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1. Introduction

1.1. Course Overview. There are three main topics to be addressed in this course
on nonlinear (usually dispersive) wave equations:

(1) Some nonlinear wave equations will be derived from physical and
general principles. These derivations are intended to provide motivation
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for studying these equations and to reveal their “universal” applicability in
wave propagation problems.

(2) A special class of nonlinear wave equations, known as completely inte-
grable systems will be studied. These equations often possess special
travelling wave solutions called solitons and can be solved via the Inverse
Scattering Transform.

(3) Analytical techniques for solving certain nonintegrable nonlinear wave
equations will be described. Techniques for investigating qualitative prop-
erties of solutions will also be introduced.

In each of the three topics, dispersive and nonlinear phenomena will be empha-
sized, sometimes rigorously and sometimes heuristically. Also, the Hamiltonian
structure of these equations will play a basic role during the three main topics.

1.2. Literature. A (growing) list of references can be found at the end of this
(also growing) document. The derivations of nonlinear wave equations will be
taken from the lecture notes of Alan Newell [25] and the recent book of Catherine
and Pierre-Louis Sulem [29]. Integrable models will be discussed following the text-
book of George Lamb [20] with extensions from [25] and elsewhere. The analytical
techniques topic will be presented from various recent research papers and [29].
Hopefully, these notes will also be useful.

1.3. Wave Propagation. This section will mostly follow Logan [22] Chapter 6
(first section). We will briefly describe basic properties of wave propagation.

• What is a wave?
A wave is an identifiable signal or disturbance in a medium, propagated
in time, carrying energy with it. Examples include sound waves, electro-
magnetic waves, surface waves on water, earthquake waves, etc. A simple
model of a wave is

(1.1) u(x, t) = f(x− ct)
where f is some given function and c is a constant. The graph of the
function f is shifted to the right at speed c and this completely describes
the function u. Notice that the “shape” of this wave moves to the right
without any distortion. This is a special case. Some wave propagations
may distort the shape of the disturbance due to nonlinear or other effects.

Notice that (1.1) satisfies the PDE

(1.2) ut + cux = 0.

This PDE is a one dimensional transport equation. Similarly, f(x + ct)
solves ut + cux = 0.

There are many motivations, including the theory of Fourier series and
the output of oscillators, to consider waves of the form

(1.3) u(x, t) = Aei(kx−ωt).

The constant A is the amplitude. The parameter k is the wave-number and
ω is the frequency. As a function of x, u displays a characteristic spatial
oscillation at scale ∼ 1

k . So, very large wave-numbers correspond to very
small scale oscillation in space or small scale structure in the solution.

Suppose now that ω = ω(k). That is, the temporal oscillation is linked to
the spatial oscillation. For example, suppose we experimentally determined
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ω as a function of k for some system. One possibility is ω(k) = ck. In this
case, the time frequency of oscillation is the same as the space frequency
oscillation for all values of k. So, u(x, t) = eik(x−ct) and this wave is a
special case of (1.1). Moreover, for certain types of functions f , we can
write

(1.4) f ∼
∑

ake
ikx.

If each of the exponentials propagate in time according to eikx 7−→ eik(x−ct)

with no interactions among these pieces then f 7−→ u(x, t) where

(1.5) u(x, t) =
∑

ake
ik(x−ct) ∼ f(x− ct).

So, up to details regarding the representation of f using a sum of exponen-
tials, we see the special case involving the wave of the form (1.3) with the
assumption that ω(k) = ck reproduces the example (1.1).
• Dispersion

Another possibility is for ω(k) = −k3 and there are many other possibilities
to consider as well. Let’s now assume for the moment that ω(k) = −k3 in
(1.3). Notice that

(1.6) (∂t + ∂3
x)ei(kx+k

3t) = 0

Again, if we consider an initial profile f as given in (1.4) and assume that
each of the exponential waves propagates independently of the others ac-
cording to eikx 7−→ ei(kx+k

3t), we find f 7−→ u(x, t) where

(1.7) u(x, t) =
∑

ake
i(kx−k3t).

We no longer have u(x, t) ∼ f(x− ct) for any value of c. The shape of the
wave is distorted because different wave-numbers k propagate at different
speeds. Notice that we can write (1.3) in this case as eik(x+k

2t) which
says that eikx propagates to the left at speed k2. This is an example of
dispersion.

The general definition of a dispersive wave of the form (1.3) is that ω(k)
is real and satisfies ω′′(k) 6= 0. Dispersive waves occur in water waves and
many other physical systems. We have seen that the effect of dispersion
is that wave-numbers propagate at different speeds and this leads to a
broadening of pulses; wave packets tend to spread out.

Exercise 1. A. Find a PDE satisfied by functions of the form ei(kx−ω(k)t)

in case the dispersion relation is ω(k) = km, m ∈ N.
B. Find a PDE satisfied by funtctions of the form ei(kx+ny−ω(k,n)t) where
the dispersion relation is

(1.8) ω(k, n) = k3 ± n2

k
.

This is the dispersion relation for the Kadomtsev-Petviashvili equation [12].

• Nonlinearity
Consider the initial-value problem

(1.9)
{
ut + cux = 0, x ∈ R, t > 0

u(x, 0) = φ(x).
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We have seen that the solution is given by u(x, t) = φ(x − ct). Let’s
gain some intuition from this problem which will generalize to some more
complicated versions of (1.9). Consider the curve in the (x, t)-plane given
by x(t) = ct + x0. This curve is a straight line of slope c passing through
the point (x0, 0). Now, calculate

(1.10)
d

dt
u(x(t), t) = ut + uxx

′(t) = ut + cux = 0.

