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Time Invariant Quantities

Mass = [|u(t)]2

2
H iltoni Vult 2 t p+1
amiltonian = /d| u(t)|“dx¥ 1|u( )P dx
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W9 is critical |f 1to— 5 =0.

m NLS;(R") is HSC—crltlcaI for sc := g — %_

m L2 and H! critical cases distinguished by conservation laws.
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m Theory for NLSSE(}R") is qualitatively similar in regimes:
m Mass subcritical (s. < 0)
m Mass critical (s = 0)
m Mass supercritical /Energy subcritical (0 < s, < 1)
m Energy critical (s = 1)
m Energy supercritical (s, > 1).
m Optimal local-in-time well-posedness (LWP) for
NLSF(R9): V' s > max(0, sc) 3 unique continuous
data-to-solution map

H* 2 ug — u € C([0, Tiwp|; H?) N L7LE

with lep = Tle(HUOHHS) if s > Sc and Tle = T(UO) if
s = 5.
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o m Theory for NLSSE(}R") is qualitatively similar in regimes:

FOR CRITICAL m Mass subcritical (s. < 0)

N;:Tgll'l(‘z\l. m Mass critical (SC = 0)

D AT LOW o .
RBCVBARIY m Mass supercritical /Energy subcritical (0 < 5. < 1)
J. m Energy critical (s = 1)
CETRETLRD m Energy supercritical (s, > 1).
m Optimal local-in-time well-posedness (LWP) for

NLSF(R9): V' s > max(0, sc) 3 unique continuous
data-to-solution map

CRITICAL

Fr:r;mr:s & HS ) up—— u & C([O’ TIWP]; HS) M L?Lg

LOW

REGULARITY . . .

GwWp? with Tip = Thwp(|luo|lps) if s > sc and Ty = T(up) if

s = sc.
m Optimal maximal-in-time well-posedness (GWP) is known
only in the defocusing energy critical case. What is the

fate of local-in-time solutions with critical initial regularity?
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CorunpER m 3 global-in-time classical solutions of energy critical NLS
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Why should we care about low regularity data?
m Envelope equation derivation of NLS is " band limited”.
m Physically relevant solutions are smooth.

Some answers:

m 3 global-in-time classical solutions of energy critical NLS
was unknown until finite energy solutions were shown to
be global.

m Typical, slightly bigger than necessary, finite time blowup
solutions of mass critical NLS with nice initial data are
" [2-typical” after removing the blowup.
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m Physically relevant solutions are smooth.

Some answers:

m 3 global-in-time classical solutions of energy critical NLS
was unknown until finite energy solutions were shown to
be global.

m Typical, slightly bigger than necessary, finite time blowup
solutions of mass critical NLS with nice initial data are
" [2-typical” after removing the blowup.

m Invariant measures live on low regularity phase space.
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Why should we care about low regularity data?
m Envelope equation derivation of NLS is " band limited”.
m Physically relevant solutions are smooth.

Some answers:

m 3 global-in-time classical solutions of energy critical NLS
was unknown until finite energy solutions were shown to
be global.

m Typical, slightly bigger than necessary, finite time blowup
solutions of mass critical NLS with nice initial data are
" [2-typical” after removing the blowup.

m Invariant measures live on low regularity phase space.
The talk will first discuss ideas and questions in the L? mass
critical case, the H/2 critical case, and the H! energy critical
case. Then, I'll discuss a qualitative property of blowup in an
H/2 critical case.
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TYPICAL BLOWUPS LEAVE AN [2 STAIN AT
TIME T*

[Merle-Raphaél]:

H N IRl < [luoll 2 < [[@Ql2 + @} 3 o = u solving
NLS; (R?) on [0, T*) (maximal) with T* < oo.
3 A(t), x(t),0(t) € RY,R?, R/(27Z) and u* such that

u(t) = Mt)71Q (X ;();)(t)> et — ¥

strongly in L?(R?). Typically, u*¢H® U LP for s > 0, p > 2!
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m Vug € L? there exists Ty,p(uo) determined by

itA
€™ uoll 4 ([0, Thwp) x R?) < 100"

3 unique solution u € C([0, Tiwp]; L2) N LE([O0, Thwp] x R?).
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A 2
e uol[3 ([0, Thwp] x R®) < 100°
3 unique solution u € C([0, Tiwp]; L2) N LE([O0, Thwp] x R?).

