{R}^3)$$

$$L^4_{tx} \hookrightarrow L^5_{tx}.$$

- There cannot be an H^1-GWP mass threshold.
- No explicit blowup solutions are known.
- Virial identity $\implies \exists$ many blowup solutions.
$H^{1/2}$ Critical Case

Consider $NLS^+_3(\mathbb{R}^3)$. Also L^3_x-Critical. Typical Case?

- LWP theory similar to $NLS^\pm_3(\mathbb{R}^2)$:
 \[L^2(\mathbb{R}^2) \hookrightarrow H^{1/2}(\mathbb{R}^3) \]
 \[L^4_{tx} \hookrightarrow L^5_{tx}. \]

- There cannot be an H^1-GWP mass threshold.
- No explicit blowup solutions are known.
- Virial identity $\Rightarrow \exists$ many blowup solutions.
- $H^1 \cap \{\text{radial}\} \ni u_0 \hookrightarrow u, T^* < \infty$ then for any $a > 0$
 \[\|\nabla u(t)\|_{L^2_{|x|<a}} \uparrow \infty \text{ as } t \uparrow T^*. \]

Thus, radial solutions must explode at the origin.
Proof.
Proof.

By Hamiltonian conservation,

\[\| \nabla u(t) \|_{L^2}^2 = H[u_0] + \frac{1}{2} \| u(t) \|_{L^4}^4 \left| x < a \right| + \frac{1}{2} \| u(t) \|_{L^4}^4 \left| x > a \right|. \]
$H^{1/2}$ Critical Case: Radial $\text{NLS}_3^-(\mathbb{R}^3)$

Proof.

By Hamiltonian conservation,

$$\|\nabla u(t)\|^2_{L^2} = H[u_0] + \frac{1}{2}\|u(t)\|^4_{L^4_{|x|<a}} + \frac{1}{2}\|u(t)\|^4_{L^4_{|x|>a}}.$$

Inner contribution estimated using Gagliardo-Nirenberg by $C(\text{Mass}, a)\|\nabla u(t)\|^3_{L^2_{|x|<a}}$.
Proof.

By Hamiltonian conservation,

\[\|\nabla u(t)\|_{L^2}^2 = H[u_0] + \frac{1}{2} \|u(t)\|_{L^4}^4 + \frac{1}{2} \|u(t)\|_{L^4}^4. \]

Inner contribution estimated using Gagliardo-Nirenberg by
\[C(\text{Mass}, a)\|\nabla u(t)\|_{L^2}^3. \]

Exterior region estimated by pulling out two factors in \(L^\infty \) then using radial Sobolev to get control by
\[\|u(t)\|_{L^2}^3 \|\nabla u(t)\|_{L^2}. \]
Proof.

By Hamiltonian conservation,

\[\|\nabla u(t)\|_{L^2}^2 = H[u_0] + \frac{1}{2} \|u(t)\|_{L^4_{|x|<a}}^4 + \frac{1}{2} \|u(t)\|_{L^4_{|x|>a}}^4. \]

Inner contribution estimated using Gagliardo-Nirenberg by \(C(\text{Mass}, a)\|\nabla u(t)\|_{L^2_{|x|<a}}^3 \). Exterior region estimated by pulling out two factors in \(L^\infty_x \) then using radial Sobolev to get control by \(\|u(t)\|_{L^2_{|x|<a}}^3 \|\nabla u(t)\|_{L^2} \). Absorb the exterior kinetic energy to left side

\[\|\nabla u(t)\|_{L^2}^2 \lesssim C(a, \text{Mass}[u_0], H[u_0]) + C(a, \text{Mass}[u_0]) \|\nabla u(t)\|_{L^2_{|x|<a}}^3. \]
$H^{1/2}$ Critical Case: Remarks
Radial blowup solutions of energy subcritical $NLS_p(\mathbb{R}^d)$ with $p < 5$ must explode at the origin.
$H^{1/2}$ Critical Case: Remarks

- Radial blowup solutions of energy subcritical $NLS_p(\mathbb{R}^d)$ with $p < 5$ must explode at the origin.
- For $H^{1/2}$-critical $NLS_5^-(\mathbb{R}^2)$, there exists $H^1 \cap \{\text{radial}\} \ni \nu_0 \mapsto \nu, \ T^*(\nu_0) < \infty$ which blows up precisely on a circle! [Raphaël]
$H^{1/2}$ Critical Case: Remarks

- Radial blowup solutions of energy subcritical $NLS_p(\mathbb{R}^d)$ with $p < 5$ must explode at the origin.