So, the function u does not change value along the curve x(t) and this is
true for the whole family of curves indexed by x0. Evidently, these curves
x(t) = ct+ x0 are quite special and are called characteristic curves.

Now, suppose we consider a more complicated version of (1.9):

(1.11)
{
ut + c(x, t)ux = 0, x ∈ R, t > 0

u(x, 0) = φ(x)

where c now depends upon x, t. We no longer have the explicit representa-
tion u(x, t) = φ(x−c(x, t)t) because the chain rule will bring out derivatives
of c which don’t cancel. However, we can cleverly use the characteristic
curves to solve the initial value problem.

Consider the family of curves defined by the differential equation

(1.12)
dx

dt
= c(x, t).

Notice this family is indexed by the integration constant. Along a member
of the family, we have

(1.13)
du

dt
= ut + ux

dx

dt
= ut + c(x, t)ux = 0.

This tells us that u does not change its value along the characteristic curves.
So, if we knew the value at any point along a characteristic curve, we’d
know the value of u all along the curve. But we know u along t = 0 and
can therefore determine a value along each of the curves in the family and
hence find the value of u at any point (x, t).

Finally, let’s see that this method based on special curves can also work
(in principle) for a nonlinear generalization of (1.9). Consider the initial
value problem

(1.14)
{
ut + c(u)ux = 0, x ∈ R, t > 0

u(x, 0) = φ(x)

where c can now depend (nonlinearly) on the solution u. Define the char-
acteristic curves as the solutions of the differential equation

(1.15)
dx

dt
= c(u).

These curves can be indexed by a constant of integration, once again. Cal-
culating du

dt again reveals that u does not change along the characteristic
curves so all we need is to move back along the characteristic curve to a
point on t = 0 to determine the value of u along the curve.

However, characteristic curves may intersect. What can we say in that
circumstance? Does the function u take on both values? We will see that
this problem prevents the method of characteristics from describing the
solution for all time. However, the method validates our intuition that
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signals should propagate under (1.14) at a speed determined by c(u) or
c(φ) in a certain sense. Thus, we can see that nonlinearity can have the
effect of steepening a front and causing a pulse to compress.
• Balance

It is remarkable that nonlinearity and dispersion can balance exactly allow-
ing for pulse shapes to propagate as in (1.1) while dispersion tries to split
it apart and nonlinearity keeps it together. This competition is a principal
object of study in this course.

2. First Order PDE

2.1. Method of Characteristics. We have already discussed this method for
studying transport equations in 1 dimension ut+c(u, x, t)ux = 0. The method may
be developed for general first-order PDE with some gain in intuition. We follow
the presentation of Section 3.2 from [9].

• General Derivation
Consider the general first-order PDE

(2.1) F (Du, u, x) = 0 in U ⊂ Rn

subject to the boundary condition

(2.2) u = g on Γ

where Γ ⊂ ∂U and g : Γ → R are given. Suppose F, g are nice smooth
functions.

Here is our method for attacking the problem (2.1), (2.2). Suppose u
solves (2.1), (2.2). We want to know the value of u at a given point x ∈ U .
We hope to find some special curve lying in U connecting x with a point
x0 ∈ Γ and along the curve we hope to calculate the values of u. Evidently,
this curve must be quite special. How do we find it?

Describe the curve we seek parametrically s 7−→ (x1(s), x2(s), . . . , xn(s))
for the parameter s lying in some interval of R. Assuming u is C2, we also
define

(2.3) z(s) = u(x(s)).

Set

(2.4) p(s) = Du(x(s))

so pi(s) = uxi
(x(s)), i = 1, . . . , n. We wish to choose x(s) in such a way

that we can compute z(·) and p(·). Let’s differential pi w.r.t. s:

ṗi(s) =
n∑
i=1

uxixj (x(s)) ˙xj(s).

The appearance of second deravitives does not look very good since we are
studying first order PDE. But we can also differentiate the PDE (2.1) w.r.t.
xi to get

(2.5)
n∑
j=1

∂F

∂pj
(Du, u, x)uxixj

+
∂F

∂z
(Du, u, x)uxi

+
∂F

∂xi
(Du, u, x) = 0
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The “dangerous” 2nd derivative terms can be made to disappear pro-
vided we choose

(2.6) ẋj(s) =
∂F

∂pj
(p(s), z(s),x(s)), j = 1, . . . , n.

(This is the main step of the method.) Notice this ODE involves x as well
as p and z. We evaluate (2.5) along x(s), assuming x(s) satisfies (2.6) to
obtain∑n

j=1
∂F
∂pj

(p(s), z(s),x(s))uxixj
(x(s)) + ∂F

∂z (p(s), z(s),x(s))pi(s) + ∂F
∂xi

(p(s), z(s),x(s)) = 0.

ṗi(s) = − ∂F
∂xi

(p(s), z(s),x(s))− ∂F
∂z (p(s), z(s),x(s))pi(s).