S m Define the maximal forward existence time T*(up) by
REGIMES &
EZ\C)ZVUIAI(['I'Y ||u||L?X([0,T*7(§]XR2) <0
GWP?

for all 6 > 0 but diverges to co as § | 0.
m 3 small data scattering threshold g > 0

HUOHL2 < po = HUHL‘,_}X(RX]R% < 2.
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Here Q is the ground state solution to —Q + AQ = Q3.
e*Q(x) is the ground state soliton solution to NLS; (R?).
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[2 CRITICAL CASE: GWP THEORY

o = H-GWP for NLS; (R?).
AND SUREI m H-GWP mass threshold || Q|| for NLS; (R?):
NLS AT LOwW

mam,;:\lu’rv HUOHL2 < HQ”L2 — H1 S Up — u, T = 0.
COLLU;NDER

[Weinstein]

Here Q is the ground state solution to —Q + AQ = Q3.
— e'®Q(x) is the ground state soliton solution to NLS; (R2).
Reciss & m | Method’ yields H*-GWP for s > % (s > 37).
l—{‘H(v;l![t,;’\R['I'Y [CKSTT]
GWP?

NLSS (RY) is similarly HS-GWP for s > 3.

[Tzirakis]

dy d+8
NLS;H(R ) is H*-GWP for s > Wﬂo.
[Visan-Zhang]
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m Avrise as pseudoconformal image of e Q(x) :
1 /x 2
S(t,x) == (7) ety
(t,x)=2Q (3 e
m S has minimal mass:

IS(=Dllz = 1Rl 2-

All mass in S is conically concentrated into a point.
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PROPERTIES
roncumeat Explicit Blowup Solutions
. m Arise as pseudoconformal image of e Q(x) :
REGULARITY

J. 1 X X
COLLIANDER 5(t7x) = 7Q <i> e_’T""%_
t t
m S has minimal mass:
5 _1 2 = 2.

S 1S(=1)[lz = | QI
REGIMES &
Low . . . . .
A All mass in S is conically concentrated into a point.
GWP?

m Minimal mass H! blowup solution characterization:
ug € HY, ||uoll 2 = [|Qll12, T*(uo) < oo implies that
u =S up to an explicit solution symmetry. [Merle]
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RECL Virial Identity — d Many Blowup Solutions

J. . . .
COLLIANDER m Integration by parts and the equation yields
2 2
at/ lu(t, x)Pdx = 8H]uo].
RZ

e m Hlup] <0, [ |x[?|uo(x)]?dx < oo blows up.
M m How do these solutions blow up?

GWP?
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J.
COLLIANDER
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[Merle-Tsutsumi]
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[? CRITICAL CASE: MASS CONCENTRATION

H! Theory of Mass Concentration

m HY N {radial} > up — u, T* < oo implies

Iiminf/ lu(t,x)|?dx > || Q2.

tTT* |x\<(T*7t)1/2—
[Merle-Tsutsumi]

m H?! blowups parabolically concentrate at least the ground
state mass. Explicit blowups S concentrate mass much
faster.

m Fantastic recent progress on the H! blowup theory.
[Merle-Raphaél]
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[? CRITICAL CASE: MASS CONCENTRATION

L? Theory of Mass Concentration

m %3 ug— u, TF < oo implies

lim sup SUP /‘U (t,x)[Pdx > HUOHBM'
tTT*  cubes Iside(1)<(T*—t)1/2
[Bourgain]

L2 blowups parabolically concentrate some mass.
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[? CRITICAL CASE: MASS CONCENTRATION

Browup
PROPERTIES
forcimcal 12 Theory of Mass Concentration
CRITICAL
NLS AT Low 2 * H H
REGULARITY . L 9 UO u7 T < m Implles
J.
COLLIANDER . 2 -M
lim sup sup /\u(t,x) dx > |luoll 2"
tTT*  cubes I,side(1)<(T*—t)1/2J1
[Bourgain]
CRITICAL
e & L? blowups parabolically concentrate some mass.
REGULARITY . . .
e m For large L2 data, do there exist tiny concentrations?