- For $H^{1/2}$-critical $NLS^-_5(\mathbb{R}^2)$, there exists $H^1 \cap \{\text{radial}\} \ni v_0 \mapsto v, \quad T^*(v_0) < \infty$ which blows up precisely on a circle! [Raphaël]

- Numerics/heuristics suggest: Finite time blowup solutions of $NLS_3(\mathbb{R}^3)$ satisfy $\|u(t)\|_{L^3_x} \uparrow \infty$ as $t \uparrow T^*$. [Work in progress with Raynor, Sulem, Wright] (Analogous to [Escauriaza-Seregin-Šverák] on Navier-Stokes)
Radial blowup solutions of energy subcritical $NLS_p(\mathbb{R}^d)$ with $p < 5$ must explode at the origin.

For $H^{1/2}$-critical $NLS_5^-(\mathbb{R}^2)$, there exists $H^1 \cap \{\text{radial}\} \ni v_0 \mapsto v, \; T^*(v_0) < \infty$ which blows up precisely on a circle! [Raphaël]

Numerics/heuristics suggest: Finite time blowup solutions of $NLS_3(\mathbb{R}^3)$ satisfy $\|u(t)\|_{L^3_\infty} \uparrow \infty$ as $t \uparrow T^*$.
[Work in progress with Raynor, Sulem, Wright]
(Analogous to [Escauriaza-Seregin-Šverák] on Navier-Stokes)

$H^{1/2}$-blowups parabolically concentrate in L^3 and $H^{1/2}$.
[Work in progress with Roudenko]
$H^1(\mathbb{R}^d), d \geq 3$ Critical Case

Blowup properties for critical and super-critical NLS at low regularity

J. Colliander

Nonlinear Schrödinger Initial Value Problem

Critical Regimes & Low Regularity GWP?

$H^{1/2}$ Critical Case

Energy Critical Case

Energy Sub-Critical Case
$H^1(\mathbb{R}^d), d \geq 3$ CRITICAL CASE

- Defocusing energy critical $NLS^{+}_{1+4/(d-2)}(\mathbb{R}^d), d \geq 3$ is globally well-posed and scatters in H^1:

\[H^{1/2} \]

Critical Case

Energy Critical Case

Energy Supercritical Case
$H^1(\mathbb{R}^d), d \geq 3$ Critical Case

Defocusing energy critical $NLS_{1+4/(d-2)}^+(\mathbb{R}^d), d \geq 3$ is globally well-posed and scatters in H^1:

[Bourgain], [Grillakis]: Radial Case for $d = 3$
[CKSTT]: $d = 3$
[Tao]: Radial Case for $d = 4$
[Ryckman-Visan], [Visan], [Tao-Visan]: $d \geq 4$
$H^1(\mathbb{R}^d)$, $d \geq 3$ Critical Case

- Defocusing energy critical \(NLS^{+}_{1+4/(d-2)}(\mathbb{R}^d) \), $d \geq 3$ is globally well-posed and scatters in H^1:
 - [Bourgain], [Grillakis]: Radial Case for $d = 3$
 - [CKSTT]: $d = 3$
 - [Tao]: Radial Case for $d = 4$
 - [Ryckman-Visan], [Visan], [Tao-Visan]: $d \geq 4$

Induction on Energy; Interaction Morawetz; Mass Freezing
$H^1(\mathbb{R}^d), d \geq 3$ Critical Case

- Defocusing energy critical $NLS_{1+4/(d-2)}^+(\mathbb{R}^d), d \geq 3$ is globally well-posed and scatters in H^1:
 - [Bourgain], [Grillakis]: Radial Case for $d = 3$
 - [CKSTT]: $d = 3$
 - [Tao]: Radial Case for $d = 4$
 - [Ryckman-Visan], [Visan], [Tao-Visan]: $d \geq 4$

Induction on Energy; Interaction Morawetz; Mass Freezing

- Focusing energy critical case?
$H^1(\mathbb{R}^2)$ "Critical" Case
\(H^1(\mathbb{R}^2) \) "Critical" Case