Finally, we differentiate (2.3) to get

ż(s) =
n∑
j=1

uxj (x(s))ẋj(s)

=
n∑
j=1

pj(s)
∂F

∂pj
(p(s), z(s),x(s))

by the choice of ẋ and the definition of p.
Summarizing, we have found a system of 2n+ 1 equations

(2.7)

ṗ(s) = −DxF (p(s), z(s),x(s))−DzF (p(s), z(s),x(s))p(s)
ż(s) = DpF (p(s), z(s),x(s)) · p(s)

ẋ(s) = DpF (p(s), z(s),x(s))

• F linear
Suppose for x ∈ U that

F (Du, u, x) = b(x) ·Du(x) + c(x)u(x) = 0.

Then F (p, z, x) = b(x) · p+ c(x)z and so

(2.8) DpF = b(x).

Therefore, we set

(2.9) ẋ(s) = b(x(s)).

In this case, we have no dependence upon p and z. The equation for z in
this case is

(2.10) ż(s) = b(x(s)) · p(s).

Since p(s) = Du(x(s)), the PDE lets us write

(2.11) ż(s) = −c(x(s))z(x(s)).

Summarizing, we have

(2.12)
{

ẋ(s) = b(x(s))
˙z(s) = −c(x(s))z(s).
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Example 2.1. Use the method of characteristics to solve

(2.13)
{
x1ux2 − x2ux1 = u in U

u = g on Γ

where U = {x1 > 0, x2 > 0}, Γ = {x1 > 0, x2 = 0} ⊂ ∂U .
This is in the linear form with b = (−x2, x1) and c = −1. Thus, the

equations just derived for the linear case read

(2.14)
{
ẋ1 = −x2, ẋ2 = x1

ż = z.

Therefore, we have

(2.15)
{
x1(s) = x0 cos s, x2(s) = x0 sin s

z(s) = z0es = g(x0)es,

where x0 ≥ 0, 0 ≤ s ≤ π
2 . Fix any (x1, x2) ∈ U . Find s > 0, x0 > 0 such

that (x1, x2) = (x1(s), x2(s)) = (x0 cos s, x0 sin s). That is, x0 = (x2
1 + x2

2)
1
2

and s = arctan(x1
x2

). We find that

u(x1, x2) = u(x1(s), x2(s)) = z(s) = g(x0)es

= g((x2
1 + x2

2)
1
2 )earctan(

x1
x2

).

Exercise 2. A. Write down the characteristic equations for the PDE

ut + b ·Du = f

in Rn × (0,∞) where b ∈ Rn, f = f(x, t).
B. Use the characteristic ODE to solve this PDE subject to the boundary
condition u = g on Rn × {t = 0}.

• F Quasilinear
The first order PDE (2.1) is quasilinear when it is of the form

(2.16) F (Du, u, x) = b(x, u(x)) ·Du(x) + c(x, u(x)) = 0.

So, here we have F (p, z, x) = b(x, z) · p + c(z, x) and DpF = b(x, z). The
characteristic ODEs (for x and z) are therefore

(2.17)

{
˙x(s) = b(x(s), z(s))

˙z(s) = b(x(s), z(s)) · p(s) = −c(x(s), z(s))

where we used the PDE (2.16).

Example 2.2. Consider the boundary value problem

(2.18)
{
ux1 + ux2 = u2 in U

u = g on Γ

where U is the half-space {x2 > 0} and Γ = {x2 = 0} = ∂U . Here b = (1, 1)
and c = −z2 and the ODEs are

(2.19)
{
ẋ1 = 1, ẋ2 = 1,

ż = z2.

Solving the ODEs gives

(2.20)

{
x1(s) = x0 + s, x2(s) = s

z(s) = z0

1−sz0 = g(x0)
1−sg(x0)
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where x0 ∈ R, s ≥ 0 provided the denominator is not zero.

• F Nonlinear
In the linear and quasilinear cases we have not needed to solve the char-

acteristic ODE for p. Here is a nonlinear example where the p equations
need to be solved to carry out the method.

Example 2.3. Consider the fully nonlinear problem

(2.21)
{
ux1ux2 = u in U
u = x2

2 on Γ

where U = {x1 > 0} and Γ = {x1 = 0} = ∂U . here F (p, z, x) = p1p2 − z
and the characteristic ODE become

(2.22)

ṗ
1 = p1, ṗ2 = p2,
ż = 2p1p2,

ẋ1 = p2, ẋ2 = p1.

We can integrate these equations to find

(2.23)

x
1(s) = p0

2(es − 1), x2(s) = x0 + p0
1(es − 1)

z(s) = z0 + p0
1p

0
2(e2s − 1)

p1(s) = p0
1e
s, p2(s) = p0

2e
s

We need to determine the paramters P 0
1 , p

0
2. Since u = x2

2 on Γ, p0
2 =

ux2(0, x0) = 2x0. The PDE ux1ux2 = u implies p0
1p

0
2 = z0 = (x0)2 and so

p0
1 = 1

2x
0. Now the formulas listed above explicitly give the values of x, z

and p.
Fix a point (x1, x2) ∈ U . We want to know the value of u at (x1, x2).

Find s, x0 such that (x1, x2) = (x1(s), x2(s)) = (2x0(es − 1), 1
2x

0(es + 1)).
So x0 = 4x2−x1

4 and es = x1+4x2
4x2−x1

and

u(x1, x2) = u(x1(s), x2(s)) = z(s) = (x0)
2
e2s

=
(x1 + 4x2)2

16
.

Exercise 3. A. Solve using characteristics the boundary value problem{
uux1 + ux2 = 1
u(x1, x1) = 1

2x1.

