BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

Critical Regimes & Low Regularity GWP?

H^{1/2} Critical Case

Energy Critical Case

ENERGY SU-

BLOWUP PROPERTIES FOR CRITICAL AND SUPERCRITICAL NLS AT LOW REGULARITY

J. Colliander

Toronto and M.S.R.I.

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingei Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

ENERGY SU-

1 Nonlinear Schrödinger Initial Value Problem

2 CRITICAL REGIMES & LOW REGULARITY GWP?

3 $H^{1/2}$ Critical Case

4 Energy Critical Case

5 ENERGY SUPERCRITICAL CASE

6 CRITICAL NORM EXPLOSION FOR $H^{1/2}$ CRITICAL CASE

æ

BLOWUP PROPERTIES FOR CRITICAL AND SUPER- CRITICAL NLS AT LOW
REGULARITY J. COLLIANDER NONLINEAR
NONLINEAR Schrödinger Initial Value Problem
Critical Regimes & Low Regularity GWP?
<i>H</i> ^{1/2} Critical Case
Energy Critical Case Energy Su-

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinger Initial Value Problem

Critical Regimes & Low Regularity GWP? $H^{1/2}$ Critical Case

Energy Critical Case

Energy Su-

Consider the initial value problem $NLS_p^{\pm}(\mathbb{R}^d)$:

$$\begin{cases} i\partial_t u + \Delta u = \pm |u|^{p-1}u \\ u(0,x) = u_0(x) \end{cases}$$

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Colliander

Nonlinear Schrödinger Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP? $H^{1/2}$ CRITICAL CASE

Energy Critical Case

ENERGY SU-

Consider the initial value problem $NLS_p^{\pm}(\mathbb{R}^d)$:

$$\begin{cases} i\partial_t u + \Delta u = \pm |u|^{p-1}u \\ u(0, x) = u_0(x) \end{cases}$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

We seek $u: (-T_*, T^*) \times \mathbb{R}^d \mapsto \mathbb{C}$. (+ focusing, - defocusing)

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Colliander Nonlinear

Schrödinger Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP? $H^{1/2}$ CRITICAL CASE

Energy Critical Case

ENERGY SU-

Consider the initial value problem $NLS_p^{\pm}(\mathbb{R}^d)$:

$$\begin{cases} i\partial_t u + \Delta u = \pm |u|^{p-1}u \\ u(0, x) = u_0(x) \end{cases}$$

We seek
$$u: (-T_*, T^*) \times \mathbb{R}^d \mapsto \mathbb{C}$$
.
(+ focusing, - defocusing)

Time Invariant Quantities

$$\begin{aligned} \mathsf{Mass} &= \|u(t)\|_{L^2_x}\\ \mathsf{Hamiltonian} &= \int_{R^d} |\nabla u(t)|^2 dx \mp \frac{2}{p+1} |u(t)|^{p+1} dx \end{aligned}$$

BLOWUP
PROPERTIES
FOR CRITICAL
AND SUPER- CRITICAL
NLS AT LOW
REGULARITY
J.
Colliander
NONLINEAR
Schrödinger
INITIAL
Value Problem
I ROBLEM
CRITICAL
Regimes &
Low
Regularity
GWP?
$H^{1/2}$
CRITICAL
CASE
Energy
CRITICAL
Case
Energy Su-
EINERGY OU-

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinger Initial Value Problem

CRITICAL REGIMES & LOW REGULARIT GWP? $H^{1/2}$ CRITICAL CASE

Energy Critical Case

ENERGY SU-

If
$$u$$
 solves $NLS^\pm_p(\mathbb{R}^d)$ on $(-T_*,T^*) imes\mathbb{R}^2$ then

$$u_{\lambda}(\tau, y) := \lambda^{\frac{2}{1-p}} u(\tau \lambda^{-2}, y \lambda^{-1})$$

solves
$$NLS^{\pm}_{\rho}(\mathbb{R}^d)$$
 on $(-\lambda^2 T_*, \lambda^2 T^*) \times \mathbb{R}^2$.

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinger Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP? $H^{1/2}$ CRITICAL

Energy Critical Case

ENERGY SU-

If
$$u$$
 solves $NLS^{\pm}_p(\mathbb{R}^d)$ on $(-T_*, T^*) imes \mathbb{R}^2$ then

$$u_{\lambda}(\tau, y) := \lambda^{\frac{2}{1-p}} u(\tau \lambda^{-2}, y \lambda^{-1})$$

solves $NLS_p^{\pm}(\mathbb{R}^d)$ on $(-\lambda^2 T_*, \lambda^2 T^*) \times \mathbb{R}^2$.

 Dilation invariant norms play decisive role in the theory of NLS[±]_p(ℝ^d) :

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinger Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP? $H^{1/2}$ CRITICAL

Energy Critical Case

ENERGY SU-

If
$$u$$
 solves $NLS^{\pm}_p(\mathbb{R}^d)$ on $(-T_*, T^*) imes \mathbb{R}^2$ then

$$u_{\lambda}(\tau, y) := \lambda^{\frac{2}{1-p}} u(\tau \lambda^{-2}, y \lambda^{-1})$$

solves $NLS_p^{\pm}(\mathbb{R}^d)$ on $(-\lambda^2 T_*, \lambda^2 T^*) \times \mathbb{R}^2$.

 Dilation invariant norms play decisive role in the theory of NLS[±]_p(ℝ^d) :

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinger Initial Value Problem

CRITICAL REGIMES & Low REGULARITY GWP? $H^{1/2}$ CRITICAL

Energy Critical Case

ENERGY SU-

If *u* solves
$$NLS_p^{\pm}(\mathbb{R}^d)$$
 on $(-T_*, T^*) \times \mathbb{R}^2$ then

$$u_{\lambda}(\tau, y) := \lambda^{\frac{2}{1-p}} u(\tau \lambda^{-2}, y \lambda^{-1})$$

solves $NLS_p^{\pm}(\mathbb{R}^d)$ on $(-\lambda^2 T_*, \lambda^2 T^*) \times \mathbb{R}^2$.

 Dilation invariant norms play decisive role in the theory of NLS[±]_p(ℝ^d) :

$$\|D_{y}^{\sigma}u_{\lambda}\|_{L^{q}(\mathbb{R}^{d}_{y})} = \left(\frac{1}{\lambda}\right)^{\frac{2}{p-1}+\sigma-\frac{d}{q}}\|D_{x}^{\sigma}u\|_{L^{q}(\mathbb{R}^{d}_{x})}$$

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinger Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP? $H^{1/2}$ CRITICAL CASE

Energy Critical Case

ENERGY SU-

If *u* solves
$$NLS_p^{\pm}(\mathbb{R}^d)$$
 on $(-T_*, T^*) \times \mathbb{R}^2$ then

$$u_{\lambda}(\tau, y) := \lambda^{\frac{2}{1-p}} u(\tau \lambda^{-2}, y \lambda^{-1})$$

solves $NLS_p^{\pm}(\mathbb{R}^d)$ on $(-\lambda^2 T_*, \lambda^2 T^*) \times \mathbb{R}^2$.

 Dilation invariant norms play decisive role in the theory of NLS[±]_p(ℝ^d) :

$$\|D_y^{\sigma}u_{\lambda}\|_{L^q(\mathbb{R}^d_y)} = \left(\frac{1}{\lambda}\right)^{\frac{2}{p-1}+\sigma-\frac{d}{q}} \|D_x^{\sigma}u\|_{L^q(\mathbb{R}^d_x)}$$

$$\dot{W}^{\sigma,q}$$
 is critical if $rac{2}{p-1} + \sigma - rac{d}{q} = 0$

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinger Initial Value Problem

CRITICAL REGIMES & LOW REGULARIT GWP? $H^{1/2}$ CRITICAL CASE

Energy Critical Case

Energy Su-

If *u* solves
$$NLS_p^{\pm}(\mathbb{R}^d)$$
 on $(-T_*, T^*) \times \mathbb{R}^2$ then

$$u_{\lambda}(\tau, y) := \lambda^{\frac{2}{1-p}} u(\tau \lambda^{-2}, y \lambda^{-1})$$

solves $NLS_p^{\pm}(\mathbb{R}^d)$ on $(-\lambda^2 T_*, \lambda^2 T^*) \times \mathbb{R}^2$.

 Dilation invariant norms play decisive role in the theory of NLS[±]_p(ℝ^d) :

$$\|D_y^{\sigma}u_{\lambda}\|_{L^q(\mathbb{R}^d_y)} = \left(\frac{1}{\lambda}\right)^{\frac{2}{p-1}+\sigma-\frac{d}{q}} \|D_x^{\sigma}u\|_{L^q(\mathbb{R}^d_x)}$$

 $\dot{W}^{\sigma,q}$ is critical if $\frac{2}{p-1} + \sigma - \frac{d}{q} = 0$. • $NLS_p^{\pm}(\mathbb{R}^d)$ is \dot{H}^{s_c} -critical for $s_c := \frac{d}{2} - \frac{2}{p-1}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinger Initial Value Problem

CRITICAL REGIMES & LOW REGULARIT GWP? $H^{1/2}$ CRITICAL CASE

Energy Critical Case

Energy Su-

If *u* solves
$$NLS_p^{\pm}(\mathbb{R}^d)$$
 on $(-T_*, T^*) \times \mathbb{R}^2$ then

$$u_{\lambda}(\tau, y) := \lambda^{\frac{2}{1-p}} u(\tau \lambda^{-2}, y \lambda^{-1})$$

solves $NLS_p^{\pm}(\mathbb{R}^d)$ on $(-\lambda^2 T_*, \lambda^2 T^*) \times \mathbb{R}^2$.

 Dilation invariant norms play decisive role in the theory of NLS[±]_p(ℝ^d) :

$$\|D_y^{\sigma}u_{\lambda}\|_{L^q(\mathbb{R}^d_y)} = \left(\frac{1}{\lambda}\right)^{\frac{2}{p-1}+\sigma-\frac{d}{q}} \|D_x^{\sigma}u\|_{L^q(\mathbb{R}^d_x)}$$

 $\dot{W}^{\sigma,q}$ is critical if $\frac{2}{p-1} + \sigma - \frac{d}{q} = 0$. • $NLS_p^{\pm}(\mathbb{R}^d)$ is \dot{H}^{s_c} -critical for $s_c := \frac{d}{2} - \frac{2}{p-1}$.

• L^2 and \dot{H}^1 critical cases distinguished by conservation laws.

BLOWUP PROPERTIES FOR CRITICAL AND SUPER- CRITICAL
NLS AT LOW REGULARITY
J. Colliander
Nonlinear Schrödinger Initial Value Problem
Critical Regimes & Low Regularity GWP?
H ^{1/2} Critical Case
Energy Critical Case
Energy Su-

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

Critical Regimes & Low Regularity GWP?