- \(NLS_p(\mathbb{R}^2) \) is energy subcritical for all \(p \). Is there an "energy critical" \(NLS \) equation on \(\mathbb{R}^2 \)?
\[H^1(\mathbb{R}^2) \] ”Critical” Case

- \(NLS_p(\mathbb{R}^2) \) is energy subcritical for all \(p \). Is there an ”energy critical” \(NLS \) equation on \(\mathbb{R}^2 \)?
- Consider the defocusing initial value problem \(NLS_{\exp}(\mathbb{R}^2) \)

\[
\begin{cases}
 i\partial_t u + \Delta u = u(e^{4\pi|u|^2} - 1) \\
 u(0, \cdot) = u_0(\cdot) \in H^1(\mathbb{R}^2)
\end{cases}
\]
\(H^{1}(\mathbb{R}^{2}) \) "Critical" Case

- \(\text{NLS}_p(\mathbb{R}^{2}) \) is energy subcritical for all \(p \). Is there an "energy critical" NLS equation on \(\mathbb{R}^{2} \)?
- Consider the defocusing initial value problem \(\text{NLS}_{\text{exp}}(\mathbb{R}^{2}) \)

\[
\begin{cases}
 i\partial_t u + \Delta u = u(e^{4\pi|u|^2} - 1) \\
 u(0, \cdot) = u_0(\cdot) \in H^{1}(\mathbb{R}^{2})
\end{cases}
\]

with Hamiltonian

\[
H[u(t)] := \int_{\mathbb{R}^{2}} |\nabla u(t, x)|^2 + \int_{\mathbb{R}^{2}} \frac{e^{4\pi|u(t,x)|^2} - 1}{4\pi} \, dx.
\]
$H^1(\mathbb{R}^2)$ "Critical" Case

Blowup properties for critical and super-critical NLS at low regularity

J. Colliander

Nonlinear Schrödinger Initial Value Problem

Critical Regimes & Low Regularity GWP?

$H^{1/2}$ Critical Case

Energy Critical Case

Energy Super-critical Case
$H^1(\mathbb{R}^2)$ "Critical" Case

- If $H[u_0] - M[u_0] \leq 1$ then $NLS_{exp}(\mathbb{R}^2)$ is globally well-posed. Uniform continuity of data-to-solution map fails to hold for data satisfying $H[u_0] - M[u_0] > 1$.

[Work in progress with Ibrahim, Majdoub, Masmoudi]
Blowup properties for critical and super-critical NLS at low regularity

J. Colliander

Nonlinear Schrödinger Initial Value Problem

Critical Regimes & Low Regularity GWP?

$H^1(\mathbb{R}^2)$ "Critical" Case

- If $H[u_0] - M[u_0] \leq 1$ then $NLS_{exp}(\mathbb{R}^2)$ is globally well-posed. Uniform continuity of data-to-solution map fails to hold for data satisfying $H[u_0] - M[u_0] > 1$. [Work in progress with Ibrahim, Majdoub, Masmoudi]

- Well-posedness result relies upon Strichartz estimates, Moser-Trudinger inequality, and a log-Sobolev inequality. (Largely based on similar result for NLKG by [Ibrahim-Majdoub-Masmoudi])

Energy Critical Case

Energy Supercritical Case
\(H^1(\mathbb{R}^2) \) "Critical" Case

- If \(H[u_0] - M[u_0] \leq 1 \) then \(NLS_{\exp}(\mathbb{R}^2) \) is globally well-posed. Uniform continuity of data-to-solution map fails to hold for data satisfying \(H[u_0] - M[u_0] > 1 \). [Work in progress with Ibrahim, Majdoub, Masmoudi]

- Well-posedness result relies upon Strichartz estimates, Moser-Trudinger inequality, and a log-Sobolev inequality. (Largely based on similar result for \(NLKG \) by [Ibrahim-Majdoub-Masmoudi])

- Ill-posedness result relies upon optimizing sequence for Moser-Trudinger and small dispersion approximation following [Christ-C-Tao].
$H^1(\mathbb{R}^2)$ "Critical" Case

- If $H[u_0] - M[u_0] \leq 1$ then $NLS_{exp}(\mathbb{R}^2)$ is globally well-posed. Uniform continuity of data-to-solution map fails to hold for data satisfying $H[u_0] - M[u_0] > 1$. [Work in progress with Ibrahim, Majdoub, Masmoudi]

- Well-posedness result relies upon Strichartz estimates, Moser-Trudinger inequality, and a log-Sobolev inequality. (Largely based on similar result for $NLKG$ by [Ibrahim-Majdoub-Masmoudi])

- Ill-posedness result relies upon optimizing sequence for Moser-Trudinger and small dispersion approximation following [Christ-C-Tao].