B. Solve using characteristics the initial value problem{
ut + uux = 1
u(x, 0) = g(x)

where

g(x) =

 1, −∞ < x < −1,
−x, −1 ≤ x ≤ 0,
0, 0 < x < +∞.
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2.2. Conservation Laws.

• Characteristics for conservation laws
We continue to follow [9]. Consider a quasilinear first order PDE of the
form

G(Du, ut, u, x, t) = ut + div F(u) = ut + F′(u) ·Du = 0

on U = Rn × (0,∞) subject to the initial condition

u = g on Γ = Rn × {t = 0}.

Here F : R 7−→ Rn, F = (F 1, . . . , Fn) and div denotes divergence with re-
spect to the spatial variables (x1, . . . , xn) and Du = Dxu = (ux1 , . . . , uxn

).
We have written things a little differently in this example by distinguish-

ing the variable t = xn+1 in the notation. Define q = (p, pn+1), y = (x, t) so
we now have notation similar to that used in the general derivation earlier.
We have

G(q, z, y) = pn+1 + F′ · p,
so

DqG = (F′(z), 1), DyG = 0, DzG = F′′(z) · p.
The characteristic ODEs for x become

(2.24)
{
ẋi(s) = (F i)′(z(s)), i = 1, . . . n,

ẋn+1(s) = 1

so xn+1(s) = s, in agreement with our writing t = xn+1 earlier. In partic-
ular, s and t may be identified here.

The ODE for z reads ż(s) = 0 so

(2.25) z(s) = z0 = g(x0)

and (2.24) implies

(2.26) x(s) = F′(g(x0))s+ x0.

Remark 2.1. We observe that along (2.26) the value of z(·) given by (2.25)
does not change. Similar reasoning could be applied to a different initial
point z0 ∈ Γ with g(x0) 6= g(z0) while the characteristic curves emanating
from x0 and z0 may intersect. An apparent contradiction exists which
is resolved by the fact that the i.v.p. does not in general have a smooth
solution existing for all times t > 0. Note that the method of characteristics
requires that we be able to differentiate u and lack of smoothness prevents
us from doing so.

• Why are they called conservation laws?
Equations of the form

(2.27) ut + div F(u) = 0 in Rn × (0,∞)

are called conservation laws. Here, u : Rn × (0,∞) 7−→ Rm is a vector
function and F : Rm 7−→Mm×n, the space of m× n matrices.

Given any smooth bounded domain U , note that the integral
∫
U

u(x, t)dx
represents the total amount of the quantities (indexed by the vector u)
within the region U at time t. The rate of change within U is governed
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by a flux function F : Rm 7−→ Mm×n, which controls the rate of loss or
increase of u through the boundary ∂U . So, for each time t, we expect

d

dt

∫
U

u(x, t)dx = −
∫
∂U

F(u)νdS,

where ν is the outward unit normal along U and dS is the natural surface
area element on ∂U . Differentiating and applying the divergence theorem
gives ∫

U

utdx = −
∫
∂U

F(u)νdS = −
∫
U

div (F(u))dx.

Since the region U was arbitrary, we derive (2.27) as a natural condition
expressing the conservation of stuff indexed by u.

Suppose we encounter a PDE in conservation form

(2.28) ρt + div Φ = 0.

Integrating over space, we observe
d

dt

∫
Rn

ρdx+
∫

Rn

div Φdx = 0.

Provided Φ vanishes as |x| → ∞, we learn that
d

dt

∫
Rn

ρdx = 0.

The quantity ρ is therefore called a conserved density and Φ is the flux
associated to ρ.

We now collapse the discussion to n = 1 but leave the target dimension
m free for a while. Our goal is to develop a notion of solution for conserva-
tion laws with the following properties:
1. The solutions we define should coincide with the solutions constructed
using the method of characteristics when that method succeeds.
2. The solutions we define should make sense after the method of charac-
teristics fails.
3. The solutions we define should be unique.

• Integral Solutions
Consider a class of smooth test functions v : R× [0,∞) 7−→ R with compact
support, v = (v1, . . . , vm). Temporarily assume u is a smooth solution of
our problem

(2.29)
{
ut + ∂xF(u) in Rn × (0,∞),

u = g on Rn × {t = 0}.
Take the inner-product of the PDE with v and integrate by parts to get

(2.30)
∫ ∞

0

∫ +∞

−∞
u · vt + F(u) · vxdxdt+

∫ +∞

−∞
g · vdx|t=0 = 0.

Notice that this identity makes sense if u is merely bounded (in particular,
u does not have to be smooth to interpret (2.30)).

Definition 2.1. We say that u ∈ L∞(Rn × (0,∞); Rm) is an integral
solution of the initial value problem (2.29) provided the identity (2.30)
holds for all test functions v.
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• Rankine-Hugoniot Jump Condition
Suppose u is a solution of (2.29) which is smooth on either side of a curve
C, along which u has a simple jump discontinuity. More precisely, assume
V ⊂ R × (0,∞) is some region cut by a smooth curve C into a left-hand
part Vl and a right-hand part Vr.

Assuming u is smooth in Vl, choose a test function v with compact
support in Vl and we deduce from (2.30) that

ut + ∂xF(u) = 0 in Vl.