m Extensions in [Merle-Vega], [Carles-Keraani],
[Bégout-Vargas].
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Browup Consider focusing NLSQ(RZ):

PROPERTIES

FOR CRITICAL m Scattering Below the Ground State Mass
CI{II'IV('J\I. 277 .
NLS AT Low |luoll2 < [|Qll2 = % up — u with ||ul[;2 < oco.
REGULARITY tx
J. 2 ; + (T2 e 777
ot (Also, L* solutions of NLS; (R®) satisfy”*" ||ul|;s < c0.)
= Minimal Mass Blowup Characterization
77
luol[ iz = Q2,0 — u, T" <00 = """ u=5,
modulo a solution symmetry. An intermediate step would
RnGndms & extend characterization of the minimal mass blowup
oy solutions in H® for s < 1.

GWP?
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2 CRITICAL CASE:
CONJECTURES/QUESTIONS

Consider focusing NLS; (R?):
m Scattering Below the Ground State Mass

77

Juoll 2 < [|Qllz = ™" uo — u with [[uf[a < oo

(Also, L2 solutions of NLS; (R?) satisfy”"’ ulla < o0.)
= Minimal Mass Blowup Characterization

luoll2 = || Q2o — u, TF <00 = T u=S5,

modulo a solution symmetry. An intermediate step would
extend characterization of the minimal mass blowup
solutions in H® for s < 1.

m Concentrated mass amounts are quantized
The explicit blowups constructed by pseudoconformally
transforming time periodic solutions with ground and
excited state profiles are the only asymptotic profiles.



Browup
PROPERTIES

FOR CRITICAL

AND SUPER-
CRITICAL
NLS AT LOwW
REGULARITY

J.
COLLIANDER

CRITICAL
REGIMES &
Low
REGULARITY
GWP?

2 CRITICAL CASE:
CONJECTURES/QUESTIONS

Consider focusing NLS; (R?):
m Scattering Below the Ground State Mass

77

Juoll 2 < [|Qllz = ™" uo — u with [[uf[a < oo

(Also, L2 solutions of NLS; (R?) satisfy”"’ ulla < o0.)
= Minimal Mass Blowup Characterization

luoll2 = || Q2o — u, TF <00 = T u=S5,

modulo a solution symmetry. An intermediate step would
extend characterization of the minimal mass blowup
solutions in H® for s < 1.

m Concentrated mass amounts are quantized
The explicit blowups constructed by pseudoconformally
transforming time periodic solutions with ground and
excited state profiles are the only asymptotic profiles.

m Are there any general upper bounds?
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H*-blowup solutions concentrate ground state mass.
[With Raynor, Sulem and Wright]
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3ty T T* st u(ty) — Q in H3G) (mod symmetry
sequence).
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m For 0.86 ~ (1 + V11) < s < 1, H* N {radial} > uy —
u, T <oo =

imsupy7- [ Ju(t ) dx > [ Q.
el<(T =t/

H*-blowup solutions concentrate ground state mass.
[With Raynor, Sulem and Wright]

m ||lwl2 = ||Q| 2, u0 € H?,~086<s<1,T"<o0o =
3ty T T* st u(ty) — Q in H3G) (mod symmetry
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[? CRITICAL CASE: PARTIAL RESULTS

s m For 0.86 ~ (14 V11) < s < 1,H*N {radial} > up —
FOR CRITICAL *

AND SUPER- u, T <oo =

CRITICAL
NLS AT LOwW .
REGULARITY [im SuptTT* / |U(t’ X)’2dX 2 ” QH%Z

3. x|<(T*—t)s/2~

COLLIANDER

H*-blowup solutions concentrate ground state mass.
[With Raynor, Sulem and Wright]
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[? CRITICAL CASE: PARTIAL RESULTS

owi m For 0.86 ~ (1 + V11) < s < 1, H* N {radial} > uy —
FOR CRITICAL *
AND SUPER- u, T <oo =

CRITICAL
NLS AT LOwW . 2 2
REGULARITY ||m SuptT T |U(t’ X)‘ dX 2 ” QH [2-

i |x|<(T*—t)s/2—

COLLIANDER

H*-blowup solutions concentrate ground state mass.
[With Raynor, Sulem and Wright]

m ||lwl2 = ||Q| 2, u0 € H?,~086<s<1,T"<o0o =
3ty T T* st u(ty) — Q in H3G) (mod symmetry

G, sequence). For H® blowups with

EGIMES &

Juolliz > 1Qlliz, u(ta) — V € HY (mod symmetry

EGULARITY

GWP? sequence). [Hmidi-Keraani] This is an H® analog of an H?

result of [Weinstein] which preceded the minimal H?
blowup solution characterization.