- Scattering?
energY Supercritical Case

Blowup properties for critical and supercritical NLS at low regularity

J. Colliander

Nonlinear Schrödinger Initial Value Problem

Critical Regimes & Low Regularity GWP?

$H^{1/2}$ Critical Case

Energy Critical Case

Energy Supercritical Case

Consider NLS $+7(R^3)$. Typical case?

Numerical experiments by [Blue-Sulem] and also for corresponding NLKG [Strauss-Vazquez] suggest GWP and scattering. Conjecture: NLS $+7(R^3)$ is GWP and scatters in $H^{7/6}(R^3)$.

[See discussion by Bourgain, GAFA Special Volume, 2000]
Consider $NLS^+_7(\mathbb{R}^3)$. Typical case?
Energy Supercritical Case

Consider $NLS^+_7(\mathbb{R}^3)$. Typical case?

- Numerical experiments by [Blue-Sulem] and also for corresponding $NLKG$ [Strauss-Vazquez] suggest GWP and scattering.
Consider $NLS_7^+(\mathbb{R}^3)$. Typical case?

- Numerical experiments by [Blue-Sulem] and also for corresponding $NLKG$ [Strauss-Vazquez] suggest GWP and scattering.

- Conjecture: $NLS_7^+(\mathbb{R}^3)$ is GWP and scatters in $H^{7/6}(\mathbb{R}^3)$. [See discussion by Bourgain, GAFA Special Volume, 2000]
Critically Norm Explosion?

[Work in progress with Raynor, Sulem, Wright....details remain.]
Critical Norm Explosion?

[Work in progress with Raynor, Sulem, Wright....details remain.]

Question: Qualitative properties mass supercritical NLS blowup?
[Work in progress with Raynor, Sulem, Wright....details remain.]

Question: Qualitative properties mass supercritical NLS blowup? Restrict attention to $H^{1/2}$-critical $NLS^{-}_3(\mathbb{R}^3)$.
CRITICAL NORM EXPLOSION?

[Work in progress with Raynor, Sulem, Wright....details remain.]

Question: Qualitative properties mass supercritical NLS blowup? Restrict attention to $H^{1/2}$-critical $NLS_3^-(\mathbb{R}^3)$.

- T^* defined via divergence of $\|u\|_{L^5_{tx}}$ or $\|D^{1/2}u\|_{L^{10/3}_{tx}}$.

Frequency heuristic: Bounded $H^{1/2}$ blowup inconsistent with mass conservation.
Critical Norm Explosion?

[Work in progress with Raynor, Sulem, Wright....details remain.]

Question: Qualitative properties mass supercritical NLS blowup? Restrict attention to $H^{1/2}$-critical $NLS^-(\mathbb{R}^3)$.

- T^* defined via divergence of $\|u\|_{L^5_{tx}}$ or $\|D^{1/2}u\|_{L^{10/3}_{tx}}$.
- Finite energy radial blowups explode at spatial origin.

Blowup properties for critical and super-critical NLS at low regularity

J. Colliander

Nonlinear Schrödinger Initial Value Problem

Critical Regimes & Low Regularity GWP?

$H^{1/2}$ Critical Case

Energy Critical Case

Energy Super-critical Case
Critical Norm Explosion?

[Work in progress with Raynor, Sulem, Wright....details remain.]

Question: Qualitative properties mass supercritical NLS blowup? Restrict attention to $H^{1/2}$-critical NLS $\mathcal{N}LS^-_3(\mathbb{R}^3)$.