 $H^{1/2}$ Criticai Case

Energy Critical Case

Energy Su-

• Theory for $NLS_p^{\pm}(\mathbb{R}^d)$ is qualitatively similar in regimes:

◆ロト ◆母 ト ◆ 臣 ト ◆ 臣 ト ○ 臣 - の へ ()

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinger Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

H^{1/2} CRITICAI CASE

Energy Critical Case

ENERGY SU-

Theory for NLS[±]_p(R^d) is qualitatively similar in regimes:
 Mass subcritical (s_c < 0)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinger Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

ENERGY SU-

• Theory for $NLS_p^{\pm}(\mathbb{R}^d)$ is qualitatively similar in regimes:

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Mass subcritical ($s_c < 0$)
- Mass critical $(s_c = 0)$

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinger Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

H^{1/2} Criticai Case

Energy Critical Case

Energy Su-

• Theory for $NLS_p^{\pm}(\mathbb{R}^d)$ is qualitatively similar in regimes:

- Mass subcritical ($s_c < 0$)
- Mass critical $(s_c = 0)$
- Mass supercritical/Energy subcritical $(0 < s_c < 1)$

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAI CASE

Energy Critical Case

Energy Su-

• Theory for $NLS_p^{\pm}(\mathbb{R}^d)$ is qualitatively similar in regimes:

- Mass subcritical (*s_c* < 0)
- Mass critical ($s_c = 0$)
- Mass supercritical/Energy subcritical ($0 < s_c < 1$)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Energy critical ($s_c = 1$)

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

ENERGY SU-

• Theory for $NLS_p^{\pm}(\mathbb{R}^d)$ is qualitatively similar in regimes:

- Mass subcritical (*s_c* < 0)
- Mass critical ($s_c = 0$)
- Mass supercritical/Energy subcritical $(0 < s_c < 1)$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Energy critical ($s_c = 1$)
- Energy supercritical $(s_c > 1)$.

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingei Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

ENERGY SU-

• Theory for $NLS_p^{\pm}(\mathbb{R}^d)$ is qualitatively similar in regimes:

- Mass subcritical $(s_c < 0)$
- Mass critical ($s_c = 0$)
- Mass supercritical/Energy subcritical $(0 < s_c < 1)$

- Energy critical ($s_c = 1$)
- Energy supercritical $(s_c > 1)$.
- Optimal local-in-time well-posedness (LWP) for *NLS[±]_p*(ℝ^d):

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingei Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

ENERGY SU-

• Theory for $NLS_p^{\pm}(\mathbb{R}^d)$ is qualitatively similar in regimes:

- Mass subcritical $(s_c < 0)$
- Mass critical ($s_c = 0$)
- Mass supercritical/Energy subcritical $(0 < s_c < 1)$

- Energy critical ($s_c = 1$)
- Energy supercritical $(s_c > 1)$.
- Optimal local-in-time well-posedness (LWP) for *NLS[±]_p*(ℝ^d):

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingei Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

ENERGY SU-

• Theory for $NLS_p^{\pm}(\mathbb{R}^d)$ is qualitatively similar in regimes:

- Mass subcritical $(s_c < 0)$
- Mass critical ($s_c = 0$)
- Mass supercritical/Energy subcritical $(0 < s_c < 1)$
- Energy critical ($s_c = 1$)
- Energy supercritical $(s_c > 1)$.
- Optimal local-in-time well-posedness (LWP) for NLS[±]_p(ℝ^d): ∀ s ≥ max(0, s_c) ∃ unique continuous data-to-solution map

$$H^{s} \ni u_{0} \longmapsto u \in C([0, T_{lwp}]; H^{s}) \cap L^{q}_{t}L^{p}_{x}$$

with $T_{lwp} = T_{lwp}(||u_0||_{H^s})$ if $s > s_c$ and $T_{lwp} = T(u_0)$ if $s = s_c$.

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingei Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

ENERGY SU-

• Theory for $NLS_p^{\pm}(\mathbb{R}^d)$ is qualitatively similar in regimes:

- Mass subcritical ($s_c < 0$)
- Mass critical ($s_c = 0$)
- Mass supercritical/Energy subcritical $(0 < s_c < 1)$
- Energy critical ($s_c = 1$)
- Energy supercritical $(s_c > 1)$.
- Optimal local-in-time well-posedness (LWP) for *NLS[±]_p*(ℝ^d): ∀ s ≥ max(0, s_c) ∃ unique continuous data-to-solution map

$$H^s \ni u_0 \longmapsto u \in C([0, T_{lwp}]; H^s) \cap L^q_t L^p_x$$

with $T_{lwp} = T_{lwp}(||u_0||_{H^s})$ if $s > s_c$ and $T_{lwp} = T(u_0)$ if $s = s_c$.

Optimal maximal-in-time well-posedness (GWP) is known only in the defocusing energy critical case. What is the fate of local-in-time solutions with critical initial regularity?

BLOWUP
PROPERTIES
FOR CRITICAL
AND SUPER-
CRITICAL
NLS AT LOW
REGULARITY
REGULARITY
J.
Colliander
COLLIANDER
Nonlinear
Schrödinger
INITIAL
VALUE
Problem
CRITICAL
Regimes &
Low
Regularity
GWP?
1/2
$H^{1/2}$
CRITICAL
Case
Energy
CRITICAL
CASE
ENERCY SU

▲ 王 ● ● ● ●

BLOWUP PROPERTIES FOR CRITICAL AND SUPER- CRITICAL NLS AT LOW REGULARITY	Why should we care about low regularity data?	
J. Colliander		
Nonlinear Schrödinger Initial Value Problem		
Critical Regimes & Low Regularity GWP?		
H ^{1/2} Critical Case		
Energy Critical Case		
Energy Su-	(日) (四) (四) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日	► E

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Nonlinear Schrödingei Initial

Colliander

PROBLEM CRITICAL REGIMES &

Low Regularity GWP?

H^{1/2} Criticai Case

Energy Critical Case

ENERGY SU-

Why should we care about low regularity data?

Envelope equation derivation of NLS is "band limited".

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinger Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

ENERGY SU-

Why should we care about low regularity data?

Envelope equation derivation of NLS is "band limited".

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Physically relevant solutions are smooth.

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Nonlinear Schrödinger Initial Value Problem

Colliander

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

ENERGY SU-

Why should we care about low regularity data?

Envelope equation derivation of NLS is "band limited".

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Physically relevant solutions are smooth.

Some answers:

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Nonlinear Schrödingei Initial Value

Colliander

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

ENERGY SU-

Why should we care about low regularity data?

- Envelope equation derivation of NLS is "band limited".
- Physically relevant solutions are smooth.

Some answers:

■ ∃ global-in-time classical solutions of energy critical NLS was unknown until finite energy solutions were shown to be global.

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

Colliander Nonlinear Schrödingef

Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ Critical Case

Energy Critical Case

ENERGY SU-

Why should we care about low regularity data?

- Envelope equation derivation of NLS is "band limited".
- Physically relevant solutions are smooth.

Some answers:

- ∃ global-in-time classical solutions of energy critical NLS was unknown until finite energy solutions were shown to be global.
- Typical, slightly bigger than necessary, finite time blowup solutions of mass critical NLS with nice initial data are "L²-typical" after removing the blowup.

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

Colliander Nonlinear Schrödingef

J.

Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

H^{1/2} Critical Case

Energy Critical Case

ENERGY SU-

Why should we care about low regularity data?

- Envelope equation derivation of NLS is "band limited".
- Physically relevant solutions are smooth.

Some answers:

- ∃ global-in-time classical solutions of energy critical NLS was unknown until finite energy solutions were shown to be global.
- Typical, slightly bigger than necessary, finite time blowup solutions of mass critical NLS with nice initial data are "L²-typical" after removing the blowup.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Invariant measures live on low regularity phase space.

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Nonlinear Schrödingei Initial Value

Colliander

Critical Regimes & Low Regularity GWP?

H^{1/2} Critical Case

Energy Critical Case

Energy Su-

Why should we care about low regularity data?

- Envelope equation derivation of NLS is "band limited".
- Physically relevant solutions are smooth.

Some answers:

- ∃ global-in-time classical solutions of energy critical NLS was unknown until finite energy solutions were shown to be global.
- Typical, slightly bigger than necessary, finite time blowup solutions of mass critical NLS with nice initial data are "L²-typical" after removing the blowup.

Invariant measures live on low regularity phase space.

The talk will first discuss ideas and questions in the L^2 mass critical case, the $H^{1/2}$ critical case, and the H^1 energy critical case. Then, I'll discuss a qualitative property of blowup in an $H^{1/2}$ critical case.

Typical blowups leave an L^2 stain at time T^*

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

ENERGY SU-

[Merle-Raphaël]:

 $\begin{array}{l} H^{1} \cap \{ \|Q\|_{L^{2}} < \|u_{0}\|_{L^{2}} < \|Q\|_{L^{2}} + \alpha^{*} \} \ni u_{0} \longmapsto u \text{ solving} \\ NLS_{3}^{-}(\mathbb{R}^{2}) \text{ on } [0, T^{*}) \text{ (maximal) with } T^{*} < \infty. \\ \exists \lambda(t), x(t), \theta(t) \in \mathbb{R}^{+}, \mathbb{R}^{2}, \mathbb{R}/(2\pi\mathbb{Z}) \text{ and } u^{*} \text{ such that} \end{array}$

$$u(t) - \lambda(t)^{-1}Q\left(rac{x-x(t)}{\lambda(t)}
ight)e^{i heta(t)}
ightarrow u^*$$

strongly in $L^2(\mathbb{R}^2)$. Typically, $u^* \notin H^s \cup L^p$ for s > 0, p > 2!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

L^2 CRITICAL CASE: LWP THEORY

BLOWUP	
PROPERTIES	
FOR CRITICAL	
AND SUPER-	
CRITICAL	
NLS AT LOW	
REGULARITY	
J.	
Colliander	
NONLINEAR	
Schrödinger	
INITIAL	
VALUE	
PROBLEM	
CRITICAL	
Regimes &	
Low	
Regularity	
GWP?	
$H^{1/2}$	
CRITICAL	
CASE	
Energy	
CRITICAL	
CASE	
Express or a Car	

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J. COLLIANDER

Nonlinear Schrödingei Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

H^{1/2} Critical Case

Energy Critical Case

Energy Su-

Restrict attention to $NLS_3^{\pm}(\mathbb{R}^2)$. Typical L^2 critical case?

◆□> ◆□> ◆三> ◆三> ・三> のへで

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinger Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

H^{1/2} Criticai Case

Energy Critical Case

Energy Su-

Restrict attention to $NLS_3^{\pm}(\mathbb{R}^2)$. Typical L^2 critical case?

[Cazenave-Weissler]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Colliander

Nonlinear Schrödingei Initial Value Problem

CRITICAL REGIMES & Low REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

ENERGY SU-

Restrict attention to $NLS_3^{\pm}(\mathbb{R}^2)$. Typical L^2 critical case? [Cazenave-Weissler] • $\forall u_0 \in L^2$ there exists $T_{lwp}(u_0)$ determined by $\|e^{it\Delta}u_0\|_{L^4_{tx}}([0, T_{lwp}] \times \mathbb{R}^2) < \frac{1}{100}.$ \exists unique solution $u \in C([0, T_{lwp}]; L^2) \cap L^4_{tx}([0, T_{lwp}] \times \mathbb{R}^2).$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Nonlinear Schrödinge Initial Value

Colliander

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

ENERGY SU-

Restrict attention to $NLS_3^{\pm}(\mathbb{R}^2)$. Typical L^2 critical case?

[Cazenave-Weissler]

• $\forall u_0 \in L^2$ there exists $\mathcal{T}_{lwp}(u_0)$ determined by

$$\|e^{it\Delta}u_0\|_{L^4_{tx}}([0, T_{lwp}] \times \mathbb{R}^2) < \frac{1}{100}$$

∃ unique solution $u \in C([0, T_{lwp}]; L^2) \cap L^4_{tx}([0, T_{lwp}] \times \mathbb{R}^2)$. ■ Define the maximal forward existence time $T^*(u_0)$ by

$$\|u\|_{L^4_{tx}([0,T^*-\delta]\times\mathbb{R}^2)}<\infty$$

for all $\delta > 0$ but diverges to ∞ as $\delta \downarrow 0$.