[? CRITICAL CASE: PARTIAL RESULTS

o m For 0.86 ~ (1 + V11) < s < 1, H* N {radial} > uy —
WAL T <oo =
CRITICAL
NLS AT LO .
I{I".(,‘L,I\“I\Iil('l)':\" [im SuptTT* / |U(t, X)‘2dX 2 ”QH%Z
; X< (T~ t)s/2

COLLIANDER

H*-blowup solutions concentrate ground state mass.
[With Raynor, Sulem and Wright]

m ||lwl2 = ||Q| 2, u0 € H?,~086<s<1,T"<o0o =
3ty T T* st u(ty) — Q in H3G) (mod symmetry

G, sequence). For H® blowups with
EGIMES &
Juolliz > 1Qlliz, u(ta) — V € HY (mod symmetry
EGULARITY
GWP? sequence). [Hmidi-Keraani] This is an H® analog of an H?

result of [Weinstein] which preceded the minimal H?
blowup solution characterization.
m Same results for NLS%_H(Rd) in H, s > &5

[Visan-Zhang]
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m Spacetime norm divergence rate

-8
lulles (o,gxm2) 2 (T7 =€)~
is linked with mass concentration rate
lim sup sup /|u(t,x)2dx > uoll M.
1T :

1,0
cubes | side(1)<(T*—t)272

[Work in progress with Roudenko]
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BrLowup
reorenes — Consider NLS; (R3). Also L3-Critical. Typical Case?
AND sl:l*r:lu-lt . + 2\.
RS m LWP theory similar to NLS3 (R®):
NLS AT LOW
REGULARITY
2 (2 1/2 /3
) [*(R?) — H'/2(R?)
COLLIANDER 4 5
th th‘
m There cannot be an H1-GWP mass threshold.
m No explicit blowup solutions are known.
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Il;r}?(r(:r}:lik; Consider NLS; (R3). Also L3-Critical. Typical Case?
A e m LWP theory similar to NLS%(Rz):
NLS AT Low
[2(R?) — HY2(R)
COLLIANDER L?X —_ L?X
m There cannot be an H'-GWP mass threshold.
m No explicit blowup solutions are known.
m Virial identity = 3 many blowup solutions.
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H'/2 CriTicAL CASE

Consider NLS; (R3). Also L3-Critical. Typical Case?
= LWP theory similar to NLS5*(R?):

L2(R?) — HY?(R®)
Lic— L

m There cannot be an H'-GWP mass threshold.

m No explicit blowup solutions are known.

m Virial identity = 3 many blowup solutions.

m H' N {radial} > up — u, T* < oo then for any a > 0

IVu®)li, Tooas el T

Thus, radial solutions must explode at the origin.
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Browup
PROPERTIES

FOR CRITICAL PR’OOF'

AND SUPER-

_CRITICAL By Hamiltonian Conservation,
AR . .
2

o VOO = Hlwol + Z Oy + 510y
Inner contribution estimated using Gagliardo-Nirenberg by
C(Mass, a)||Vu(t)||il2X|<a
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HY/2 CriTicAL CASE: RADIAL NLS; (R?)

Browup

R,

'T(N:ﬁ.:g{::}i{- By Hamiltonian conservation,

R . .

2

i VU = Hluol + 5@y, + 10y
Inner contribution estimated using Gagliardo-Nirenberg by
C(Mass, a)||Vu(t)||i2 . Exterior region estimated by pulling

|x|<a

out two factors in L3° then using radial Sobolev to get control
by [lu(t)[I72 1 Vu(t)ll.

H1/2
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CASE



HY/2 CriTicAL CASE: RADIAL NLS; (R?)

