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Abstract
A dynamical reinterpretation of the L2 mass

conservation law for solutions of the KdV equation

has led to a general procedure for proving almost
conservation laws for solutions of nonlinear Hamiltonian

PDE. The almost conserved quantities have been used to

globalize the available local-in-time wellposedness results

for various KdV and NLS type equations and will

provide insights into the long-time behavior of solutions.

This talk will survey the known local theory, highlighting

aspects requiring further investigation. The procedure for

constructing almost conserved quantities will be described.



Two families of nonlinear Hamiltonian PDE

• GNLS
Let u : Rd × [0, T ] 7−→ C. Form the functional

H[u, u] =
Z

Rd

1
2
|∇u|2 + F (|u|2)dx.

For example, F (y) = 1
2y

2. Evolve u according to

iut = Hu ⇐⇒ iut + ∆u− f(|u|2)u.

Important case: F (y) = 1
2y

2, f(y) = y.

• GKDV
Let u : R × [0, T ] 7−→ R. Form

H[u] =
Z

Rd

1
2
u

2
x +

up+2

(p + 1)(p + 2)
dx.

Evolve u according to

ut = ∂xHu ⇐⇒ ut + uxxx + u
p
ux = 0.

The case p = 1 is the standard Korteweg-de Vries equation.

Cases p = 1, 2 are completely integrable.
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Research Motivations

Physical Relevance

1. Specific Contexts: NLS and/or KdV arise naturally as model

equations in optics, plasma physics, water waves, ....

2. Universal Derivation: Weakly nonlinear and dispersive

corrections to standard wave equation lead systematically to

NLS and/or KdV.

3. Toy models: GNLS and GKdV are basic examples of infinite
dimensional conservative dynamical systems.

Research Goal: Understand Hamiltonian dynamics in infinite
dimensions.

• Approximate dynamics with finite-d models when possible.

• Find “infinite-d phenomena” (turbulence, blow-up, scatter).

• Natural phase spaces consist of rough functions ; regularity
obstructions.

New techniques from multilinear harmonic analysis are
removing this difficulty: [KPV], [B], [KM]
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The intitial value problem for KdV on R is

∂tu + ∂
3
xu +

1
2
∂xu

2 = 0

u(x, 0) = ϕ(x), x ∈ R.
( ∃ other natural boundary value problems for KdV such as

x ∈ T, half-line. [CK] extends some of the theory described

below to the inital boundary value setting.)

Solitary Wave Resolution
Integrable machinery has shown, for very nice initial data ϕ, u

exists globally (in time) and

u(x, t) =
N
X

j=1

fcj,θj(x, t) + uR(x, t)

where

fc,θ(x, t) = 3c sech
2
„

1
2
p

√
c[x− ct + θ]

«

,

and uR is small. SWR is not known in the natural phase spaces

L2, H1 or in any nonintegrable case.
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Solutions of KdVp satisfy

∥u(t)∥L2 = ∥ϕ∥L2.

Problem: Explain how the dynamics of KdVp exchanges the

L2 mass among the frequencies. How do the components of the

system share the energy? Describe motion of “microlocal mass”.

Open Question: Let u(x, t) be a global solution of KdV3 with

nice initial data ϕ. Prove that

∥u(t)∥Hs ≤ C∥ϕ∥Hs.

(Best known estimates [S] are polynomial-in-time. The integrable

cases KdV1,2 are known to have this property.)
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Wellposedness

Definition: The initial value problem

∂tu + ∂
3
xu +

1
2
∂xu

2 = 0

u(x, 0) = ϕ(x), x ∈ R
is wellposed on the time interval [0, T ] for data in H if there

is a uniquely defined continuous map H ∋ ϕ 7−→ u ∈ X with

X ⊂ C([0, T ], H) and u “solves” KdV . If T < ∞, the

problem is locally wellposed (LWP). If we can take T = ∞, the

problem is globally wellposed (GWP).

• Rough spaces H require a careful notion of “solves”.

• Two notions of continuity in the defintion.

• Typical proofs of LWP have

T ∼ ∥ϕ∥−α
H , α > 0.

• GWP in H follows from LWP in H if ∥u(t)∥H is bounded.

The available conserved quantities may provide time

independent bounds on the L2 or H1 norms which consist of

rough functions.
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Basic (Nonintegrable) Approaches to Local Wellposedness

• Classical Energy Method/Compactness
Form an approximate sequence. Prove bounds implying

compactness. Use Gronwall inequality to prove uniqueness.

(Gronwall requires lots of smoothness.) Euler-Peano
construction of ODE solutions.