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Nonlinear Schrödingei Initial Value Proplem

Colliander

CRITICAL REGIMES & LOW REGULARITY GWP?

H^{1/2} Criticai Case

Energy Critical Case

Energy Su-

Restrict attention to $NLS_3^{\pm}(\mathbb{R}^2)$. Typical L^2 critical case?

[Cazenave-Weissler]

• $\forall u_0 \in L^2$ there exists $\mathcal{T}_{lwp}(u_0)$ determined by

$$\|e^{it\Delta}u_0\|_{L^4_{tx}}([0, T_{lwp}] imes \mathbb{R}^2) < rac{1}{100}$$

∃ unique solution $u \in C([0, T_{lwp}]; L^2) \cap L^4_{tx}([0, T_{lwp}] \times \mathbb{R}^2)$. ■ Define the maximal forward existence time $T^*(u_0)$ by

$$\|u\|_{L^4_{tx}([0,T^*-\delta]\times\mathbb{R}^2)}<\infty$$

for all $\delta > 0$ but diverges to ∞ as $\delta \downarrow 0.$

• \exists small data scattering threshold $\mu_0 > 0$

$$\|u_0\|_{L^2} < \mu_0 \implies \|u\|_{L^4_{tx}(\mathbb{R}\times\mathbb{R}^2)} < 2\mu_0.$$

BLOWUP	
PROPERTIES	
FOR CRITICAL	
AND SUPER-	
CRITICAL	
NLS AT LOW	
REGULARITY	
J.	
Colliander	
NONLINEAR	
Schrödinger	
INITIAL	
VALUE	
Problem	
CRITICAL	
Regimes &	
Low	
Regularity	
GWP?	
$H^{1/2}$	
CRITICAL	
CASE	
OASE	
Energy	
CRITICAL	
CASE	
Elementer Car	

ENERGY SU-

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ Criticai Case

Energy Critical Case

ENERGY SU-

• H^1 -GWP for $NLS_3^+(\mathbb{R}^2)$.

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinger Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAI CASE

Energy Critical Case

ENERGY SU-

• H^1 -GWP for $NLS_3^+(\mathbb{R}^2)$.

• H^1 -GWP mass threshold $||Q||_{L^2}$ for $NLS_3^-(\mathbb{R}^2)$:

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinger Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAI CASE

Energy Critical Case

ENERGY SU-

• H^1 -GWP for $NLS_3^+(\mathbb{R}^2)$.

• H^1 -GWP mass threshold $||Q||_{L^2}$ for $NLS_3^-(\mathbb{R}^2)$:

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinger Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

Energy Su-

• H^1 -GWP for $NLS_3^+(\mathbb{R}^2)$.

[\

• H^1 -GWP mass threshold $||Q||_{L^2}$ for $NLS_3^-(\mathbb{R}^2)$:

$$\|u_0\|_{L^2} < \|Q\|_{L^2} \implies H^1 \ni u_0 \longmapsto u, T^* = \infty.$$

Neinstein]

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

H^{1/2} Critical Case

Energy Critical Case

Energy Su-

- H^1 -GWP for $NLS_3^+(\mathbb{R}^2)$.
- H^1 -GWP mass threshold $||Q||_{L^2}$ for $NLS_3^-(\mathbb{R}^2)$:

$$\|u_0\|_{L^2} < \|Q\|_{L^2} \implies H^1 \ni u_0 \longmapsto u, T^* = \infty.$$

[Weinstein]

Here Q is the ground state solution to $-Q + \Delta Q = Q^3$. $e^{it}Q(x)$ is the ground state solution solution to $NLS_3^-(\mathbb{R}^2)$.

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

Energy Su-

- H^1 -GWP for $NLS_3^+(\mathbb{R}^2)$.
- H^1 -GWP mass threshold $||Q||_{L^2}$ for $NLS_3^-(\mathbb{R}^2)$:

$$\|u_0\|_{L^2} < \|Q\|_{L^2} \implies H^1 \ni u_0 \longmapsto u, T^* = \infty.$$

[Weinstein]

Here Q is the ground state solution to $-Q + \Delta Q = Q^3$. $e^{it}Q(x)$ is the ground state soliton solution to $NLS_3^-(\mathbb{R}^2)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• 'I Method' yields H^s -GWP for $s > \frac{4}{7}$ $(s > \frac{1}{2}?)$. [CKSTT]

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

Energy Su-

- H^1 -GWP for $NLS_3^+(\mathbb{R}^2)$.
- H^1 -GWP mass threshold $||Q||_{L^2}$ for $NLS_3^-(\mathbb{R}^2)$:

$$\|u_0\|_{L^2} < \|Q\|_{L^2} \implies H^1 \ni u_0 \longmapsto u, T^* = \infty.$$

[Weinstein]

Here Q is the ground state solution to $-Q + \Delta Q = Q^3$. $e^{it}Q(x)$ is the ground state soliton solution to $NLS_3^-(\mathbb{R}^2)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• 'I Method' yields H^s -GWP for $s > \frac{4}{7}$ $(s > \frac{1}{2}?)$. [CKSTT]

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

H^{1/2} Critical Case

Energy Critical Case

Energy Su-

- H^1 -GWP for $NLS_3^+(\mathbb{R}^2)$.
- H^1 -GWP mass threshold $||Q||_{L^2}$ for $NLS_3^-(\mathbb{R}^2)$:

$$\|u_0\|_{L^2} < \|Q\|_{L^2} \implies H^1 \ni u_0 \longmapsto u, T^* = \infty.$$

[Weinstein]

Here Q is the ground state solution to $-Q + \Delta Q = Q^3$. $e^{it}Q(x)$ is the ground state soliton solution to $NLS_3^-(\mathbb{R}^2)$.

• 'I Method' yields H^{s} -GWP for $s > \frac{4}{7}$ ($s > \frac{1}{2}$?). [CKSTT] $NLS_{5}^{+}(\mathbb{R}^{1})$ is similarly H^{s} -GWP for $s > \frac{4}{9}$. [Tzirakis] $NLS_{\frac{4}{d}+1}^{+}(\mathbb{R}^{d})$ is H^{s} -GWP for $s > \frac{d+8}{d+10}$. [Visan-Zhang]

Blowup
PROPERTIES
FOR CRITICAL
AND SUPER-
CRITICAL
NLS AT LOW
REGULARITY
J.
Colliander
NONLINEAR
Schrödinger
INITIAL
VALUE
Problem
CRITICAL
Regimes &
Low
Regularity
GWP?
$H^{1/2}$
Critical Case
CASE
Energy
CRITICAL
CASE
European Cu

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinger Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ Criticai Case

Energy Critical Case

ENERGY SU-

Explicit Blowup Solutions

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Nonlinear Schrödingei Initial Value Problem

Colliander

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAI CASE

Energy Critical Case

ENERGY SU-

Explicit Blowup Solutions

• Arise as *pseudoconformal* image of $e^{it}Q(x)$:

$$S(t,x) = \frac{1}{t}Q\left(\frac{x}{t}\right)e^{-i\frac{|x|^2}{4t}+\frac{i}{t}}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Nonlinear Schrödinge Initial Value

Colliander

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

ENERGY SU-

Explicit Blowup Solutions

• Arise as *pseudoconformal* image of $e^{it}Q(x)$:

$$S(t,x) = \frac{1}{t}Q\left(\frac{x}{t}\right)e^{-i\frac{|x|^2}{4t}+\frac{i}{t}}.$$

S has minimal mass:

$$\|S(-1)\|_{L^2_x} = \|Q\|_{L^2}.$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

All mass in S is conically concentrated into a point.

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

COLLIANDER

Nonlinear Schrödinge Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ Critical Case

Energy Critical Case

ENERGY SU-

Explicit Blowup Solutions

• Arise as *pseudoconformal* image of $e^{it}Q(x)$:

$$S(t,x) = \frac{1}{t}Q\left(\frac{x}{t}\right)e^{-i\frac{|x|^2}{4t}+\frac{i}{t}}.$$

S has minimal mass:

$$||S(-1)||_{L^2_x} = ||Q||_{L^2}.$$

All mass in S is conically concentrated into a point.

Minimal mass H^1 blowup solution characterization: $u_0 \in H^1, ||u_0||_{L^2} = ||Q||_{L^2}, T^*(u_0) < \infty$ implies that u = S up to an explicit solution symmetry. [Merle]

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Colliander

Nonlinear Schrödinger Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAI CASE

Energy Critical Case

ENERGY SU-

Virial Identity $\implies \exists$ Many Blowup Solutions

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

ENERGY SU-

Virial Identity $\implies \exists$ Many Blowup Solutions

Integration by parts and the equation yields

$$\partial_t^2 \int_{\mathbb{R}^2_x} |u(t,x)|^2 dx = 8H[u_0]$$

◆□> ◆□> ◆三> ◆三> ・三 ・ のへ()・

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Colliander Nonlinear

Schrödin Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

ENERGY SU-

Virial Identity $\implies \exists$ Many Blowup Solutions

Integration by parts and the equation yields

$$\partial_t^2 \int_{\mathbb{R}^2_x} |u(t,x)|^2 dx = 8H[u_0]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ● ●

•
$$H[u_0] < 0, \int |x|^2 |u_0(x)|^2 dx < \infty$$
 blows up.

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingei Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ Critical Case

Energy Critical Case

ENERGY SU-

Virial Identity $\implies \exists$ Many Blowup Solutions

Integration by parts and the equation yields

$$\partial_t^2 \int_{\mathbb{R}^2_x} |u(t,x)|^2 dx = 8H[u_0].$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

$$H[u_0] < 0, \int |x|^2 |u_0(x)|^2 dx < \infty$$
 blows up.

How do these solutions blow up?

BLOWUP
PROPERTIES
FOR CRITICAL
AND SUPER-
CRITICAL
NLS AT LOW
REGULARITY
in souther i
J.
Colliander
COLLIANDER
Nonlinear
Initial
VALUE
Problem
Critical
Regimes &
Low
Regularity
GWP?
1/2
$H^{1/2}$
Critical
CASE
CRITICAL
Case
Energy Su-

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Colliander Nonlinear Schrödingef

VALUE PROBLEM

Critical Regimes & Low Regularity GWP?

H^{1/2} CRITICAI CASE

Energy Critical Case

ENERGY SU-

H^1 Theory of Mass Concentration

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Nonlinear Schrödingei Initial Value

Colliander

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

ENERGY SU-

H^1 Theory of Mass Concentration

•
$$H^1 \cap \{ radial \} \ni u_0 \longmapsto u, T^* < \infty \text{ implies}$$

$$\liminf_{t \uparrow T^*} \int_{|x| < (T^* - t)^{1/2-}} |u(t, x)|^2 dx \ge \|Q\|_{L^2}^2.$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

[Merle-Tsutsumi]

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Colliander

Nonlinear Schrödinge Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

H^{1/2} Critical Case

Energy Critical Case

ENERGY SU-

H^1 Theory of Mass Concentration

$$\mathcal{H}^1 \cap \{ \text{radial} \} \ni u_0 \longmapsto u, \, T^* < \infty \text{ implies}$$
$$\liminf_{t \uparrow T^*} \int_{|x| < (T^* - t)^{1/2-}} |u(t, x)|^2 dx \ge \|Q\|_{L^2}^2.$$

[Merle-Tsutsumi]

•

 H¹ blowups parabolically concentrate at least the ground state mass. Explicit blowups S concentrate mass much faster.