- T^* defined via divergence of $\|u\|_{L^5_{tx}}$ or $\|D^{1/2}u\|_{L^{10/3}_{tx}}$.
- Finite energy radial blowups explode at spatial origin.
- Heuristics and numerics suggest asymptotic profile Q which decays near spatial infinity like $|y|^{-1} \implies Q \notin L^3(\mathbb{R}^3)$. Sobolev embedding $H^{1/2} \hookrightarrow L^3$ suggests as $t \uparrow T^*$

$$\|u(t)\|_{H^{1/2}} \sim |\log(T^* - t)| \to \infty.$$
Critical Norm Explosion?

[Work in progress with Raynor, Sulem, Wright....details remain.]

Question: Qualitative properties mass supercritical NLS blowup? Restrict attention to $H^{1/2}$-critical $NLS^-_3 (\mathbb{R}^3)$.

- T^* defined via divergence of $\|u\|_{L^5_{tx}}$ or $\|D^{1/2}u\|_{L^{10/3}_{tx}}$.
- Finite energy radial blowups explode at spatial origin.
- Heuristics and numerics suggest asymptotic profile Q which decays near spatial infinity like $|y|^{-1} \implies Q \notin L^3(\mathbb{R}^3)$. Sobolev embedding $H^{1/2} \hookrightarrow L^3$ suggests as $t \uparrow T^*$

$$\|u(t)\|_{H^{1/2}} \sim |\log(T^*-t)| \to \infty.$$

- Frequency heuristic: Bounded $H^{1/2}$ blowup inconsistent with mass conservation.
CONTRADICTION STRATEGY
Contradiction Strategy

- **Contradiction Hypothesis (CH):** Assume \(\exists \, \Lambda < \infty \) such that

\[
\| u \|_{L_t^\infty L_x^{1/2}([0, T^*) \times \mathbb{R}^3)} < \Lambda.
\]
Contradiction Strategy

- Contradiction Hypothesis (CH): Assume \(\exists \Lambda < \infty \) such that
 \[
 \|u\|_{L^\infty_t H^{1/2}_x([0,T^*) \times \mathbb{R}^3)} < \Lambda.
 \]

- Concentration Property: If \(H^1 \cap \{\text{radial}\} \ni u_0 \mapsto u \) solves \(NLS^-_{3}(\mathbb{R}^3) \), \(T^* < \infty \) and we assume (CH) then
 \[
 \liminf_{t \uparrow T^*} \|u(t)\|_{L^3_{|x|<(T^*-t)^{1/2}} \geq \frac{\sqrt{2}}{\pi^{2/3}} = c^*.
 \]
Contradiction Strategy

- **Contradiction Hypothesis (CH):** Assume $\exists \Lambda < \infty$ such that
 \[\| u \|_{L_t^\infty H_x^{1/2}([0, T^*) \times \mathbb{R}^3)} < \Lambda. \]

- **Concentration Property:** If $H^1 \cap \{ \text{radial} \} \ni u_0 \mapsto u$ solves $NLS_{3}^{-}(\mathbb{R}^3)$, $T^* < \infty$ and we assume (CH) then
 \[\liminf_{t \uparrow T^*} \| u(t) \|_{L^3_{|x| < (T^* - t)^{1/2}}} \geq \frac{\sqrt{2}}{\pi^{2/3}} = c^*. \]
Contradiction Strategy

Contradiction Hypothesis (CH): Assume $\exists \Lambda < \infty$ such that

$$\| u \|_{L^\infty_t H^{1/2}_x ([0, T^*) \times \mathbb{R}^3)} < \Lambda.$$

Concentration Property: If $H^1 \cap \{\text{radial}\} \ni u_0 \mapsto u$ solves $NLS^{-}_3 (\mathbb{R}^3)$, $T^* < \infty$ and we assume (CH) then

$$\liminf_{t \uparrow T^*} \| u(t) \|_{L^3_{|x| < (T^* - t)^{1/2} -}} \geq \frac{\sqrt{2}}{\pi^{2/3}} = c^*.$$

The proof follows [Merle-Tsutsumi] with the (CH) upper bound as a proxy for L^2 conservation. Explicit constant from sharp Gagliardo-Nirenberg estimate. [Delpino-Dolbeaut]
Contradiction Strategy

Blowup properties for critical and super-critical NLS at low regularity

J. Colliander

Nonlinear Schrödinger Initial Value Problem

Critical Regimes & Low Regularity GWP?