A similar statement holds in Vr.
Now choose v with compact support in V but which does not necessarily

vanish along the curve C. We will see that the definition of integral solution
forces the curve to have a particular shape. The identity (2.30) implies

(2.31) 0 =
∫ ∫

Vl

u · vt + F(u) · vxdxdt+
∫ ∫

Vr

u · vt + F(u) · vxdxdt.

As v has compact support in V , we deduce that∫ ∫
Vl

u · vt + F(u) · vxdxdt, = −
∫ ∫

Vl

[ut + ∂xF(u)] · vdxdt

+
∫
C

(ulν2 + F(ul)ν1) · vdl

=
∫
C

(ulν2 + F(ul)ν1) · vdl

where ν = (ν1, ν2) is the unit normal to C pointing from Vl into Vr and ul
is the limiting value of u as we approach the curve C from the left within
V and ur is similarly defined from the right.

Repeating the previous calculation in Vr and using (2.31) reveals that∫
C

[(F(ul)− F(ur))ν1 + (ul − ur)ν2] · vdl = 0

holds for all test functions v as above. Therefore, we learn

(2.32) (F(ul)− F(ur))ν1 + (ul − ur)ν2 = 0 along C.

Suppose the curve C is parametrized as {(x, t) : x = s(t)} for some smooth
function s : [0,∞) 7−→ R. Then ν = (ν1, ν2) = (1 + ṡ2)

1
2 (1,−ṡ) so (2.32)

reads

(2.33) F(ul)− F(ur) = ṡ(ul − ur)

in V along the curve C. This vector inequality is called the Rankine-
Hugoniot Jump Condition.

Example 2.4. (Shock Waves) Consider the i.v.p.

(2.34)
{
ut + ∂xF (u) = 0 in R× (0,∞),

u = g on R× {t = 0}.
with initial data

g =

 1 if x ≤ 0,
1− x if 0 ≤ x ≤ 1,

0 if 1 ≤ x.
Note: This problem was considered in Exercise 3 B.
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The method of characteristics enables us to construct the solution for
t ∈ [0, 1]. We find

u(x, t) =


1 if x ≤ t, 0 ≤ t ≤ 1,

1−x
1−t if t ≤ x ≤ 1, 0 ≤ t ≤ 1,

0 if 1 ≤ x, 0 ≤ t ≤ 1,

and we know the method of characteristics breaks down after t ≥ 1 since the
characteristics cross. How should we define the solution of the i.v.p. after
t = 1?

Set s(t) = 1+t
2 and write

u(x, t) =
{

1 if x < s(t),
0 if s(t) < x,

if t ≥ 1. Along the curve parametrized by s(·), ul = 1, ur = 0 and F (ul) =
1
2 (ul)

2 = 1
2 , F (ur) = 0. Thus, the Rankine-Hugoniot Jump condition

is satisfied and we have extended the solution obtained by the method of
characteristics to an integral solution valid after the characteristics cross.

Example 2.5. (Rarefaction waves and nonphysical shocks) Consider again
(2.34) but with the initial data

g =
{

0 if x ≤ 0,
1 if 0 ≤ x.

There is no problem extending the characteristics but the method tells us
nothing about how to prescribe the solution in the wedge {0 < x < t}.
Suppose we define

u1(x, t) =
{

0 if x ≤ t
2 ,

1 if t
2 ≤ x.

Then it is easy to check that the R-H jump condition is satisfied, so that u1

is an integral solution of the i.v.p.. However, we can also define

u2(x, t) =

 0 if x ≤ 0,
x
t if 0 ≤ x < t,

1 if t ≤ x,
which is called a rarefaction wave. This is a continuous integral solution of
the i.v.p.

Remark 2.2. The preceding example reveals that integral solutions are not
in general unique. We would like to shrink the class of integral solutions by
imposing an extra condition upon our solution which permits us to prove
uniqueness.

• Entropy Condition
For the general scalar conservation law of the form ut+∂xF (u) = 0, we know
the solution takes the constant value z0 = g(x0) along the characteristics

y(s) = (F ′(g(x0))x+ x0, s), (s ≥ 0).

We also know that we typically will encounter the crossing of characteristics
and resultant discontinuities in the solution, if we move forward in time.
We hope we can avoid the crossing of characteristics if we move backward
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in time. So, u1 in the previous example has the crossing of characteristics
as we move backward in time while u2 does not.

Suppose that at some point on a curve C of discontinuities, the solution
u has distinct left and right limits, ul and ur, and that a characteristic
from the left and one from the right intersect at the point on C. The
“no backwards-in-time intersection of characteristics” rule discussed above
requires

F ′(ul) > σ > F ′(ur).
These inequalities are called the entropy condition. The entropy condition
can be reexpressed in various ways provided F has certain properties (see
[9]). In case F : R 7−→ R is smooth and uniformly convex then we can take
the condition:

(2.35) u(x+ z, t)− u(x, t) ≤ C

t
z

for all t > 0, z, x ∈ R, z > 0 as the entropy condition.

Definition 2.2. We say that u ∈ L∞(R× (0,∞); R) is an entropy solution
of the initial value problem (2.34) provided it is an integral solution which
satisfies the entropy condition (2.35).

Theorem 2.1. Assume F is convex and smooth. Then, there exists–up to
a set of measure zero–at most one entropy solution of (2.34).

See [9] for the proof.
• Riemann Problem

The initial value problem (2.34) with piecewise constant initial function

(2.36) g(x) =
{
ul,
ur.

is called Riemann’s problem for the scalar conservation law. Here ul, ur are
called the left and right initial states, ul 6= ur. Assume that F is uniformly
convex and C2. Define G = (F ′)−1.