Browup
T,
pnerin By Hamiltonian conservation,
NLS AT LOwW
Illl".(?l,l\u\ltl'l'Y 1 1
2
COLL(I]A‘NDER ”vu(t)”L2 - H[UO] u EHu(t)Hi?XKa + EHU(t)Ht?X|>a.
Inner contribution estimated using Gagliardo-Nirenberg by
C(Mass, a)||Vu(t)||i2 . Exterior region estimated by pulling
|x|<a
out two factors in L3° then using radial Sobolev to get control
by [|u(t)|I3,||Vu(t)||12. Absorb the exterior kinetic energy to
left side
H1/2
G [Vu()]% S C(a, Mass[uol, Hiuol)+C (3, Massluol) [V ()3
ASE x|<a

Ol
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AND SUPER- m Radial blowup solutions of energy subcritical NLS,(R9)
CRITICAL . P
NLS AT LOW with p < 5 must explode at the origin.
REGULARITY
. m For H'/?-critical NLS; (R?), there exists
COLUIANDER H N {radial} > vo — v, T*(w) < oo which blows up
precisely on a circle! [Raphaél]
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H'/2 CriTicAL CASE: REMARKS

Browup
If@f:ﬁ.ﬁlﬁih m Radial blowup solutions of energy subcritical NLS,(R9)
NLS ar ton with p < 5 must explode at the origin.
. m For H'/?-critical NLS; (R?), there exists

CorunpER H N {radial} > vo — v, T*(w) < oo which blows up

precisely on a circle! [Raphaél]
m Numerics/heuristics suggest: Finite time blowup solutions

of NLS3(R3) satisfy Ju(t)|lz Tooast T T
[Work in progress with Raynor, Sulem, Wright]
(Analogous to [Escauriaza-Seregin-Sverak] on
Navier-Stokes)
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H'/2 CriTicAL CASE: REMARKS

Browup
PROPERTIES
If@f:ﬁ.ﬁlﬁih m Radial blowup solutions of energy subcritical NLS,(R9)
NLS ar ton with p < 5 must explode at the origin.
. m For H'/?-critical NLS; (R?), there exists
CorunpER H N {radial} > vo — v, T*(w) < oo which blows up

precisely on a circle! [Raphaél]

m Numerics/heuristics suggest: Finite time blowup solutions
of NLS3(R3) satisfy Ju(t)|lz Tooast T T
[Work in progress with Raynor, Sulem, Wright]
(Analogous to [Escauriaza-Seregin-Sverak] on

Navier-Stokes)
1/2 . .
Crrmioar m HY2-blowups parabolically concentrate in L3 and H/2.

Cars [Work in progress with Roudenko]
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Browup
G | o ) |
'“‘"’“]‘""”V m Defocusing energy critical NL51+4/(d_2)(R ),d >3is
5. L
COLLIANDER globally well-posed and scatters in H*:
[Bourgain], [Grillakis]: Radial Case for d = 3
[CKSTT]: d = 3
[Tao]: Radial Case for d =4
[Ryckman-Visan], [Visan], [Tao-Visan]: d > 4
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H(R?),d > 3 CriTiCAL CASE

Browup

G | o ) |
""""'(']“‘"“” m Defocusing energy critical NL51+4/(d_2)(R ),d >3is
COLLIANDER globally well-posed and scatters in H?:

[Bourgain], [Grillakis]: Radial Case for d = 3

[CKSTT]: d = 3

[Tao]: Radial Case for d =4

[Ryckman-Visan], [Visan], [Tao-Visan]: d > 4

Induction on Energy; Interaction Morawetz; Mass Freezing
ENERGY
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H(R?),d > 3 CriTiCAL CASE

Browup

N I(ng I\Ilcl\im

""’“"']‘""""V m Defocusing energy critical NL51++4/(d_2)(Rd), d>3is

COLLIANDER globally well-posed and scatters in H?:
[Bourgain], [Grillakis]: Radial Case for d = 3
[CKSTT]: d =3
[Tao]: Radial Case for d =4
[Ryckman-Visan], [Visan], [Tao-Visan]: d > 4
Induction on Energy; Interaction Morawetz; Mass Freezing

m Focusing energy critical case?
ENERGY

CRITICAL
CASE
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REGULARITY "energy critical’ NLS equation on R??
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. 2
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H'(R?) ” CRITICAL” CASE