$H^{1/2}$ Critical Case

Energy Critical Case

Energy Super-critical Case
Contradiction Strategy

- **Frequency level Sets:**

 \[R_\mu(t) := \sup \left\{ R : \| P_{|\xi| > R} u(t) \|_{H_x^{1/2}} > \mu \right\} \]
Contradiction Strategy

- Frequency level Sets:

\[R_\mu(t) := \sup \{ R : \| P_{|\xi|>R} u(t) \|_{H_x^{1/2}} > \mu \} \]
Contradiction Strategy

- **Frequency level Sets:**

 \[R_\mu(t) := \sup \{ R : \| P_{|\xi|>R} u(t) \|_{H_x^{1/2}} > \mu \} \]

 Concentration \(\implies R_{c^*}(t) \geq (T^* - t)^{-1/2} \).
Contradiction Strategy

- Frequency level Sets:

\[
R_\mu(t) := \sup\{R : \| P_{|\xi|>R} u(t) \|_{\dot{H}^{1/2}_x} > \mu \}
\]

Concentration \ \Longrightarrow \ \ R_{c^*}(t) \geq (T^* - t)^{-1/2}.

\[
M := \sup\{\mu : R_\mu(t) = O(R_{c^*}(t)) \text{ as } t \uparrow T^* \}
\]
Contradiction Strategy

- **Frequency level Sets:**

 \[
 R_\mu(t) := \sup\{ R : \| P_{|\xi|>R} u(t) \|_{\dot{H}^{1/2}} > \mu \}
 \]

 Concentration \(\implies R_{c^*}(t) \geq (T^* - t)^{-1/2}.\)

 \[
 M := \sup\{ \mu : R_\mu(t) = O(R_{c^*}(t)) \text{ as } t \uparrow T^* \}
 \]

 By design \(R_{M+\gamma_0}(t) = o(R_M(t))\) for all \(\gamma_0 > 0\) as \(t \uparrow T^*.\)

 There exists \(\mu_0 > 0\) such that \(R_M(t) \sim R_{M-\mu_0}(t)\) as \(t \uparrow T^*.\)
Contradiction Strategy

- **Frequency level Sets:**
 \[R_\mu(t) := \sup \{ R : \| P_{|\xi| > R} u(t) \|_{H_{x}^{1/2}} > \mu \} \]

 Concentration \(\implies R_{c^*}(t) \geq (T^* - t)^{-1/2} \).

 \[M := \sup \{ \mu : R_\mu(t) = O(R_{c^*}(t)) \text{ as } t \uparrow T^* \} \]

 By design \(R_{M+\gamma_0}(t) = o(R_M(t)) \) for all \(\gamma_0 > 0 \) as \(t \uparrow T^* \).

 There exists \(\mu_0 > 0 \) such that \(R_M(t) \sim R_{M-\mu_0}(t) \) as \(t \uparrow T^* \).

- **Fix a number \(K \) by the condition**
 \[K^{1/2} \mu_0 = 3 \Lambda. \]
Blowup properties for critical and supercritical NLS at low regularity

J. Colliander

Nonlinear Schrödinger Initial Value Problem

Critical Regimes & Low Regularity GWP?

$H^{1/2}$ Critical Case

Energy Critical Case

Energy Super-critical Case
Contradiction Strategy

- **Solution Decomposition:** At a time $t_0 < T^*$, decompose

$$u(t_0) = u^{\text{low}}(t_0) + u^{\text{gap}}(t_0) + u^{\text{hi}}(t_0)$$
Contradiction Strategy

Solution Decomposition: At a time $t_0 < T^*$, decompose

$$u(t_0) = u^{low}(t_0) + u^{gap}(t_0) + u^{hi}(t_0)$$

Contradiction Strategy

- **Solution Decomposition:** At a time $t_0 < T^*$, decompose

 $$u(t_0) = u^{low}(t_0) + u^{gap}(t_0) + u^{hi}(t_0)$$

 with respect to frequency regions

 $$|\xi| < R_{M+\gamma_0}(t_0)$$

 $$R_{M+\gamma_0}(t_0) < |\xi| < R_M(t_0)$$

 $$R_M(t_0) < |\xi|.$$
Contradiction Strategy

- **Solution Decomposition:** At a time $t_0 < T^*$, decompose

$$u(t_0) = u^{low}(t_0) + u^{gap}(t_0) + u^{hi}(t_0)$$

with respect to frequency regions

$$|\xi| < R_{M+\gamma_0}(t_0)$$

$$R_{M+\gamma_0}(t_0) < |\xi| < R_M(t_0)$$

$$R_M(t_0) < |\xi|.$$

Evolve u^l and u^g forward on $[t_0, T^*)$ using $\tilde{NLS}_3^{-}(\mathbb{R}^3)$. Evolve u^h according to \tilde{NLS} so that