• Fixed Point Argument/Contraction Mapping
Rewrite PDE as an integral equation. Prove a contraction

estimate in an appropriate space X of functions of space-

time. Picard’s approach to ODEs.
In what space X should we seek a fixed point?

– Maximal Function/Kato Smoothing.
Prove estimates for solutions of associated linear

homogeneous and inhomogeneous problems. Control

nonlinearity using well-matched (e.g. Hölder) linear

estimates. Matching conditions identify mixedLqtL
p
x space-

time norms. Shrink existence interval to shrink contraction

constant.

– Bourgain Spaces Xs,b.
Detailed study of nonlinearity in spaces related to linear

problem. Denominators and calculus smooth nonlinear

term. Shrink existence interval to shrink contraction

constant.
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LWP and GWP results for KdV

Theorem. [Bourgain 1993] KdV is LWP in L2.

Consequently, KdV is GWP in L2.

Theorem. [Kenig, Ponce, Vega 1996, 2000] KdV is LWP

in Hs(R), s > −3
4. (Complex) KdV is illposed in Hs(R) for

s < −3
4.

Theorem. [CKSTT 2000] KdV is GWP in Hs, s > −3
4.

• Motivated by high/low frequency GWP technique of
Bourgain. Technical issues in KdV context [CST] and

Maxwell − Klein − Gordon context [KT] started our

collaboration.

• Proof constructs almost conservation laws.
New control of high-to-low frequency transport of “L2 mass”.

• General Method for globalizing local results.
Method improves the GWP theory of various nonlinear

Hamiltonian PDE, including 2d cubic NLS, 1d Derivative

NLS, periodic and nonperiodic GKDV .

• Almost conservation laws ; long-time behavior?
Regularity of the evolution, weak turbulence, scattering, finite

dimensional approximate models, solitary wave resolution....
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Motivation for Xs,b Spaces

The linear homogeneous (f = 0) problem

∂tu + ∂
3
xu = f

u(x, 0) = ϕ(x), x ∈ R
has the explicit solution

u(x, t) = S(t)ϕ(x) =
Z

e
i(xξ+tξ3)

bϕ(ξ)dξ

=
Z Z

e
i(xξ+tλ)

bϕ(ξ)δ(λ− ξ
3)dλdξ.

The linear inhomogeneous problem (f ̸= 0) may be solved via

Duhamel’s principle as

u(x, t) = S(t)ϕ +
Z t

0
S(t− τ )f(x, τ )dτ

∼ F−1
“

bϕ(k)δ(λ− k
3)
”

+ F−1

 

bf(k, λ)
(1 + |λ− ξ3|)

!

.

Punchline: The space-time Fourier transform of the

homogeneous solution lives on the cubic. The space-time Fourier

transform of the inhomogeneous solution decays away from the

cubic.
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Xs,b Space Approach to LWP

Define the space Xs,b via the norm

∥u∥Xs,b =
„

Z Z

(1 + |ξ|)2s(1 + |λ− ξ
3|)

2b
|bu(ξ, λ)|2dξdλ

«

1
2
.

The i.v.p. for KdV is equivalent to solving the integral equation

u(t) = S(t)ϕ +
Z t

0
S(t− τ )

„

1
2
∂xu

2(τ )
«

dτ.

Show u exists by proving a contraction estimate in Xs,b with

b = 1
2+. Matters reduce to proving a bilinear estimate

∥∂x(uv)∥Xs,b−1
≤ C∥u∥Xs,b∥v∥Xs,b.

Bourgain proved this estimate for s ≥ 0, with b = 1
2+. Kenig,

Ponce and Vega proved this estimate holds with b = 1
2+ provided

s > −3
4 and fails for any b when s < −3

4.

Remark: The bilinear estimate smoothes away one derivative in

the nonlinearity. We will see “extra” smoothing in a moment.

9



Ideas in Proving the Bilinear Estimate

We can rewrite the bilinear estimate as

Z

∗

(1 + |k|)s|k|d(k, λ)

(1 + |λ− k3|)1−b
(1 + |k1|)−s

c(k1, λ1)

(1 + |λ1 − k3
1|)

b

×
(1 + |k2|)−s

c(k2, λ2)

(1 + |λ2 − k3
2|)

b
≤ C∥d∥L2∥c1∥L2∥c2∥L2.

where ∗ indicates k = k1 + k2, λ = λ1 + λ2.

An arithmetical fact: The convolution constraints imply

max(|λ− k
3|, |λ1 − k

3
1|, |λ2 − k

3
2|) ≥ 3kk1k2,

since k3 − k3
1 − k3

2 = 3kk1k2.