Browup
PROPERTIES
FOR CRITICAL
AND SUPER-
et m NLS,(IR?) is energy subcritical for all p. Is there an
EECUIRIY "energy critical’ NLS equation on R??
Couttaspen m Consider the defocusing initial value problem NLSe,(IR?)
iOru + Au = u(e‘”r‘“|2 - 1)
u(0,-) = uo(-) € H'(R?)
with Hamiltonian
) eArlu(t ) _ 1
Hlu(t)] := Vu(t,x)|"+ | ———dx.
R2 R2 4
ENERGY
CRITICAL

CASE
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m If H[ug] — M[ug] < 1 then NLSe.,(R?) is globally
well-posed. Uniform continuity of data-to-solution map
fails to hold for data satisfying H[ug] — M[ug] > 1.
[Work in progress with Ibrahim, Majdoub, Masmoudi]
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m If H[uo] — M[uo] < 1 then NLS,(IR?) is globally
NLS AT Low well-posed. Uniform continuity of data-to-solution map
o fails to hold for data satisfying H[ug] — M[uop] > 1.
COLLIANDER [Work in progress with Ibrahim, Majdoub, Masmoudi]
m Well-posedness result relies upon Strichartz estimates,
Moser-Trudinger inequality, and a log-Sobolev inequality.
(Largely based on similar result for NLKG by
[Ibrahim-Majdoub-Masmoudi])
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H'(R?) ” CRITICAL” CASE

Browup
m If H[uo] — M[uo] < 1 then NLS,(IR?) is globally
NLS T Low well-posed. Uniform continuity of data-to-solution map
o fails to hold for data satisfying H[ug] — M[uop] > 1.
COLLIANDER [Work in progress with Ibrahim, Majdoub, Masmoudi]

m Well-posedness result relies upon Strichartz estimates,
Moser-Trudinger inequality, and a log-Sobolev inequality.
(Largely based on similar result for NLKG by
[Ibrahim-Majdoub-Masmoudi])

m lll-posedness result relies upon optimizing sequence for
Moser-Trudinger and small dispersion approximation
following [Christ-C-Tao].

ENERGY

CRITICAL
CASE



H'(R?) ” CRITICAL” CASE

Browup
m If H[uo] — M[uo] < 1 then NLS,(IR?) is globally
NLS T Low well-posed. Uniform continuity of data-to-solution map
o fails to hold for data satisfying H[ug] — M[uop] > 1.
COLLIANDER [Work in progress with Ibrahim, Majdoub, Masmoudi]

m Well-posedness result relies upon Strichartz estimates,
Moser-Trudinger inequality, and a log-Sobolev inequality.
(Largely based on similar result for NLKG by
[Ibrahim-Majdoub-Masmoudi])

m lll-posedness result relies upon optimizing sequence for
Moser-Trudinger and small dispersion approximation
following [Christ-C-Tao].

o m Scattering?
(;fTRI((\AL

CASE
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Consider NLSF(R3). Typical case?

J.
COLLIANDER

m Numerical experiments by [Blue-Sulem] and also for
corresponding NLKG [Strauss-Vazquez| suggest GWP and
scattering.

= Conjecture: NLS; (R3) is GWP and scatters in H/%(R3).
[See discussion by Bourgain, GAFA Special Volume, 2000]
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[Work in progress with Raynor, Sulem, Wright....details remain.]

Question: Qualitative properties mass supercritical NLS
blowup? Restrict attention to H/?-critical NLS; (R3).

m T~ defined via divergence of ||ul|;s or ||D1/2UHL10/3.
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m Finite energy radial blowups explode at spatial origin.

m Heuristics and numerics suggest asymptotic profile @
which decays near spatial infinity like
ly| ' = Q@ ¢ L3(R3). Sobolev embedding H/? — [3
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CRITICAL NORM EXPLOSION?

—— [Work in progress with Raynor, Sulem, Wright....details remain.]

PROPERTIES

FOR CRITICAL

AND SUPER-
CRITICAL

L 2 ot Question: Qualitative properties mass supercritical NLS

WAt plowup? Restrict attention to HY/2-critical NLS; (R3).
J.
COLLIANDER m T~ defined via divergence of ||ul|;s or ||D1/2UHL10/3.
X tx

m Finite energy radial blowups explode at spatial origin.

m Heuristics and numerics suggest asymptotic profile @
which decays near spatial infinity like
ly| ' = Q@ ¢ L3(R3). Sobolev embedding H/? — [3
suggestsas t T T*

[u(t)][ /2 ~ |log(T™ — )] — oo

m Frequency heuristic: Bounded H/2 blowup inconsistent
with mass conservation.
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m Contradiction Hypothesis (CH): Assume 3 A < oo such
that

|| ul| <A.