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Colliander

Nonlinear Schrödinge Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

H^{1/2} Critical Case

Energy Critical Case

ENERGY SU-

H^1 Theory of Mass Concentration

$$\mathcal{H}^{1} \cap \{ radial \} \ni u_{0} \longmapsto u, T^{*} < \infty \text{ implies}$$
$$\liminf_{t \uparrow T^{*}} \int_{|x| < (T^{*} - t)^{1/2 -}} |u(t, x)|^{2} dx \ge \|Q\|_{L^{2}}^{2}.$$

[Merle-Tsutsumi]

 H¹ blowups parabolically concentrate at least the ground state mass. Explicit blowups S concentrate mass much faster.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Fantastic recent progress on the H¹ blowup theory. [Merle-Raphaël]

BLOWUP
PROPERTIES
FOR CRITICAL
AND SUPER-
CRITICAL
NLS AT LOW
REGULARITY
in souther i
J.
Colliander
COLLIANDER
Nonlinear
Initial
VALUE
Problem
Critical
Regimes &
Low
Regularity
GWP?
1/2
$H^{1/2}$
Critical
CASE
CRITICAL
Case
Energy Su-

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のなべ

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Colliander

Nonlinear Schrödinger Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

H^{1/2} Critical Case

Energy Critical Case

Energy Su-

L² Theory of Mass Concentration

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J. COLLIANDER

Nonlinear Schrödingei Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

H^{1/2} CRITICAL CASE

Energy Critical Case

ENERGY SU-

L² Theory of Mass Concentration

• $L^2 \ni u_0 \longmapsto u, T^* < \infty$ implies

 $\limsup_{t \uparrow T^*} \sup_{cubes} \sup_{I,side(I) \le (T^*-t)^{1/2}} \int_{I} |u(t,x)|^2 dx \ge ||u_0||_{L^2}^{-M}.$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

[Bourgain]

 L^2 blowups parabolically concentrate some mass.

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J. COLLIANDER

Nonlinear Schrödingei Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

ENERGY SU-

L² Theory of Mass Concentration

• $L^2 \ni u_0 \longmapsto u, T^* < \infty$ implies

 $\limsup_{t \uparrow T^*} \sup_{cubes} \sup_{I,side(I) \le (T^*-t)^{1/2}} \int_{I} |u(t,x)|^2 dx \ge ||u_0||_{L^2}^{-M}.$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

[Bourgain]

L² blowups parabolically concentrate some mass.
For large L² data, do there exist tiny concentrations?

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J. COLLIANDER

Nonlinear Schrödingei Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

H^{1/2} Critical Case

Energy Critical Case

ENERGY SU-

L² Theory of Mass Concentration

• $L^2 \ni u_0 \longmapsto u, T^* < \infty$ implies

 $\limsup_{t \uparrow T^*} \sup_{cubes} \sup_{I,side(I) \le (T^*-t)^{1/2}} \int_{I} |u(t,x)|^2 dx \ge ||u_0||_{L^2}^{-M}.$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

[Bourgain]

- L^2 blowups parabolically concentrate some mass.
- For large L^2 data, do there exist tiny concentrations?
- Extensions in [Merle-Vega], [Carles-Keraani], [Bégout-Vargas].

L^2 CRITICAL CASE: CONJECTURES/QUESTIONS

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

BLOWUP	
PROPERTIES	
FOR CRITICAL	
AND SUPER-	
CRITICAL	
NLS AT LOW	
REGULARITY	
J. Colliander	
NONLINEAR	
Schrödinger	
INITIAL	
VALUE	
PROBLEM	
I ROBLEM	
CRITICAL	
Regimes &	
Low	
REGULARITY	
GWP?	
$H^{1/2}$	
CRITICAL	
CASE	
Energy	
CRITICAL	
CASE	

ENERGY SU-

L^2 CRITICAL CASE: CONJECTURES/QUESTIONS

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

ENERGY SU-

Consider focusing $NLS_3^-(\mathbb{R}^2)$:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

L^2 CRITICAL CASE: CONJECTURES/QUESTIONS

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinger Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

Energy Su-

Consider focusing *NLS*₃[−](ℝ²): **Scattering Below the Ground State Mass**

 $\|u_0\|_{L^2} < \|Q\|_{L^2} \implies \stackrel{???}{\longrightarrow} u_0 \longmapsto u \text{ with } \|u\|_{L^4_{tx}} < \infty.$ (Also, L^2 solutions of $NLS_3^+(\mathbb{R}^2)$ satisfy??? $\|u\|_{L^4_{tx}} < \infty.$)

L^2 CRITICAL CASE: CONJECTURES/QUESTIONS

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingen Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

Energy Su-

Consider focusing $NLS_3^-(\mathbb{R}^2)$:

Scattering Below the Ground State Mass

 $\|u_0\|_{L^2} < \|Q\|_{L^2} \implies \stackrel{???}{\Longrightarrow} u_0 \longmapsto u \text{ with } \|u\|_{L^4_{tx}} < \infty.$

(Also, L^2 solutions of $NLS_3^+(\mathbb{R}^2)$ satisfy??? $||u||_{L^4_{tx}} < \infty$.) Minimal Mass Blowup Characterization

$$\|u_0\|_{L^2} = \|Q\|_{L^2}, u_0 \longmapsto u, T^* < \infty \implies \stackrel{???}{\Longrightarrow} u = S,$$

modulo a solution symmetry. An intermediate step would extend characterization of the minimal mass blowup solutions in H^s for s < 1.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

L^2 CRITICAL CASE: CONJECTURES/QUESTIONS

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

H^{1/2} Critical Case

Energy Critical Case

Energy Su-

Consider focusing $NLS_3^-(\mathbb{R}^2)$:

Scattering Below the Ground State Mass

 $\|u_0\|_{L^2} < \|Q\|_{L^2} \implies \stackrel{???}{\Longrightarrow} u_0 \longmapsto u \text{ with } \|u\|_{L^4_{tx}} < \infty.$

(Also, L^2 solutions of $NLS_3^+(\mathbb{R}^2)$ satisfy??? $||u||_{L^4_{tx}} < \infty$.) Minimal Mass Blowup Characterization

$$\|u_0\|_{L^2} = \|Q\|_{L^2}, u_0 \longmapsto u, T^* < \infty \implies \stackrel{???}{\Longrightarrow} u = S,$$

modulo a solution symmetry. An intermediate step would extend characterization of the minimal mass blowup solutions in H^s for s < 1.

 Concentrated mass amounts are quantized The explicit blowups constructed by pseudoconformally transforming time periodic solutions with ground and excited state profiles are the only asymptotic profiles.

I^2 Critical Case: **CONJECTURES**/QUESTIONS

BLOWUP FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

CRITICAL. Regimes & Low REGULARITY GWP?

Consider focusing $NLS_3^-(\mathbb{R}^2)$:

Scattering Below the Ground State Mass

 $\|u_0\|_{L^2} < \|Q\|_{L^2} \implies \stackrel{???}{\Longrightarrow} u_0 \longmapsto u \text{ with } \|u\|_{L^4_{t*}} < \infty.$

(Also, L^2 solutions of $NLS_3^+(\mathbb{R}^2)$ satisfy^{???} $||u||_{L^4_*} < \infty$.) Minimal Mass Blowup Characterization

$$\|u_0\|_{L^2} = \|Q\|_{L^2}, u_0 \longmapsto u, T^* < \infty \implies \stackrel{???}{\Longrightarrow} u = S,$$

modulo a solution symmetry. An intermediate step would extend characterization of the minimal mass blowup solutions in H^s for s < 1.

Concentrated mass amounts are guantized The explicit blowups constructed by pseudoconformally transforming time periodic solutions with ground and excited state profiles are the only asymptotic profiles.

Are there any general upper bounds?

L^2 Critical Case: Partial Results

BLOWUP
PROPERTIES
FOR CRITICAL
AND SUPER-
CRITICAL
NLS at low
REGULARITY
J.
Colliander
COLLIANDER
Nonlinear
Schrödinger
INITIAL
VALUE
Problem
CRITICAL
Regimes &
Low
REGULARITY
GWP?
GWI :
$H^{1/2}$
CRITICAL
CASE
OASE
Energy
CRITICAL
CASE
OABE
Energy Su-

3

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinger Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

H^{1/2} Criticai Case

Energy Critical Case

ENERGY SU-

For
$$0.86 \sim \frac{1}{5}(1+\sqrt{11}) < s < 1, H^s \cap \{radial\} \ni u_0 \longmapsto u, T^* < \infty \implies$$
$$\limsup_{t \uparrow T^*} \int_{|x| < (T^*-t)^{s/2-}} |u(t,x)|^2 dx \ge \|Q\|_{L^2}^2.$$

H^s-blowup solutions concentrate ground state mass. [With Raynor, Sulem and Wright]

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinge Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

Energy Su-

For
$$0.86 \sim \frac{1}{5}(1 + \sqrt{11}) < s < 1, H^s \cap \{radial\} \ni u_0 \mapsto u, T^* < \infty \implies$$
$$\limsup_{t \uparrow T^*} \int_{|x| < (T^* - t)^{s/2-}} |u(t, x)|^2 dx \ge \|Q\|_{L^2}^2.$$

• $||u_0||_{L^2} = ||Q||_{L^2}, u_0 \in H^s, \sim 0.86 < s < 1, T^* < \infty \implies \exists t_n \uparrow T^* \text{ s.t. } u(t_n) \to Q \text{ in } H^{\tilde{s}(s)} \pmod{\text{symmetry sequence}}.$

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinge Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

Energy Su-

For
$$0.86 \sim \frac{1}{5}(1 + \sqrt{11}) < s < 1, H^s \cap \{radial\} \ni u_0 \mapsto u, T^* < \infty \implies$$
$$\limsup_{t \uparrow T^*} \int_{|x| < (T^* - t)^{s/2-}} |u(t, x)|^2 dx \ge \|Q\|_{L^2}^2.$$

• $||u_0||_{L^2} = ||Q||_{L^2}, u_0 \in H^s, \sim 0.86 < s < 1, T^* < \infty \implies \exists t_n \uparrow T^* \text{ s.t. } u(t_n) \to Q \text{ in } H^{\tilde{s}(s)} \pmod{\text{symmetry sequence}}.$

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinge Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

Energy Su-

■ For 0.86 ~ $\frac{1}{5}(1 + \sqrt{11}) < s < 1, H^s \cap \{radial\} \ni u_0 \mapsto u, T^* < \infty \implies$ $\lim \sup_{t \uparrow T^*} \int_{|x| < (T^* - t)^{s/2^-}} |u(t, x)|^2 dx \ge ||Q||_{L^2}^2.$

H^s-blowup solutions concentrate ground state mass. [With Raynor, Sulem and Wright]

■ $||u_0||_{L^2} = ||Q||_{L^2}, u_0 \in H^s, \sim 0.86 < s < 1, T^* < \infty \implies \exists t_n \uparrow T^* \text{ s.t. } u(t_n) \rightarrow Q \text{ in } H^{\tilde{s}(s)} \pmod{\text{symmetry}}$ sequence). For H^s blowups with $||u_0||_{L^2} > ||Q||_{L^2}, u(t_n) \rightarrow V \in H^1 \pmod{\text{symmetry}}$ sequence). [Hmidi-Keraani]

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinge Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

H^{1/2} Critical Case

Energy Critical Case

ENERGY SU-

• For 0.86 ~ $\frac{1}{5}(1+\sqrt{11}) < s < 1, H^s \cap \{radial\} \ni u_0 \mapsto u, T^* < \infty \implies$ $\lim \sup_{t\uparrow T^*} \int_{|y| < (T^*-t)^{s/2-}} |u(t,x)|^2 dx \ge ||Q||_{L^2}^2.$

 $J|x| < (T^* - t)^{s/2}$ H^s -blowup solutions concentrate ground state mass.