$$u(t) = u^l(t) + u^g(t) + u^h(t).$$
Contradiction Strategy

- **Solution Decomposition:** At a time $t_0 < T^*$, decompose
 \[u(t_0) = u^{\text{low}}(t_0) + u^{\text{gap}}(t_0) + u^{\text{hi}}(t_0) \]
 with respect to frequency regions
 \[|\xi| < R_{M+\gamma_0}(t_0) \]
 \[R_{M+\gamma_0}(t_0) < |\xi| < R_M(t_0) \]
 \[R_M(t_0) < |\xi|. \]

 Evolve u^l and u^g forward on $[t_0, T^*)$ using $\overline{\text{NLS}_3}(\mathbb{R}^3)$.
 Evolve u^h according to $\overline{\text{NLS}}$ so that
 \[u(t) = u^l(t) + u^g(t) + u^h(t). \]

- **Kth Doubling Time after t_0:**
 \[t_1 := \inf\{ t \in (t_0, T^*) : R_M(t_1) > KR_{M-\mu_0}(t_0) \} \]
Contradiction Strategy

Blowup properties for critical and supercritical NLS at low regularity

J. Colliander

Nonlinear Schrödinger Initial Value Problem

Critical Regimes & Low Regularity GWP?

$H^{1/2}$ Critical Case

Energy Critical Case

Energy Supercritical Case
Contradiction Strategy

- **High Frequency Mass Freezing Contradiction**: Suppose we show the high frequency mass freezing property

\[
\| P_{|\xi|>R_M(t_0)} u(t_1) \|_{L^2} \geq \frac{1}{2} \| P_{|\xi|>R_M(t_0)} u(t_0) \|_{L^2} \\
\geq \mu_0 R_M^{-1/2}(t_0).
\]

For small γ_0, we cannot park this mass inside the gap $R_M(t_0) < |\xi| < R_M(t_1)$ so we have to put it in the high frequency boondox $|\xi| > R_M(t_1)$.
Contradiction Strategy

- **High Frequency Mass Freezing Contradiction:** Suppose we show the high frequency mass freezing property

\[
\| P_{|\xi| > R_M(t_0)} u(t_1) \|_{L^2} \geq \frac{1}{2} \| P_{|\xi| > R_M(t_0)} u(t_0) \|_{L^2} \geq \mu_0 R^{-1/2}_M(t_0).
\]

- For small \(\gamma_0 \), we cannot park this mass inside the gap \(R_M(t_0) < |\xi| < R_M(t_1) \) so we have to put it in the high frequency boondox \(|\xi| > R_M(t_1) \).
Contradiction Strategy

- **High Frequency Mass Freezing Contradiction**: Suppose we show the high frequency mass freezing property

\[
\| P_{|\xi|>R_M(t_0)} u(t_1) \|_{L^2} \geq \frac{1}{2} \| P_{|\xi|>R_M(t_0)} u(t_0) \|_{L^2} \\
\geq \mu_0 R_M^{-1/2} (t_0).
\]

- For small \(\gamma_0 \), we can not park this mass inside the gap \(R_M(t_0) < |\xi| < R_M(t_1) \) so we have to put it in the high frequency boondox \(|\xi| > R_M(t_1) \).

- Since, at time \(t_1 \), \(R_M(t_1) \geq KR_M-\mu_0(t_0) \), we conclude

\[
\| u(t_1) \|_{H^{1/2}} \geq 3 \Lambda,
\]

a contradiction.
High Frequency Mass Freezing Property
Main issue is to control the L^2 mass increment of $P_{|\xi|>R_M(t_0)}u^h(\cdot)$ under the \tilde{NLS} evolution from t_0 to t_1.
HIGH FREQUENCY MASS FREEZING PROPERTY

- Main issue is to control the L^2 mass increment of $P_{|\xi|>R_M(t)}u^h(\cdot)$ under the \tilde{NLS} evolution from t_0 to t_1.