Assume ci(ki, λi) = bϕi(ki)δ(λi − k3
i ). We need to show

Z

d(k1 + k2, k
3
1 + k

3
2)

(1 + |k1 + k2|)s|k1 + k2|
(1 + |3k1k2(k1 + k2)|)1−b

×(1 + |k1|)−s
cϕ1(k1)(1 + |k2|)−s

cϕ1(k2)dk1dk2

is bounded by

C∥d∥L2

‚

‚

‚

cϕ1

‚

‚

‚

L2

‚

‚

‚

cϕ2

‚

‚

‚

L2
.
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• Symmetry.

We can assume |k1| ≥ |k2| so |k1| & |k1 + k2|.
• A Change Variables.

Define u = k1 + k2, v = k3
1 + k3

2. Calculate the Jacobian

dudv = 3(k2
1 − k2

2)dk1dk2.

• Cauchy-Schwarz.

Issues collapse to bounding (by
‚

‚

‚

bϕ1

‚

‚

‚

L2

‚

‚

‚

bϕ2

‚

‚

‚

L2
),

„

Z

M(k1, k2) × |cϕ1(k1)|
2
|cϕ2(k2)|

2
dk1dk2

«

1
2

where

M =
|k1 + k2|2(1 + |k2|)−2s

(1 + |3(k1 + k2)k1k2|)2(1−b)(k1 + k2)(k1 − k2)
.

Remark: Suppose k1 ∼ N and k2 = k1 +O(N−1
2). Then

M = N
2−2s−6(1−b)−1+1

2.

To have M bounded requires

s >
3
4

− 3(1 − b) ∼ −
3
4
.
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Optimality of Kenig-Ponce-Vega Estimate

Let u and v be the same function with bu(k, λ) ∼ χR(k, λ)

where R is a thin rectangle lying inside

n

(k, λ) : |k−N | < O(N−1
2), |λ− k

3| < O(1)
o

.

A calculation shows optimality of −3
4 for the bilinear estimate.
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Bad Denominator Lower Bounds?

Example: In the 2d NLS setting λ− ξ3 is replaced by λ+ |ξ|2
in the definition of Xs,b. The bilinear estimate

∥uv∥Xs,b−1
≤ C∥u∥Xs,b∥v∥Xs,b

depends upon the arithmetical fact,

max(|λ+|ξ|2|, |λ1+|ξ1|2|, |λ2−|ξ|2|) & |2(ξ1+ξ2)·ξ2|

since |ξ1 + ξ2|2 − |ξ1|2 + |ξ2|2 = 2ξ1 · ξ2 + 2ξ2 · ξ2.

The orthogonal interaction (ξ1 + ξ2) ⊥ ξ2 turns off the

denominators. New techniques for dealing with this situation were

developed in [CDKS]. (The above estimate holds for s > −3
4

and this is sharp up to the endpoint.) Independent related work

appears in [T]. Similar troubles appear in the KPI and ZS

setting.

A robust theory for multilinear estimates inXs,b requires improved

techniques for dealing with bad denominator lower bounds.
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L2 Conservation Law Interlude

Standard Proof:

∂tu = −∂3
xu−

1
2
∂xu

2

Multiply by u and reexpress to get,

1
2
∂tu

2 = −∂x(u∂2
xu) + ∂x

„

1
2
[∂xu]2

«

−
1
3
∂xu

3
.

Integrate in x to observe

∂t

Z

u
2
dx = 0.

Note that u is assumed to be R-valued.

Remark: This proof apparently does not reveal how the conserved

L2 mass evolves in frequency space. A dynamical explanation of

L2 mass conservation is a goal of the next few slides.
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Fourier Proof: (with notation forecasting later stuff)

Z

bu(ξ)bu(ξ)dξ =
Z

bu(ξ)bu(−ξ)dξ =
Z

ξ1+ξ2=0

bu(ξ1)bu(ξ2),

since u is R-valued. Therefore,

∂t

Z

bu(ξ)bu(ξ)dξ = 2
Z

ξ1+ξ2=0

cut(ξ1)bu(ξ2)

= 2
Z

ξ1+ξ2=0

»

−(iξ1)
3
bu(ξ1) −

1
2
(iξ1)cu2(ξ1)

–

bu(ξ2).

Now, symmetrize first term and expand convolution to get

= −
Z

ξ1+ξ2=0

i(ξ3
1 + ξ

3
2)bu(ξ1)bu(ξ2)

−
Z

ξ1+ξ2+ξ3=0

i(ξ1 + ξ2)bu(ξ1)bu(ξ2)bu(ξ3)

The first term is zero. Upon writing ξ1 + ξ2 = −ξ3 and

symmetrizing, the second term vanishes.