Theorem 2.2. (i) If ul > ur, the unique entropy solution of the Riemann
problem (2.34), (2.2) is

(2.37) u(x, t) =
{
ul if x

t < σ,
ur if x

t > σ,

for x ∈ R, t > 0 where

(2.38) σ =
F (ul)− F (ur)

ul − ur
.

(ii) If ul < ur, the unique entropy solution of the Riemann problem (2.34),
(2.2) is

(2.39) u(x, t) =

 ul if x
t < F ′(ul),

G(xt ) if F ′(ul) < x
t < F ′(ur),

ur if x
t > F ′(ur).

Remark 2.3. In the first case of the theorem, the states ul and ur are
separated by a shock wave. In the second case, the states ul and ur are
separated by a rarefaction wave.
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Proof. Consider first the case where ul > ur. The function u defined in the
statement of the theorem certainly satisfies the Rankine-Hugonitot condi-
tion and is therefore an integral solution of the PDE. It remains to verify
the entropy condition. Note that

F ′(ur) < σ =
F (ul)− F (ur)

ul − ur
=

1
ul − ur

∫ ur

ul

F ′(r)dr < F ′(ul)

using convexity. But this is precisely the (first version of the) entropy
condition.

Now look at the case where ul < ur. We must verify that the function
u(x, t) defined in (ii) of the theorem solves the PDE in the region {F ′(ul) <
x
t < F ′(ur)}. To verify this, we ask the general question: When does a
function of the form

u(x, t) = v(
x

t
)

satisfy the PDE? We compute

ut + F (u)x = ut + F ′(u)ux

= −v′(x
t

)
x

t2
+ F ′(v)v′(

x

t
)
1
t

= v′(
x

t
)
1
t
[F ′(u)− x

t
].

Thus, assuming v′ never vanishes, we find F ′(v(xt )) = x
t . Hence,

u(x, t) = v(
x

t
) = G(

x

t
)

solves the PDE. One can check that v(xt ) = ul provided x
t = F ′(ul) and a

similar statement on the right to see that u as defined in (ii) is continuous.
The function u is a solution in each of its regions of definition and it is

easy to check that it is in fact an integral solution. It remains to verify the
entropy condition. But

u(x+ z, t)− u(x, t) = G(
x+ z

t
)−G(

x

t
) ≤ Lip(G)z

t

which is precisely the entropy condition (2.35). �

• Long time asymptotics in L∞ and L1

We present two theorems from [9] which give us some detailed information
about the solution of (2.34) as t→∞. From a physical point of view, the
long-time asymptotics of solutions of evolution problems is often the main
issue. What happens eventually?

Theorem 2.3. (Asymptotics in L∞) There exists a constant C such that

(2.40) |u(x, t)| ≤ C

t
1
2

for all x ∈ R, t > 0.

The estimate (2.40) shows that the L∞-norm of u goes to zero as t→∞
(at a particular rate). On the other hand, the integral of u over R is
conserved. Evidently, the solution has to “spread out” as it decays to zero
to conserve the L1 norm. In fact, assuming the initial data g has compact
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support, the solution u tends to a specific function as t → ∞ in the L1

norm.

Definition 2.3. For real parameters p, q, d, σ with p, q ≥ 0, d > 0, the
N-wave is the function

(2.41) N(x, t) =
{

1
d (xt − σ), if − (pdt)

1
2 < x− σt < (qdt)

1
2

0 otherwise.

The constant σ is the velocity of the N-wave.

Define σ = F ′(0). Set d = F ′′(0) > 0 and write

(2.42) p = −2 min
y∈R

∫ y

−∞
gdx, q = 2 max

y∈R

∫ ∞

y

gdx.

Note that p, q ≥ 0 and G′(σ) = 1
d .

Theorem 2.4. (Asymptotics in L1) Assume that p, q > 0. Then there
exists a constant C such that

(2.43)
∫ +∞

−∞
|u(x, t)−N(x, t)|dx ≤ C

t
1
2

for all t > 0.

The preceding two theorems are models for “long time behavior” char-
acterizations of other nonlinear evolution problems. Such results are not
known in many physically important models and serve as a primary moti-
vation for current research.

2.3. Burgers’ Equation. The Navier-Stokes equations of fluid mechanics are

(2.44) typetheseout.

These equations are extremely important in physics but are not yet well understood.
A natural toy model which reveals some expected properties of the Navier-Stokes
equations is the viscous Burgers’ equation ut + uux = νuxx. The nonlinear term
retains the formal structure as in the Navier-Stokes equations (but without the
vectorial properties) and the diffusive properties of the equations are also retained.
We will see shortly that the viscous Burgers’ equation arises naturally in a simple
model of traffic flow. Burgers’ equation does not model turbulence in any significant
manner but is a “fundamental evolution equation” which occurs in many unrelated
applications where viscous and nonlinear effects are equally balanced. The material
in this subsection is a combination of [9] and [16].

• Traffic Flow
The PDE ∂tρ + ∂xΦ = 0 is the basic law of of “mass” conservation for
a one-dimensional flow in the absence of physical sources. Here, as we’ve
discussed, ρ is a “density” and Φ is the associated “flux”.