[With Raynor, Sulem and Wright]

• $||u_0||_{L^2} = ||Q||_{L^2}, u_0 \in H^s, \sim 0.86 < s < 1, T^* < \infty \implies \exists t_n \uparrow T^* \text{ s.t. } u(t_n) \to Q \text{ in } H^{\tilde{s}(s)} \pmod{\text{symmetry}}$ sequence). For H^s blowups with $||u_0||_{L^2} > ||Q||_{L^2}, u(t_n) \to V \in H^1 \pmod{\text{symmetry}}$ sequence). [Hmidi-Keraani] This is an H^s analog of an H^1 result of [Weinstein] which preceded the minimal H^1 blowup solution characterization.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinge Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

Energy Su-

For 0.86 ~ $\frac{1}{5}(1 + \sqrt{11}) < s < 1, H^s \cap \{radial\} \ni u_0 \mapsto u, T^* < \infty \implies$

$$\lim \sup_{t \to \infty} \sup_{t \to \infty} \int_{|x| < (T^* - t)^{s/2-1}} |u(t, x)| \quad \text{and} \quad t \to \infty$$

H^s-blowup solutions concentrate ground state mass. [With Raynor, Sulem and Wright]

- $||u_0||_{L^2} = ||Q||_{L^2}, u_0 \in H^s, \sim 0.86 < s < 1, T^* < \infty \implies \exists t_n \uparrow T^* \text{ s.t. } u(t_n) \to Q \text{ in } H^{\tilde{s}(s)} \pmod{\text{symmetry}}$ sequence). For H^s blowups with $||u_0||_{L^2} > ||Q||_{L^2}, u(t_n) \to V \in H^1 \pmod{\text{symmetry}}$ sequence). [Hmidi-Keraani] This is an H^s analog of an H^1 result of [Weinstein] which preceded the minimal H^1 blowup solution characterization.
- Same results for $NLS^{-}_{\frac{4}{d}+1}(\mathbb{R}^{d})$ in H^{s} , $s > \frac{d+8}{d+10}$. [Visan-Zhang]

L^2 Critical Case: Partial Results

BLOWUP
PROPERTIES
FOR CRITICAL
AND SUPER-
CRITICAL
NLS at low
REGULARITY
J.
Colliander
COLLIANDER
Nonlinear
Schrödinger
INITIAL
VALUE
Problem
CRITICAL
Regimes &
Low
REGULARITY
GWP?
GWI :
$H^{1/2}$
CRITICAL
CASE
OASE
Energy
CRITICAL
CASE
OABE
Energy Su-

3

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Colliander

Nonlinear Schrödinge Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

ENERGY SU-

Spacetime norm divergence rate

$$\|u\|_{L^4_{tx}([0,t]\times\mathbb{R}^2)}\gtrsim (T^*-t)^{-\beta}$$

is linked with mass concentration rate

 $\limsup_{t\uparrow \mathcal{T}^*} \sup_{\textit{cubes } I,\textit{side}(I) \leq (\mathcal{T}^*-t)^{\frac{1}{2}+\frac{\beta}{2}}} \int_I |u(t,x)|^2 dx \geq \|u_0\|_{L^2}^{-M}.$

[Work in progress with Roudenko]

$H^{1/2}$ CRITICAL CASE

Deserves
BLOWUP
PROPERTIES
FOR CRITICAL
AND SUPER-
CRITICAL
NLS at low
REGULARITY
in so chinari
J.
Colliander
COLLIANDER
Norman
NONLINEAR
Schrödinger
INITIAL
VALUE
PROBLEM
I ROBLEM
0
CRITICAL
Regimes &
Low
REGULARITY
GWP?
GWP?
$H^{1/2}$
CRITICAL
CASE
Energy
CRITICAL
Case
ENERCY SU

<□ > < @ > < E > < E > E のQ @

$H^{1/2}$ CRITICAL CASE

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}_{\mathrm{CRITICAL}}_{\mathrm{CASE}}$

Energy Critical Case

ENERGY SU-

Consider $NLS_3^-(\mathbb{R}^3)$. Also L_x^3 -Critical. Typical Case?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}_{\mathrm{CRITICAL}}_{\mathrm{CASE}}$

Energy Critical Case

Energy Su-

Consider $NLS_3^-(\mathbb{R}^3)$. Also L_x^3 -Critical. Typical Case? • LWP theory similar to $NLS_3^{\pm}(\mathbb{R}^2)$:

$$\begin{array}{c} L^2(\mathbb{R}^2)\longmapsto H^{1/2}(\mathbb{R}^3)\\ L^4_{tx}\longmapsto L^5_{tx}. \end{array}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Colliander

Nonlinear Schrödinge Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ Critical Case

Energy Critical Case

ENERGY SU-

Consider $NLS_3^-(\mathbb{R}^3)$. Also L_x^3 -Critical. Typical Case? • LWP theory similar to $NLS_3^{\pm}(\mathbb{R}^2)$:

$$L^2(\mathbb{R}^2) \longmapsto H^{1/2}(\mathbb{R}^3)$$

 $L^4_{tx} \longmapsto L^5_{tx}.$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• There cannot be an *H*¹-GWP mass threshold.

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Colliander

Nonlinear Schrödinge Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}_{\mathrm{CRITICAL}}_{\mathrm{CASE}}$

Energy Critical Case

ENERGY SU-

Consider $NLS_3^-(\mathbb{R}^3)$. Also L_x^3 -Critical. Typical Case? • LWP theory similar to $NLS_3^{\pm}(\mathbb{R}^2)$:

$$L^2(\mathbb{R}^2) \longmapsto H^{1/2}(\mathbb{R}^3)$$

 $L^4_{tx} \longmapsto L^5_{tx}.$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- There cannot be an *H*¹-GWP mass threshold.
- No explicit blowup solutions are known.

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J. COLLIANDER

Nonlinear Schrödinge Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}_{\mathrm{CRITICAL}}_{\mathrm{CASE}}$

Energy Critical Case

ENERGY SU-

Consider $NLS_3^-(\mathbb{R}^3)$. Also L_x^3 -Critical. Typical Case? • LWP theory similar to $NLS_3^{\pm}(\mathbb{R}^2)$:

$$\begin{split} L^2(\mathbb{R}^2) &\longmapsto H^{1/2}(\mathbb{R}^3) \\ L^4_{tx} &\longmapsto L^5_{tx}. \end{split}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- There cannot be an *H*¹-GWP mass threshold.
- No explicit blowup solutions are known.
- Virial identity $\implies \exists$ many blowup solutions.

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J. COLLIANDER

Nonlinear Schrödinge Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ Critical Case

Energy Critical Case

ENERGY SU-

Consider $NLS_3^-(\mathbb{R}^3)$. Also L_x^3 -Critical. Typical Case? • LWP theory similar to $NLS_3^{\pm}(\mathbb{R}^2)$:

$$L^2(\mathbb{R}^2) \longmapsto H^{1/2}(\mathbb{R}^3)$$

 $L^4_{tx} \longmapsto L^5_{tx}.$

- There cannot be an *H*¹-GWP mass threshold.
- No explicit blowup solutions are known.
- Virial identity $\implies \exists$ many blowup solutions.
- $H^1 \cap \{ radial \} \ni u_0 \longmapsto u, T^* < \infty$ then for any a > 0

$$\|
abla u(t)\|_{L^2_{|x|< a}} \uparrow \infty$$
 as $t \uparrow T^*$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thus, radial solutions must explode at the origin.

ENERGY SU-

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinge Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}_{\mathrm{CRITICAL}}_{\mathrm{CASE}}$

Energy Critical Case

ENERGY SU-

Proof.

By Hamiltonian conservation,

$$\|\nabla u(t)\|_{L^{2}}^{2} = H[u_{0}] + \frac{1}{2}\|u(t)\|_{L^{4}_{|x| < a}}^{4} + \frac{1}{2}\|u(t)\|_{L^{4}_{|x| > a}}^{4}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ の Q @

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Nonlinear Schrödingei Initial Value Problem

Colliander

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}_{\mathrm{CRITICAL}}_{\mathrm{CASE}}$

Energy Critical Case

ENERGY SU-

Proof.

By Hamiltonian conservation,

$$\|\nabla u(t)\|_{L^2}^2 = H[u_0] + \frac{1}{2} \|u(t)\|_{L^4_{|x|a}}^4$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Inner contribution estimated using Gagliardo-Nirenberg by $C(Mass, a) \|\nabla u(t)\|_{L^2_{|x| < a}}^3$.

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

Colliander Nonlinear Schrödingef Initial

Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}_{\mathrm{CRITICAL}}_{\mathrm{CASE}}$

Energy Critical Case

Energy Su-

Proof.

By Hamiltonian conservation,

$$\|\nabla u(t)\|_{L^{2}}^{2} = H[u_{0}] + \frac{1}{2}\|u(t)\|_{L^{4}_{|x|a}}^{4}.$$

Inner contribution estimated using Gagliardo-Nirenberg by $C(Mass, a) \|\nabla u(t)\|_{L^2_{|x|<a}}^3$. Exterior region estimated by pulling out two factors in L^{∞}_{x} then using radial Sobolev to get control by $\|u(t)\|_{L^2}^3 \|\nabla u(t)\|_{L^2}$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

Colliander

Nonlinear Schrödinge Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ Critical Case

Energy Critical Case

ENERGY SU-

Proof.