Lo H2([0, T*)xR3)

m Concentration Property: If H* N {radial} > up — u
solves NLS; (R3), T* < 0o and we assume (CH) then

\ﬁ *

lim inf ||u(t .
im inf [[u(t)l]. c

> — =
Ix|<(T*—)l/2= w2/3
The proof follows [Merle-Tsutsumi] with the (CH) upper
bound as a proxy for L? conservation. Explicit constant
from sharp Gagliardo-Nirenberg estimate.
[Delpino-Dolbeaut]
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m Frequency level Sets:
Ru(t) := sup{R - [[Pgj> ru(t)ll a2 > 1}
Concentration = Re«(t) > (T* — t)~1/2,
M = sup{p : Ru(t) = O(Re+(t)) as t T T*}
By design Rur4q,(t) = o( Rm(t)) for all o >0ast 1 T
There exists 19 > 0 such that Ru(t) ~ Ry—,,(t) as

t1 T

m Fix a number K by the condition

K2 = 3A.
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m Solution Decomposition: At a time tg < T*, decompose
u(to) = u'™ (o) + uBP(ty) + ul(to)
with respect to frequency regions
€] < Rum(to)
R4 (o) <[] < Rm(to)
Ru(to) <[]
Evolve u’ and u& forward on [to, T*) using NLS; (R3).

Evolve u" according to NLS so that

u(t) = u'(t) + v (t) + uh(¢).

m Kth Doubling Time after ty:
t1 = inf{t S (to, T*) : R/\/I(tl) > KRM—,uo(tO)}
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Rm(to) < |€] < Rm(t1) so we have to put it in the high
frequency boondox |£] > Rp(t1).
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m High Frequency Mass Freezing Contradiction: Suppose we
show the high frequency mass freezing property

1
1Pei> Ry u(t) 2 = 511 Plej>ry (to) u(to)ll 2
~1/2
2 ,U«ORM_/MO(tO)-

m For small g, we can not park this mass inside the gap
Rm(to) < |€] < Rm(t1) so we have to put it in the high
frequency boondox |£] > Rp(t1).

m Since, at time t1, Ry(t1) > KRy—p,(to), we conclude
[u(tr)|[ e = 3N,

a contradiction.
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m Main issue is to control theALE mass increment of
P|§|>RM(to)uh(-) under the NLS evolution from ty to t;.

m We must control 4-linear spacetime integrals like

t1 o o
/ / P>RM(t0)(UIUgUh) P>RM(t0)uh dxdt.
to R3

m Since L% is H'/*-critical and we have H'/2 control on u
we can control such integrals with some gain:

5/2
< {(tl — tO)l/SHU”L‘:_:X([to,tl]XR%} N2,
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t1 o o
/ / P>RM(t0)(UIUgUh) P>RM(t0)uh dxdt.
to R3

m Since L% is H'/*-critical and we have H'/2 control on u
we can control such integrals with some gain:

5/2
S {6 = 0) SNl romgern ) A2

. -1/5

m Assuming t'hat [ull s ([0, xR3) < (T* —t)1/5+ ahd the
Concentration Property we contradict (CH) proving
critical norm explosion.
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m Under (CH) bound, Bourgain's L? critical concentration
result extends to the NLS; (R3) case to prove L3 and
H1/2 concentration. [with Roudenko]

This relaxes the H' N {radial} assumptions to H/2.
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REMARKS

Spacetime L2, upper bound is consistent with heuristics.

Concentration Property following [Merle-Tsutsumi] proof
assumed H! N {radial} data. The rest of the argument is
at the critical level.

Under (CH) bound, Bourgain's L? critical concentration
result extends to the NLS; (R3) case to prove L3 and
H1/2 concentration. [with Roudenko]

This relaxes the H' N {radial} assumptions to H/2.

Extends to the general mass supercritical case?
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