Let ρ represent the traffic density on a one-lane road with no on or off
ramps–that is, the number of cars per unit distance on the road. Based on
our intuition about driving, what should the flux function Φ look like? In
particular, how should Φ depend upon the density ρ? Certainly, there is a
maximum density ρmax (e.g. bumper-to-bumper) when Φ = 0. If there are
no vehicles, then the associated flux must be zero. At some intermediate
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density 0 < ρ0 < ρmax, the flux will take on a maximum value. So, as a
function of ρ, it is not unreasonable to imagine Φ to be of the form

(2.45) Φ(ρ, x, t) = Rρ(ρmax − ρ).

This is a quadratic function with maximum at 1
2ρmax.

Notice that (2.45) could be refined to have R = R(x, t) and ρmax =
ρmax(x, t) to allow for changes along the roadway due to weather, struc-
tural conditions, etc. These could in principle be determined by observing
traffic. Another possible refinement would be to include dependence upon
ρx to reflect the fact that drivers slow down when moving into a region of
increasing traffic density and speed up when entering a region of decreasing
traffic densities. We could write, for example

(2.46) Φ(ρ, x, t) = Rρ(x, t)(ρmax − ρ(x, t))− kρx(x, t).

The conservation law in this case becomes

ρt + [Rρ(ρmax − ρ)]x = kρxx

which after some nondimensionalizing may be reexpressed

(2.47) ut + uux = εuxx

with ε ∼ 1
RρmaxL0

with L0 some length scale along the road.
• Cole-Hopf Transformation

Suppose u is a nice smooth solution of the viscous Burgers’ equation (2.47).
Consider a transformation of dependent variable u 7−→ v defined by

(2.48) u = −2ε
vx
v
.

We calculate

ut = −2ε
vxt
v

+ 2ε
vxvt
v2

ux = −2ε
vxx
v

+ 2ε
v2
x

v2

uxx = −2ε
vxxx
v

+ 6ε
vxvxx
v2

− 4εv3
xv

3.

Subsituting these expressions into (2.47) reveals

(2.49)
vx
v

(εvxx− vt)− (εvxx− vt)x = 0.

Thus, any solution v(x, t) of (2.49), when used in (2.48) defines a function
u which solves (2.47). In particular, if v solves the heat equation vt = εvxx,
then v generates a solution to (2.47)! One might think that there could be
other more complicated solutions in which the two terms in (2.49) cancel
each other. However, as pointed out by Cameron Black in class, these terms
scale differently with ε so there can not be such cancellation as ε → 0.
Observe that we have transformed the nonlinear viscous Burgers’ equation
into the linear heat equation which is a spectacular simplification. A higher
dimensional analog of this transformation is discussed in [9].

The preceding discussion may be used to solve the initial value problem

(2.50)
{
ut + uux − εuxx = 0 in R× (0,∞),
u(x, 0) = f(x) on R× {t = 0}.
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The change of variables (2.48) requires that the new variable v(x, t)
initially satisfy

f(x) = −2ε
vx(x, 0)
v(x, 0)

.

But this is just a linear first-order ODE for v(x, 0) which can be solved

(2.51) v(x, 0) = Ce−
1
2ε

∫ x
0 f(s)ds := Cg(x)

where C is a constant of integration. Thus, for a given f(x), we can compute
g(x) by calculating an integral.

So, we need to solve the initial value problem

(2.52)
{
vt − εvxx = 0 in R× (0,∞),
v(x, 0) = g(x) on R× {t = 0}.

By the theory of the heat equation, we know how to solve the i.v.p. for the
heat equation so we write

(2.53) v(x, t) =
C√
4πεt

∫ +∞

−∞
g(y)e−

(x−y)2

4εt dy.

We can then calculate

vx(x, t) =
−C√
4πεt

∫ +∞

−∞
g(y)

x− y
2εt

e−
(x−y)2

4εt dy.

Therefore, using (2.48), reveals that the solution of (2.50) is

u(x, t) =

∫ +∞
−∞ g(y)x−yt e−

(x−y)2

4εt dy∫ +∞
−∞ g(y)e−

(x−y)2
4εt dy

in which the undetermined constant C cancels away. Recalling the defini-
tion of g given in (2.51) we can express u in terms of it initial data f . Define
h(x) =

∫ x
0
f(s)ds to be the antiderivative of the initial data f . Then,

(2.54) u(x, t) =

∫ +∞
−∞ g(y)x−yt e−

1
2ε [

(x−y)2

2t +h(y)]dy∫ +∞
−∞ e−

1
2ε [

(x−y)2
2t +h(y)]dy

,

solves (2.50).
• Asymptotics

In the limit ε→ 0, the viscous Burgers’ equation ut +uux = εuxx collapses
to the scalar conservation law ut + uux = 0. Notice that the order of the
viscous PDE changes upon setting ε = 0 so we may in fact have very bad
behavior in the solutions {uε} as ε→ 0. An analysis of the solution formula
(2.54) shows this not to be the case. We actually have that the ε→ 0 limit
of (2.54) is the unique entropy solution of the scalar conservation law initial
value problem obtained by setting ε = 0 in (2.50).

The following lemma, an example of Laplace’s “steepest descent” or
“stationary phase” method, allows us to study the ε→ 0 limit of (2.54).

Lemma 2.1. Suppose k, l : R 7−→ R are continuous functions, that l grows
at most linearly and that k grows at least quadratically. Assume also there
exists a unique point y0 ∈ R such that

k(y0) = min
y∈R

k(y).
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Then

lim
ε→0

∫ +∞
−∞ l(y)e−

k(y)
ε dy∫ +∞

−∞ e−
k(y)

ε dy
= l(y0).