By Hamiltonian conservation,

$$\|\nabla u(t)\|_{L^2}^2 = H[u_0] + \frac{1}{2} \|u(t)\|_{L^4_{|x|a}}^4.$$

Inner contribution estimated using Gagliardo-Nirenberg by $C(Mass, a) \|\nabla u(t)\|_{L^2_{|x|<a}}^3$. Exterior region estimated by pulling out two factors in L^{∞}_{x} then using radial Sobolev to get control by $\|u(t)\|_{L^2}^3 \|\nabla u(t)\|_{L^2}$. Absorb the exterior kinetic energy to left side

 $\|
abla u(t)\|_{L^2}^2 \lesssim C(a, \mathit{Mass}[u_0], H[u_0]) + C(a, \mathit{Mass}[u_0]) \|
abla u(t)\|_{L^2_{|x| < a}}^3$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

<□ > < @ > < E > < E > E のQ @

BLOWUP PROPERTIES FOR CRITICAL AND SUPER- CRITICAL NLS AT LOW REGULARITY
J. Colliander
Nonlinear Schrödinger Initial Value Problem
Critical Regimes & Low Regularity GWP?
H ^{1/2} CRITICAL CASE
Energy Critical Case
Expose Cu

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinger Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ Critical Case

Energy Critical Case

ENERGY SU-

Radial blowup solutions of energy subcritical NLS_p(R^d) with p < 5 must explode at the origin.</p>

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinger Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}_{\mathrm{CRITICAL}}_{\mathrm{CASE}}$

Energy Critical Case

ENERGY SU-

- Radial blowup solutions of energy subcritical NLS_p(R^d) with p < 5 must explode at the origin.</p>
 - For $H^{1/2}$ -critical $NLS_5^-(\mathbb{R}^2)$, there exists $H^1 \cap \{ radial \} \ni v_0 \longmapsto v, \ T^*(v_0) < \infty$ which blows up precisely on a circle! [Raphaël]

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}_{\mathrm{CRITICAL}}_{\mathrm{CASE}}$

Energy Critical Case

ENERGY SU-

- Radial blowup solutions of energy subcritical $NLS_p(\mathbb{R}^d)$ with p < 5 must explode at the origin.
- For $H^{1/2}$ -critical $NLS_5^-(\mathbb{R}^2)$, there exists $H^1 \cap \{ radial \} \ni v_0 \longmapsto v, \ T^*(v_0) < \infty$ which blows up
 - precisely on a circle! [Raphaël]
- Numerics/heuristics suggest: Finite time blowup solutions of NLS₃(ℝ³) satisfy ||u(t)||_{L³/2} ↑ ∞ as t ↑ T*. [Work in progress with Raynor, Sulem, Wright] (Analogous to [Escauriaza-Seregin-Šverák] on Navier-Stokes)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ Critical Case

Energy Critical Case

Energy Su-

- Radial blowup solutions of energy subcritical NLS_p(R^d) with p < 5 must explode at the origin.
- For $H^{1/2}$ -critical $NLS_5^-(\mathbb{R}^2)$, there exists $H^1 \cap \{ radial \} \ni v_0 \longmapsto v, \ T^*(v_0) < \infty$ which blows up

precisely on a circle! [Raphaël]

- Numerics/heuristics suggest: Finite time blowup solutions of NLS₃(ℝ³) satisfy ||u(t)||_{L³x} ↑ ∞ as t ↑ T*. [Work in progress with Raynor, Sulem, Wright] (Analogous to [Escauriaza-Seregin-Šverák] on Navier-Stokes)
- H^{1/2}-blowups parabolically concentrate in L³ and H^{1/2}. [Work in progress with Roudenko]

Blowup
PROPERTIES FOR CRITICAL
AND SUPER- CRITICAL
NLS AT LOW
REGULARITY
J. Colliander
Now proces
Nonlinear Schrödinger
Initial Value
Problem
Critical Regimes &
Low Regularity
GWP?
$H^{1/2}$
Critical Case
Energy
Critical Case
ENERGY SU-

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP? $H^{1/2}$

Critica Case

Energy Critical Case

Energy Su-

■ Defocusing energy critical NLS⁺_{1+4/(d-2)}(ℝ^d), d ≥ 3 is globally well-posed and scatters in H¹:

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP? $H^{1/2}$ CRITICAL

Energy Critical Case

ENERGY SU-

 Defocusing energy critical NLS⁺_{1+4/(d-2)}(ℝ^d), d ≥ 3 is globally well-posed and scatters in H¹: [Bourgain], [Grillakis]: Radial Case for d = 3 [CKSTT]: d = 3 [Tao]: Radial Case for d = 4 [Ryckman-Visan], [Visan], [Tao-Visan]: d ≥ 4

くしゃ 本面 アメヨア メヨア しゅうぐう

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ Critica: Case

Energy Critical Case

Energy Su-

 Defocusing energy critical NLS⁺_{1+4/(d-2)}(ℝ^d), d ≥ 3 is globally well-posed and scatters in H¹: [Bourgain], [Grillakis]: Radial Case for d = 3 [CKSTT]: d = 3 [Tao]: Radial Case for d = 4 [Ryckman-Visan], [Visan], [Tao-Visan]: d ≥ 4 Induction on Energy; Interaction Morawetz; Mass Freezing

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

H^{1/2} Criticai Case

Energy Critical Case

Energy Su-

 Defocusing energy critical NLS⁺_{1+4/(d-2)}(ℝ^d), d ≥ 3 is globally well-posed and scatters in H¹: [Bourgain], [Grillakis]: Radial Case for d = 3 [CKSTT]: d = 3 [Tao]: Radial Case for d = 4 [Ryckman-Visan], [Visan], [Tao-Visan]: d ≥ 4 Induction on Energy; Interaction Morawetz; Mass Freezing
 Focusing energy critical case?

$H^1(\mathbb{R}^2)$ "Critical" Case

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-
CRITICAL NLS AT LOW REGULARITY J.
Colliander
Schrödinger Initial Value Problem
Critical Regimes & Low Regularity
GWP? H ^{1/2} Critical Case
ENERGY CRITICAL CASE
Energy Su-

$H^1(\mathbb{R}^2)$ "Critical" Case

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Nonlinear Schrödingei Initial Value Problem

Colliander

CRITICAL REGIMES & Low REGULARITY GWP? $H^{1/2}$

Critica Case

Energy Critical Case

ENERGY SU-

 NLS_p(ℝ²) is energy subcritical for all p. Is there an "energy critical" NLS equation on ℝ²?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへで

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & Low REGULARITY GWP? $H^{1/2}$

Critica Case

Energy Critical Case

ENERGY SU-

- NLS_p(ℝ²) is energy subcritical for all p. Is there an "energy critical" NLS equation on ℝ²?
- Consider the defocusing initial value problem $NLS_{exp}(\mathbb{R}^2)$

$$\begin{cases} i\partial_t u + \Delta u = u (e^{4\pi |u|^2} - 1) \\ u(0, \cdot) = u_0(\cdot) \in H^1(\mathbb{R}^2) \end{cases}$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Colliander

Nonlinear Schrödingei Initial Value Problem

CRITICAL REGIMES & Low REGULARITY GWP? $H^{1/2}$ CRITICAL CASE

Energy Critical Case

ENERGY SU-

- NLS_p(ℝ²) is energy subcritical for all p. Is there an "energy critical" NLS equation on ℝ²?
- Consider the defocusing initial value problem $NLS_{exp}(\mathbb{R}^2)$

$$\begin{cases} i\partial_t u + \Delta u = u(e^{4\pi|u|^2} - 1) \\ u(0, \cdot) = u_0(\cdot) \in H^1(\mathbb{R}^2) \end{cases}$$

with Hamiltonian

$$H[u(t)] := \int_{\mathbb{R}^2} |
abla u(t,x)|^2 + \int_{\mathbb{R}^2} rac{e^{4\pi |u(t,x)|^2} - 1}{4\pi} dx.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-
CRITICAL NLS AT LOW REGULARITY J.
Colliander
Schrödinger Initial Value Problem
Critical Regimes & Low Regularity
GWP? H ^{1/2} Critical Case
ENERGY CRITICAL CASE
Energy Su-

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinger Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP? H^{1/2}

CRITICA CASE

Energy Critical Case

ENERGY SU-

• If $H[u_0] - M[u_0] \le 1$ then $NLS_{exp}(\mathbb{R}^2)$ is globally well-posed. Uniform continuity of data-to-solution map fails to hold for data satisfying $H[u_0] - M[u_0] > 1$. [Work in progress with Ibrahim, Majdoub, Masmoudi]

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingei Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

CRITICA CASE

Energy Critical Case

Energy Su-

- If H[u₀] − M[u₀] ≤ 1 then NLS_{exp}(ℝ²) is globally well-posed. Uniform continuity of data-to-solution map fails to hold for data satisfying H[u₀] − M[u₀] > 1. [Work in progress with Ibrahim, Majdoub, Masmoudi]
- Well-posedness result relies upon Strichartz estimates, Moser-Trudinger inequality, and a log-Sobolev inequality. (Largely based on similar result for NLKG by [Ibrahim-Majdoub-Masmoudi])

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

H^{1/2} Critical Case

Energy Critical Case

ENERGY SU-

- If $H[u_0] M[u_0] \le 1$ then $NLS_{exp}(\mathbb{R}^2)$ is globally well-posed. Uniform continuity of data-to-solution map fails to hold for data satisfying $H[u_0] - M[u_0] > 1$. [Work in progress with Ibrahim, Majdoub, Masmoudi]
- Well-posedness result relies upon Strichartz estimates, Moser-Trudinger inequality, and a log-Sobolev inequality. (Largely based on similar result for NLKG by [Ibrahim-Majdoub-Masmoudi])
- Ill-posedness result relies upon optimizing sequence for Moser-Trudinger and small dispersion approximation following [Christ-C-Tao].

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

H^{1/2} Critical Case

Energy Critical Case

Energy Su-

- If H[u₀] M[u₀] ≤ 1 then NLS_{exp}(ℝ²) is globally well-posed. Uniform continuity of data-to-solution map fails to hold for data satisfying H[u₀] M[u₀] > 1. [Work in progress with Ibrahim, Majdoub, Masmoudi]
- Well-posedness result relies upon Strichartz estimates, Moser-Trudinger inequality, and a log-Sobolev inequality. (Largely based on similar result for NLKG by [Ibrahim-Majdoub-Masmoudi])
- Ill-posedness result relies upon optimizing sequence for Moser-Trudinger and small dispersion approximation following [Christ-C-Tao].

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Scattering?

UP TIES TCAL PER- AL LOW RITY
J. Colliander
Nonlinear Schrödinger Initial Value Problem
Critical Regimes & Low Regularity GWP?
<i>H</i> ^{1/2} Critical Case
Energy Critical Case
Energy Su-

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinger Initial Value Problem

Critical Regimes & Low Regularity GWP? *H*^{1/2}

Critica Case

Energy Critical Case

ENERGY SU-

Consider $NLS_7^+(\mathbb{R}^3)$. Typical case?

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のなべ

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinger Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP? H^{1/2}

CRITICAI CASE

Energy Critical Case

ENERGY SU-

Consider $NLS_7^+(\mathbb{R}^3)$. Typical case?

 Numerical experiments by [Blue-Sulem] and also for corresponding NLKG [Strauss-Vazquez] suggest GWP and scattering.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinger Initial Value Problem

Critical Regimes & Low Regularity GWP?

H^{1/2} Criticai Case

Energy Critical Case

ENERGY SU-

Consider $NLS_7^+(\mathbb{R}^3)$. Typical case?

- Numerical experiments by [Blue-Sulem] and also for corresponding NLKG [Strauss-Vazquez] suggest GWP and scattering.
- Conjecture: NLS₇⁺(ℝ³) is GWP and scatters in H^{7/6}(ℝ³). [See discussion by Bourgain, GAFA Special Volume, 2000]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARIT GWP? H^{1/2} CRITICAL

Critica Case

Energy Critical Case

ENERGY SU-

[Work in progress with Raynor, Sulem, Wright....details remain.]

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Colliander

Nonlinear Schrödinger Initial Value Problem

Critical Regimes & Low Regularity GWP? H^{1/2}

Critica Case

Energy Critical Case

Energy Su-

[Work in progress with Raynor, Sulem, Wright....details remain.]

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

Question: Qualitative properties mass supercritical NLS blowup?

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Colliander

Nonlinear Schrödingef Initial Value Problem

Critical Regimes & Low Regularity GWP? *H*^{1/2}

Critica Case

Energy Critical Case

ENERGY SU-

[Work in progress with Raynor, Sulem, Wright....details remain.]

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question: Qualitative properties mass supercritical NLS blowup? Restrict attention to $H^{1/2}$ -critical $NLS_3^{-}(\mathbb{R}^3)$.