Symmetrization/cancellation argument is apparently more
flexible than standard proof. Variants begin to capture the
dynamics of L2 mass in frequency space.
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Multilinear Operators

Definitions: A k-multiplier is a function m : Rk 7−→ C. A

k-multiplier is symmetric if m(ξ) = m(σ(ξ) for all σ ∈ Sk.

The symmetrization of a k-multiplier is

[m]sym(ξ) =
1
n!

X

σ∈Sk

m(σ(ξ)).

A k-linear functional is generated by a k-multiplier via

Λk(m) =
Z

ξ1+...+ξk=0

m(ξ1, . . . ξk)bu(ξ1) . . . bu(ξk).

Proposition 1. Suppose u satisfies the KdV equation, and m

is a symmetric k-multiplier. Then

d

dt
Λk(m) = Λk(mαk)−i

k

2
Λk+1 (m(ξ1, . . . , ξk−1, [ξk + ξk+1])(ξk + ξk+1)) .

where

αk = i(ξ3
1 + . . . + ξ

3
k).

This follows immediately from the equation and properties of the

Fourier transform. The (k + 1)-multiplier may be symmetrized.
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Modified Energies

Let m be an R-valued even 1-multiplier. Define the operator I

via
cIf(ξ) = m(ξ) bf(ξ).

Define the modified energy

E
2
I(t) = ∥Iu(t)∥2

L2(Rx) = Λ2(m(ξ1)m(ξ2)).

(Last step uses u,m R-valued.) Calculate, using the proposition,

d

dt
E

2
I(t) = Λ2(m(ξ1)m(ξ2)α2)−iΛ3(m(ξ1)m(ξ2+ξ3)[ξ2+ξ3])

= Λ3(−i[m(ξ1)m(ξ2 + ξ3)(ξ2 + ξ3)]sym).

(Note that if m = 1, we directly verify L2 conservation.)

Denote the 3-multiplier above by M3(ξ1, ξ2, ξ3).

Define

E
3
I(t) = E

2
I(t) + Λ3(σ3), σ3 to be chosen.
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Calculate, using the proposition,

d

dt
E

3
I(t) = Λ3(M3) + Λ(σ3α3) + Λ4(M4),

where M4 is given explicitly. Choose

σ3 = −
M3

α3

to cancel the Λ3 terms.

This process may be iterated to formally generate a sequence

of modified energies {Ej
I(t)}

∞
j=2, with the property

d

dt
E
j
I(t) = Λj+1(Mj+1).

Remarks:

• The 1-multiplier m has only been assumed to be R-
valued and even. There remains a lot of flexibility in
choosing m to localize the energy in frequency space.

• For a particular choice of m, we have shown the first few

modified energies are almost conserved, leading to the proof

of global wellposedness for −3
4 < s.
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Almost Conserved Quantities

We choose m to depend upon a large parameter N . Let m

be a smooth monotone even function satisfying for s < 0:

m(ξ) = 1, |ξ| <
1
3
N,

m(ξ) =
„|ξ|
N

«s

, |ξ| > 2N.

The associated operator I commutes with differential

operators and barely maps Hs functions into L2 functions.
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We can show, in an appropriate sense, that

E
2
I(t) . E

4
I(t),

using Sobolev inequalities. Using the Xs,b machinery, we have

proven the main estimate

E
4
I(δ) − E

4
I(0) =

Z t

0
Λ5(M5)(τ )dτ

≤ CN
−3−3

4+ϵ∥Iϕ∥5
L2,

where δ is the lifetime of the local result. Recalling that E2
I(t) =

∥Iu(t)∥2
L2, we see that E2

I is almost conserved.
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Is KdV Globally Wellposed below L2?

Theorem 1. [C, Staffilani, Takaoka] The initial value problem

forKdV on R is GWP inHs∩Ḣa for certain (related) s, a < 0.

The homogeneous Sobolev norm Ḣa is defined using the

norm

∥ϕ∥Ḣa(R) =
„

Z

||ξ|a bϕ(ξ)|
2
dξ

«

1
2
.

Note that L2 * Ḣa so this hypothesis is a bit of a blemish.

The proof adapts the high/low frequency technique of

Bourgain (applied to NLS, NLW). We were inspired in part by a

similar result of Fonseca, Linares and Ponce for KdV2. ( See

also [Keel-Tao], [Takaoka-Tzvetkov], ...)

The idea is to exploit L2 conservation even though the data

ϕ /∈ L2.

Trick: Evolve the low frequencies according to KdV with

L2 conservation. Evolve the high frequencies “linearly” and hide

the high frequency interaction using “extra” smoothing captured

in the nonlinear estimate.
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Bourgain’s High/Low Frequency Technique

Fix T > 0. Construct the solution of KdV on [0, T ].