- We must control 4-linear spacetime integrals like

$$\int_{t_0}^{t_1} \int_{\mathbb{R}^3} P_{>R_M(t_0)}(u^l \overline{ug} u^h) P_{>R_M(t_0)} \overline{u^h} \, dx dt.$$
Main issue is to control the L^2 mass increment of $P_{|\xi|>R_M(t_0)}u^h(\cdot)$ under the \overline{NLS} evolution from t_0 to t_1.

We must control 4-linear spacetime integrals like

$$\int_{t_0}^{t_1} \int_{\mathbb{R}^3} P_{>R_M(t_0)}(u^l \overline{u^g} u^h) \ P_{>R_M(t_0)} u^h \ dx \ dt.$$

Since L^4_{tx} is $H^{1/4}$-critical and we have $H^{1/2}$ control on u we can control such integrals with some gain:

$$\lesssim \left\{ (t_1 - t_0)^{1/5} \| u \|_{L^5_{t,x}([t_0,t_1] \times \mathbb{R}^3)} \right\}^{5/2} \Lambda^{3/2}.$$
High Frequency Mass Freezing Property

- Main issue is to control the L^2 mass increment of $P_{|\xi|>R_M(t_0)} u^h(\cdot)$ under the $\tilde{\text{NLS}}$ evolution from t_0 to t_1.
- We must control 4-linear spacetime integrals like
 $$\int_{t_0}^{t_1} \int_{\mathbb{R}^3} P_{> R_M(t_0)}(u^l \overline{u^g} u^h) P_{> R_M(t_0)} u^h \, dx dt.$$
- Since L^4_{tx} is $H^{1/4}$-critical and we have $H^{1/2}$ control on u we can control such integrals with some gain:
 $$\lesssim \left\{ (t_1 - t_0)^{1/5} \| u \|_{L^5_{t,x}([t_0,t_1] \times \mathbb{R}^3)} \right\}^{5/2} \Lambda^{3/2}.$$
- Assuming that $\| u \|_{L^5_{tx}([0,t] \times \mathbb{R}^3)} \lesssim (T^* - t)^{-1/5+}$ and the Concentration Property we contradict (CH) proving critical norm explosion.
Remarks

Blowup properties for critical and super-critical NLS at low regularity

J. Colliander

Nonlinear Schrödinger Initial Value Problem

Critical Regimes & Low Regularity GWP?

$H^{1/2}$ Critical Case

Energy Critical Case

Energy Super-critical Case
Remarks

- Spacetime L^5_{tx} upper bound is consistent with heuristics.
Remarks

- Spacetime L^5_{tx} upper bound is consistent with heuristics.
- Concentration Property following [Merle-Tsutsumi] proof assumed $H^1 \cap \{\text{radial}\}$ data. The rest of the argument is at the critical level.
Remarks

- Spacetime L^5_{tx} upper bound is consistent with heuristics.
- Concentration Property following [Merle-Tsutsumi] proof assumed $H^1 \cap \{\text{radial}\}$ data. The rest of the argument is at the critical level.
- Under (CH) bound, Bourgain's L^2 critical concentration result extends to the $NLS_3^{-}(\mathbb{R}^3)$ case to prove L^3 and $H^{1/2}$ concentration. [with Roudenko] This relaxes the $H^1 \cap \{\text{radial}\}$ assumptions to $H^{1/2}$.
Remarks

- Spacetime L^5_{tx} upper bound is consistent with heuristics.
- Concentration Property following [Merle-Tsutsumi] proof assumed $H^1 \cap \{\text{radial}\}$ data. The rest of the argument is at the critical level.
- Under (CH) bound, Bourgain’s L^2 critical concentration result extends to the $NLS_3^-(\mathbb{R}^3)$ case to prove L^3 and $H^{1/2}$ concentration. [with Roudenko] This relaxes the $H^1 \cap \{\text{radial}\}$ assumptions to $H^{1/2}$.
- Extends to the general mass supercritical case?