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY I

Colliander

Nonlinear Schrödingei Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP? 11/2

CRITICA CASE

Energy Critical Case

ENERGY SU-

[Work in progress with Raynor, Sulem, Wright....details remain.]

Question: Qualitative properties mass supercritical NLS blowup? Restrict attention to $H^{1/2}$ -critical $NLS_3^-(\mathbb{R}^3)$.

• T^* defined via divergence of $||u||_{L^5_{tx}}$ or $||D^{1/2}u||_{L^{10/3}}$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Colliander

Nonlinear Schrödinger Initial Value Problem

Critical Regimes & Low Regularity GWP?

 $H^{1/2}$ Critical Case

Energy Critical Case

ENERGY SU-

[Work in progress with Raynor, Sulem, Wright....details remain.]

Question: Qualitative properties mass supercritical NLS blowup? Restrict attention to $H^{1/2}$ -critical $NLS_3^-(\mathbb{R}^3)$.

• T^* defined via divergence of $||u||_{L^5_{tx}}$ or $||D^{1/2}u||_{L^{10/3}}$.

Finite energy radial blowups explode at spatial origin.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Colliander

Nonlinear Schrödingei Initial Value Problem

Critical Regimes & Low Regularity GWP?

H^{1/2} Criticai Case

Energy Critical Case

Energy Su-

[Work in progress with Raynor, Sulem, Wright....details remain.]

Question: Qualitative properties mass supercritical NLS blowup? Restrict attention to $H^{1/2}$ -critical $NLS_3^-(\mathbb{R}^3)$.

- T^* defined via divergence of $||u||_{L^5_{tx}}$ or $||D^{1/2}u||_{L^{10/3}_{tx}}$.
- Finite energy radial blowups explode at spatial origin.
- Heuristics and numerics suggest asymptotic profile Q which decays near spatial infinity like

 $|y|^{-1} \implies Q \notin L^3(\mathbb{R}^3)$. Sobolev embedding $H^{1/2} \hookrightarrow L^3$ suggests as $t \uparrow T^*$

 $\|u(t)\|_{H^{1/2}}\sim |\log(T^*-t)|\to\infty.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Colliander

Nonlinear Schrödingef Initial Value Problem

Critical Regimes & Low Regularity GWP?

 $H^{1/2}$ Critical Case

Energy Critical Case

ENERGY SU-

[Work in progress with Raynor, Sulem, Wright....details remain.]

Question: Qualitative properties mass supercritical NLS blowup? Restrict attention to $H^{1/2}$ -critical $NLS_3^-(\mathbb{R}^3)$.

- T^* defined via divergence of $||u||_{L^5_{tx}}$ or $||D^{1/2}u||_{L^{10/3}_{tx}}$.
- Finite energy radial blowups explode at spatial origin.
- Heuristics and numerics suggest asymptotic profile Qwhich decays near spatial infinity like $|y|^{-1} \longrightarrow Q \notin I^3(\mathbb{P}^3)$. Scholar ambedding $H^{1/2}(x)$

 $|y|^{-1} \implies Q \notin L^3(\mathbb{R}^3)$. Sobolev embedding $H^{1/2} \hookrightarrow L^3$ suggests as $t \uparrow T^*$

$$\|u(t)\|_{H^{1/2}}\sim |\log(T^*-t)|
ightarrow\infty.$$

Frequency heuristic: Bounded H^{1/2} blowup inconsistent with mass conservation.

WUP ERTIES RITICAL UPER- TCAL T LOW LARITY
J. Colliander
Nonlinear Schrödinger Initial Value Problem
Critical Regimes & Low Regularity GWP?
H ^{1/2} Critical Case
Energy Critical Case
ENERGY SU-

▲ 王 ● ● ● ●

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Nonlinear Schrödingef Initial Value Problem

Colliander

Critical Regimes & Low Regularity GWP? H^{1/2}

Critica Case

Energy Critical Case

Energy Su-

Contradiction Hypothesis (CH): Assume $\exists \Lambda < \infty$ such that

$$\|u\|_{L^{\infty}_{t}H^{1/2}_{x}([0,T^{*})\times\mathbb{R}^{3})}<\Lambda.$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のなべ

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Nonlinear Schrödingei Initial Value

Colliander

Critical Regimes & Low Regularity GWP?

 $H^{1/2}$ Criticai Case

Energy Critical Case

ENERGY SU-

Contradiction Hypothesis (CH): Assume $\exists \Lambda < \infty$ such that

$$\|u\|_{L^{\infty}_t H^{1/2}_x([0,T^*)\times\mathbb{R}^3)} < \Lambda.$$

■ Concentration Property: If $H^1 \cap \{radial\} \ni u_0 \mapsto u$ solves $NLS_3^-(\mathbb{R}^3)$, $T^* < \infty$ and we assume (CH) then

$$\liminf_{t\uparrow T^*} \|u(t)\|_{L^3_{|x|<(T^*-t)^{1/2-}}} \geq \frac{\sqrt{2}}{\pi^{2/3}} = c^*$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Nonlinear Schrödingei Initial Value

Colliander

Critical Regimes & Low Regularity GWP?

 $H^{1/2}$ Criticai Case

Energy Critical Case

ENERGY SU-

Contradiction Hypothesis (CH): Assume $\exists \Lambda < \infty$ such that

$$\|u\|_{L^{\infty}_t H^{1/2}_x([0,T^*)\times\mathbb{R}^3)} < \Lambda.$$

■ Concentration Property: If $H^1 \cap \{radial\} \ni u_0 \mapsto u$ solves $NLS_3^-(\mathbb{R}^3)$, $T^* < \infty$ and we assume (CH) then

$$\liminf_{t\uparrow T^*} \|u(t)\|_{L^3_{|x|<(T^*-t)^{1/2-}}} \geq \frac{\sqrt{2}}{\pi^{2/3}} = c^*$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Colliander Nonlinear Schrödingef

Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

 $H^{1/2}$ CRITICA CASE

Energy Critical Case

Energy Su-

Contradiction Hypothesis (CH): Assume $\exists \Lambda < \infty$ such that

$$\|u\|_{L^{\infty}_t H^{1/2}_x([0,T^*)\times\mathbb{R}^3)} < \Lambda.$$

• Concentration Property: If $H^1 \cap \{radial\} \ni u_0 \mapsto u$ solves $NLS_3^-(\mathbb{R}^3)$, $T^* < \infty$ and we assume (CH) then

$$\liminf_{t\uparrow T^*} \|u(t)\|_{L^3_{|x|<(T^*-t)^{1/2-}}} \geq \frac{\sqrt{2}}{\pi^{2/3}} = c^*$$

The proof follows [Merle-Tsutsumi] with the (CH) upper bound as a proxy for L^2 conservation. Explicit constant from sharp Gagliardo-Nirenberg estimate. [Delpino-Dolbeaut]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

WUP ERTIES RITICAL UPER- TCAL T LOW LARITY
J. Colliander
Nonlinear Schrödinger Initial Value Problem
Critical Regimes & Low Regularity GWP?
H ^{1/2} Critical Case
Energy Critical Case
ENERGY SU-

▲ 王 ● ● ● ●

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP? H^{1/2}

CRITICA CASE

Energy Critical Case

ENERGY SU-

Frequency level Sets:

$$R_{\mu}(t) := \sup\{R : \|P_{|\xi|>R}u(t)\|_{\dot{H}^{1/2}_{x}} > \mu\}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ の Q @

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP? H^{1/2}

CRITICA CASE

Energy Critical Case

ENERGY SU-

Frequency level Sets:

$$R_{\mu}(t) := \sup\{R : \|P_{|\xi|>R}u(t)\|_{\dot{H}^{1/2}_{x}} > \mu\}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ の Q @

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingei Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP? *H*^{1/2}

Critica Case

Energy Critical Case

ENERGY SU-

Frequency level Sets:

$$R_{\mu}(t) := \sup\{R : \|P_{|\xi|>R}u(t)\|_{\dot{H}^{1/2}_{x}} > \mu\}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

Concentration $\implies R_{c^*}(t) \ge (T^* - t)^{-1/2}$.

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP? $H^{1/2}$ CRITICAL

Energy Critical

ENERGY SU-

Frequency level Sets:

$$R_{\mu}(t) := \sup\{R : \|P_{|\xi| > R}u(t)\|_{\dot{H}^{1/2}_{x}} > \mu\}$$

Concentration
$$\implies R_{c^*}(t) \ge (T^* - t)^{-1/2}$$
.

$$M := \sup\{\mu: R_\mu(t) = O(R_{c^*}(t)) \text{ as } t \uparrow T^*\}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ○目 ○ のへで

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & Low REGULARITY GWP?

CRITICA CASE

Energy Critical Case

Energy Su-

Frequency level Sets:

$$R_{\mu}(t) := \sup\{R : \|P_{|\xi|>R}u(t)\|_{\dot{H}^{1/2}_{x}} > \mu\}$$

Concentration
$$\implies R_{c^*}(t) \ge (T^* - t)^{-1/2}$$
.

$$M := \sup\{\mu : R_\mu(t) = O(R_{c^*}(t)) \text{ as } t \uparrow T^*\}$$

By design $R_{M+\gamma_0}(t) = o(R_M(t))$ for all $\gamma_0 > 0$ as $t \uparrow T^*$. There exists $\mu_0 > 0$ such that $R_M(t) \sim R_{M-\mu_0}(t)$ as $t \uparrow T^*$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

Critical Regimes & Low Regularity GWP?

 $H^{1/2}$ Criticai Case

Energy Critical Case

ENERGY SU-

Frequency level Sets:

$$R_{\mu}(t) := \sup\{R : \|P_{|\xi| > R}u(t)\|_{\dot{H}^{1/2}_{x}} > \mu\}$$

Concentration
$$\implies R_{c^*}(t) \ge (T^* - t)^{-1/2}$$
.

$$M := \sup\{\mu : R_\mu(t) = O(R_{c^*}(t)) \text{ as } t \uparrow T^*\}$$

By design $R_{M+\gamma_0}(t) = o(R_M(t))$ for all $\gamma_0 > 0$ as $t \uparrow T^*$. There exists $\mu_0 > 0$ such that $R_M(t) \sim R_{M-\mu_0}(t)$ as $t \uparrow T^*$.