Decompose the initial data ϕ ∈ Hs(R), − 3
4 < s . 0.

ϕ = ϕ0 + ψ0, ϕ0 = PNϕ,

P̂Nϕ = χ[−N,N ]
bϕ.

Later, we select N = N(T ) to be huge.

Note that ϕ0 ∈ L2 and

∥ϕ0∥L2 ∼ N−s
, ∥ψ0∥Hσ ∼ Nσ−s; (σ < s).

Low Frequency Evolution
The evolution ϕ0 7−→ u0(t) solving KdV exists globally in time

with ∥u0(t)∥L2 = ∥ϕ∥L2.

High Frequency Evolution
Let ψ0 7−→ v0(t) evolve so that u(t) = u0(t) + v0(t) :

∂tv0 + ∂xv0 +
1
2
∂x(v

2
0 + 2u0v0) = 0,

v0(0) = ψ0.
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• High frequency evolution is LWP on [0, δ],

δ = ∥ϕ0∥−α
L2 .

Note: Lifetime depends on (big) L2 norm of low frequency

data.

• Decompose the high frequency evolution.

v0(t) = S(t)ψ0 + w0(t).

• Extra smoothing shows w0 ∈ L2, and is small,

sup
t∈[0,δ]

∥w0(t)∥L2 . N−β
, β > 0.

Define

ϕ1 = u0(δ) + w0(δ),
ψ1 = S(δ)ψ0,

and repeat.

We can continue with the same sized δ until, say

∥w0∥L2 + ∥w1∥L2 + . . . & ∥ϕ0∥L2.

Unravelling this gives the result.
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Extra Smoothing Bilinear Estimate

If bu and bv are supported outside |ξ| ≥ 1,

∥∂xuv∥X0,b−1
≤ ∥u∥X−3

8+,b
∥u∥X−3

8+,b
.

• LWP tools and this estimate give the L2 estimate on w0.

• KPV example shows this is optimal.

• Low frequencies destroy extra smoothing  Ḣa.
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Smoothing Operator I

Recent work [Keel-Tao] on simliar NLW problem suggests

defining for s < 0 and N ≫ 1 fixed,

cIu(ξ) = m(ξ)bu(ξ),

where m is smooth and looks like

m(ξ) = 1, |ξ| <
1
2
N,

m(ξ) = N
−s|ξ|s, |ξ| ≥ N.

I is the identity on low frequencies and barely smooths Hs

tails into L2 functions. I commutes with differential operators.
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Almost L2 Conservation Property

∥Iu(δ)∥2
L2 = ∥Iu(0)∥2

L2 +
Z δ

0

d

dτ
(Iu(τ ), Iu(τ ))dτ

= ∥Iu(0)∥2
L2 + 2

Z δ

0
(I(−uxxx −

1
2
∂xu

2), Iu)dτ

= ∥Iu(0)∥2
L2 +

Z δ

0
(I(−∂xu2), Iu)dτ

= ∥Iu(0)∥2
L2 +

Z δ

0

Z

∂x
n

(I(u))2 − I(u2)
o

Iu dxdτ.

By Cauchy-Schwarz,

≤ ∥Iu(0)∥2
L2 + ∥∂{ }∥X

0,−1
2−

∥Iu∥X
0,12+

.

Theorem 2. [C, Keel, Staffilani, Takaoka, Tao]

∥∂x {I(u)I(v) − I(uv)}∥X
0,−1

2−

≤ CN
−3

4+∥Iu∥X
0,12+

∥Iv∥X
0,12+

.

(Follows from extra bilinear smoothing estimate and cancellation.)
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Global wellposedness of KdV in Hs, s < 0

Our task is to construct the solution on [0, T ].

• Rescaling: u solvesKdV with data ϕ on [0, T ] iff uλ(x, t) =
1
λ2u

“

x
λ,

t
λ3

”

solves KdV with data ϕλ on [0, λ3T ]. Choose

λ = λ(N) so that

∥Iϕλ∥L2 ∼ 1. (requires λ ∼ N− 2s
3+2s)

• LWP variant: KdV is wellposed on [0, δ],

δ ∼ ∥Iϕ∥−α
L2 , α > 0,

and

∥Iu∥X
0,12+

≤ C∥Iϕ∥L2.

The LWP norm doubles after N
3
4− steps. We need to have

N
3
4−
> [λ(N)]3T.

Theorem 3. [C, Keel, Staffilani, Takaoka, Tao] KdV is GWP

in Hs, − 3
10 < s.
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