Fix a number K by the condition

$$K^{1/2}\mu_0=3\Lambda.$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

WUP ERTIES RITICAL UPER- TCAL T LOW LARITY
J. Colliander
Nonlinear Schrödinger Initial Value Problem
Critical Regimes & Low Regularity GWP?
H ^{1/2} Critical Case
Energy Critical Case
ENERGY SU-

▲ 王 ● ● ● ●

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARIT GWP? $H^{1/2}$ CRITICAL

CRITICA

Energy Critical Case

Energy Su-

Solution Decomposition: At a time $t_0 < T^*$, decompose $u(t_0) = u^{low}(t_0) + u^{gap}(t_0) + u^{hi}(t_0)$

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARIT GWP? $H^{1/2}$ CRITICAL

CRITICA

Energy Critical Case

Energy Su-

Solution Decomposition: At a time $t_0 < T^*$, decompose $u(t_0) = u^{low}(t_0) + u^{gap}(t_0) + u^{hi}(t_0)$

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

Nonlinear Schrödingei Initial Value Problem

Colliander

CRITICAL REGIMES & LOW REGULARITY GWP? $H^{1/2}$ CRITICAL

Energy Critical Case

Energy Su-

Solution Decomposition: At a time $t_0 < T^*$, decompose $u(t_0) = u^{low}(t_0) + u^{gap}(t_0) + u^{hi}(t_0)$ with respect to frequency regions $|\xi| < R_{M+\gamma_0}(t_0)$ $R_{M+\gamma_0}(t_0) < |\xi| < R_M(t_0)$ $R_M(t_0) < |\xi|.$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

Colliander

Nonlinear Schrödingei Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP? $H^{1/2}$ CRITICAL CASE

Energy Critical Case

ENERGY SU-

Solution Decomposition: At a time $t_0 < T^*$, decompose $u(t_0) = u^{low}(t_0) + u^{gap}(t_0) + u^{hi}(t_0)$ with respect to frequency regions $|\xi| < R_{M+\gamma_0}(t_0)$ $R_{M+\gamma_0}(t_0) < |\xi| < R_M(t_0)$ $R_M(t_0) < |\xi|.$ Evolve u^l and u^g forward on $[t_1, T^*)$ using $MUS^{-}(\mathbb{R}^3)$

Evolve u^l and u^g forward on $[t_0, T^*)$ using $NLS_3^-(\mathbb{R}^3)$. Evolve u^h according to \widetilde{NLS} so that

$$u(t) = u'(t) + u^g(t) + u^h(t).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Nonlinear Schrödingei Initial Value Problem

Colliander

CRITICAL REGIMES & LOW REGULARITY GWP? $H^{1/2}$ CRITICAL

Energy Critical Case

Energy Su-

Solution Decomposition: At a time $t_0 < T^*$, decompose $u(t_0) = u^{low}(t_0) + u^{gap}(t_0) + u^{hi}(t_0)$ with respect to frequency regions $|\xi| < R_{M+\gamma_0}(t_0)$ $R_{M+\gamma_0}(t_0) < |\xi| < R_M(t_0)$ $R_M(t_0) < |\xi|.$ Evolve u^l and u^g forward on $[t_0, T^*)$ using $NLS_3^-(\mathbb{R}^3)$.

Evolve u^{l} and u^{g} forward on $[t_{0}, T^{*})$ using $NLS_{3}^{-}(\mathbb{R}^{3})$. Evolve u^{h} according to \widetilde{NLS} so that

$$u(t) = u'(t) + u^{g}(t) + u^{h}(t).$$

Kth Doubling Time after t₀:

 $t_1 := \inf\{t \in (t_0, T^*) : R_M(t_1) > KR_{M-\mu_0}(t_0)\}$

CONTRADICTION STRATEGY

WUP ERTIES RITICAL UPER- TCAL T LOW LARITY
J. Colliander
Nonlinear Schrödinger Initial Value Problem
Critical Regimes & Low Regularity GWP?
H ^{1/2} Critical Case
Energy Critical Case
ENERGY SU-

▲ 王 ● ● ● ●

Contradiction Strategy

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARIT GWP? H^{1/2} CRITICAL

Energy Critical Case

ENERGY SU-

 High Frequency Mass Freezing Contradiction: Suppose we show the high frequency mass freezing property

$$egin{aligned} &\|P_{|\xi|>R_M(t_0)}u(t_1)\|_{L^2}\geq rac{1}{2}\|P_{|\xi|>R_M}(t_0)u(t_0)\|_{L^2}\ &\gtrsim \mu_0 R_{M-\mu_0}^{-1/2}(t_0). \end{aligned}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへで

CONTRADICTION STRATEGY

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Colliander

Nonlinear Schrödingei Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

CRITICA CASE

Energy Critical Case

ENERGY SU-

 High Frequency Mass Freezing Contradiction: Suppose we show the high frequency mass freezing property

$$egin{aligned} &\|P_{|\xi|>R_M(t_0)}u(t_1)\|_{L^2} \geq rac{1}{2}\|P_{|\xi|>R_M}(t_0)u(t_0)\|_{L^2}\ &\gtrsim \mu_0 R_{M-\mu_0}^{-1/2}(t_0). \end{aligned}$$

For small γ_0 , we can not park this mass inside the gap $R_M(t_0) < |\xi| < R_M(t_1)$ so we have to put it in the high frequency boondox $|\xi| > R_M(t_1)$.

Contradiction Strategy

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Colliander

Nonlinear Schrödingei Initial Value Problem

Critical Regimes & Low Regularity GWP?

 $H^{1/2}$ CRITICA CASE

Energy Critical Case

Energy Su-

 High Frequency Mass Freezing Contradiction: Suppose we show the high frequency mass freezing property

$$egin{aligned} &\|P_{|\xi|>R_{M}(t_{0})}u(t_{1})\|_{L^{2}}\geqrac{1}{2}\|P_{|\xi|>R_{M}}(t_{0})u(t_{0})\|_{L^{2}}\ &\gtrsim \mu_{0}R_{M-\mu_{0}}^{-1/2}(t_{0}). \end{aligned}$$

- For small γ_0 , we can not park this mass inside the gap $R_M(t_0) < |\xi| < R_M(t_1)$ so we have to put it in the high frequency boondox $|\xi| > R_M(t_1)$.
- Since, at time $t_1, R_M(t_1) \ge KR_{M-\mu_0}(t_0)$, we conclude

$$||u(t_1)||_{H^{1/2}} \geq 3\Lambda,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

a contradiction.

BLOWUP
PROPERTIES
FOR CRITICAL
AND SUPER-
CRITICAL
NLS AT LOW
REGULARITY
J.
Colliander
Nonlinear
Schrödinger
INITIAL
VALUE
Problem
PROBLEM
CRITICAL
REGIMES &
Low
REGULARITY
GWP?
$H^{1/2}$
CRITICAL
Case
Energy
CRITICAL
CASE
Energy Su-

▲ 王 ● ● ● ●

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödingef Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP? H^{1/2}

Critica Case

Energy Critical Case

ENERGY SU-

• Main issue is to control the L^2 mass increment of $P_{|\xi|>R_M(t_0)}u^h(\cdot)$ under the \widehat{NLS} evolution from t_0 to t_1 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Nonlinear Schrödingef Initial Value Problem

Colliander

CRITICAL REGIMES & LOW REGULARITY GWP? $H^{1/2}$

Critica Case

Energy Critical Case

ENERGY SU-

- Main issue is to control the L^2 mass increment of $P_{|\xi| > R_M(t_0)} u^h(\cdot)$ under the \widetilde{NLS} evolution from t_0 to t_1 .
- We must control 4-linear spacetime integrals like

$$\int_{t_0}^{t_1} \int_{\mathbb{R}^3} P_{>R_M(t_0)}(u^{\prime} \overline{u^g} u^h) P_{>R_M(t_0)} \overline{u^h} dx dt.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Colliander

Nonlinear Schrödinge Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

CRITICA: CASE

Energy Critical Case

ENERGY SU-

- Main issue is to control the L^2 mass increment of $P_{|\xi|>R_M(t_0)}u^h(\cdot)$ under the \widetilde{NLS} evolution from t_0 to t_1 .
- We must control 4-linear spacetime integrals like

$$\int_{t_0}^{t_1} \int_{\mathbb{R}^3} P_{>R_M(t_0)}(u^{I}\overline{u^g}u^h) P_{>R_M(t_0)}\overline{u^h} dx dt.$$

Since L⁴_{tx} is H^{1/4}-critical and we have H^{1/2} control on u we can control such integrals with some gain:

$$\lesssim \left\{ (t_1 - t_0)^{1/5} \| u \|_{L^5_{t,x}([t_0,t_1] imes \mathbb{R}^3)}
ight\}^{5/2} \Lambda^{3/2}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Colliander

Nonlinear Schrödinge Initial Value Problem

Critical Regimes & Low Regularity GWP?

H^{1/2} CRITICA CASE

Energy Critical Case

Energy Su-

- Main issue is to control the L^2 mass increment of $P_{|\xi| > R_M(t_0)} u^h(\cdot)$ under the \widetilde{NLS} evolution from t_0 to t_1 .
- We must control 4-linear spacetime integrals like

$$\int_{t_0}^{t_1} \int_{\mathbb{R}^3} P_{>R_M(t_0)}(u^{I}\overline{u^g}u^h) P_{>R_M(t_0)}\overline{u^h} dx dt.$$

Since L⁴_{tx} is H^{1/4}-critical and we have H^{1/2} control on u we can control such integrals with some gain:

$$\lambda \lesssim \left\{ (t_1 - t_0)^{1/5} \| u \|_{L^5_{t, imes}([t_0, t_1] imes \mathbb{R}^3)}
ight\}^{5/2} \Lambda^{3/2}$$

■ Assuming that $||u||_{L^{5}_{tx}([0,t]\times\mathbb{R}^{3})} \lesssim (T^{*}-t)^{-1/5+}$ and the Concentration Property we contradict (CH) proving critical norm explosion.

Drouwn
BLOWUP
PROPERTIES
FOR CRITICAL
AND SUPER-
CRITICAL
NLS AT LOW
REGULARITY
J.
Colliander
Nonlinear
Schrödinger
INITIAL
VALUE
PROBLEM
CRITICAL
Regimes &
Low
Regularity
GWP?
$H^{1/2}$
CRITICAL
CASE
Energy
CRITICAL
CASE
OASE
Energy Su-

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY J.

Colliander

Nonlinear Schrödingef Initial Value Problem

Critical Regimes & Low Regularity GWP? *H*^{1/2}

Critica Case

Energy Critical Case

ENERGY SU-

• Spacetime L_{tx}^5 upper bound is consistent with heuristics.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinger Initial Value Problem

CRITICAL REGIMES & LOW REGULARITY GWP?

H^{-/-} Criticai Case

Energy Critical Case

ENERGY SU-

- Spacetime L_{tx}^5 upper bound is consistent with heuristics.
- Concentration Property following [Merle-Tsutsumi] proof assumed H¹ ∩ {radial} data. The rest of the argument is at the critical level.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinger Initial Value Problem

Critical Regimes & Low Regularity GWP?

H^{1/2} Critical Case

Energy Critical Case

Energy Su-

- Spacetime L_{tx}^5 upper bound is consistent with heuristics.
- Concentration Property following [Merle-Tsutsumi] proof assumed H¹ ∩ {radial} data. The rest of the argument is at the critical level.
- Under (CH) bound, Bourgain's L² critical concentration result extends to the NLS₃⁻(ℝ³) case to prove L³ and H^{1/2} concentration. [with Roudenko] This relaxes the H¹ ∩ {radial} assumptions to H^{1/2}.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

BLOWUP PROPERTIES FOR CRITICAL AND SUPER-CRITICAL NLS AT LOW REGULARITY

J. Colliander

Nonlinear Schrödinger Initial Value Problem

Critical Regimes & Low Regularity GWP?

 $H^{1/2}$ CRITICAL CASE

Energy Critical Case

Energy Su-

- Spacetime L_{tx}^5 upper bound is consistent with heuristics.
- Concentration Property following [Merle-Tsutsumi] proof assumed H¹ ∩ {radial} data. The rest of the argument is at the critical level.
- Under (CH) bound, Bourgain's L² critical concentration result extends to the NLS₃⁻(ℝ³) case to prove L³ and H^{1/2} concentration. [with Roudenko] This relaxes the H¹ ∩ {radial} assumptions to H^{1/2}.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Extends to the general mass supercritical case?