Proof. Multiply the ratio above in the numerator and denominator by e
k0
ε

with k0 = k(y0). Then, we expect that e
k0−k(y)

ε is vanishingly tiny if ε is
small and y 6= y0 so the only contribution to the integration should be from
right near y = y0. To validate our expectation, we note that the function

µε(x) =
e

k0−k(y)
ε∫ +∞

−∞ e
k0−k(y)

ε dy

satisfies {
µε ≥ 0,

∫ +∞
−∞ µε(y)dy = 1,

µε → 0 exponentially fast for y 6= y0 as ε→ 0.

Consequently,

lim
ε→0

∫ +∞
−∞ l(y)e−

k(y)
ε dy∫ +∞

−∞ e−
k(y)

ε dy
= lim
ε→0

∫ +∞

−∞
l(y)µε(y)dy = l(y0).

�

To apply the lemma to (2.54), we need to know that y 7−→ [ (x−y)
2

2t +h(y)]
attains its minimum at a unique point y(x, t) (for all but at most countably
many points x). Then the lemma gives

(2.55) lim
ε→0

uε(x, t) =
x− y(x, t)

t
.

Remark 2.4. Define K(x, y, t) = [ (x−y)
2

2t + h(y)]. We can write K(x, y, t) =
tL(x−yt ) + h(y) where L = F ∗ for F (z) = 1

2z
2 and F ∗ represents the

Legendre transformation of F . For Lipschitz h (corresponding to bounded
f), it can be shown that a unique y(x, t) exists (for at most a countable
set of excepions x). Further pursuit of related ideas led to the Lax-Oleinik
formula for solutions of the scalar conservation law and to the entropy
condition [9].

Exercise 4. (Method of Stationary Phase)
Let ψ ∈ C∞0 (R), so you can assume that ψ and all of its derivatives are

continuous and ψ = 0 for x outside some interval [a, b]. For λ > 1, consider
the oscilliatory integral

(2.56) Iλ =
∫

R
eiλx

2
ψ(x)dx.

Prove that

(2.57) |Iλ| ≤ Cλ−
1
2 as λ→∞.

This is Van der Corput’s Lemma and the proof is an example of the “method
of stationary phase”.
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3. Nonlinear Wave Equations

3.1. Universal Derivation of NLS as an Amplitude equation. The nonlinear
Schrödinger equation (NLS) is ubiquitous as a model for nonlinear waves in a variety
of physical settings. It is relevant in optics, plasma physics, fluid dynamics of water
waves to superfluids, and recently in Bose-Einstein condensation. This wide array of
physical systems motivates the question: Why is the nonlinear Schrödinger equation
so universal? This section begins to provide an answer by showing that NLS arises
in modelling the behavior of certain “natural” waves emerging from the study of a
(rather) general nonlinear wave equation. The following discussion is modelled on
a similar presentation in [29].

Consider a scalar nonlinear wave equation written symbolically

(3.1) L(∂t, ∂x)u+G(u) = 0,

where L is a linear operator with constant coefficients and G is a nonlinear function
of u and its derivatives. We imagine that such an equation has been derived from
physical principles and is perhaps an “exact” model of phenomena of interest. We
also imagine, and this is why we write it in such a general form, that this equation
is hopelessly complicated to solve exactly so we are forced to infer properties of
the phenomena of interest by studying various simplifications of (3.1).

We begin such a study by first considering solutions of very small amplitude.
Since G is nonlinear, we suppose that G(u) is small if u is small and so can be
ignored for the moment. This results in (3.1) collapsing to the simpler equation
L(∂t, ∂x)u = 0, which is a linear equation and can therefore be solved using the
Fourier transform. We suppose this simplified equation admits monochromatic
plane wave solutions of the form

(3.2) u = εei(k·x−ωt)

with constant amplitude ε. Here 0 < ε� 1 and the frequency ω and wave vector k
are real quantities linked by the dispersion relation

(3.3) L(−iω, ik) = 0.

(Our assumption that ω is real valued here is consistent with the assumption that
dissipation has been ignored in deriving (3.1).) There may be many solutions of
the algebraic equation (3.3) and we concentrate on one of them

(3.4) ω = ω(k).

We have made some progress into understanding (3.1) by finding some solutions
of the linear equation obtained by ignoring the nonlinear part, which seems natural
provided these solutions have small amplitude (and small u implies small G(u)).
However, over long time and long spatial scales, the accumulation of small nonlinear
effects may become significant and (3.2) may not describe the behavior of solutions
of the hard problem (3.1) on such scales.

Perhaps the most reasonable thing to try next is a regular perturbation expansion.
However, in a manner related to the treatment of the nonlinear oscillator ODE in
[22], we encounter secular terms so this approach will fail for long times.

Example 3.1. (failure of regular perturbation) Let u1 = εei(k·x−|k|
2t) be the small

amplitude plane wave solution of the (linearization of) cubic nonlinear Schrödinger
equation

iut + ∆u = |u|2u.
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Consider a regular perturbation expansion by writing

u = u1 + ε2u2 + ε3u3 + . . .

Substituting, we find

ε2(i∂tu+∆)u2+ε3(i∂tu+∆)u3+· · · = |(u1 + ε2u2 + ε3u3 + . . . )|2(u1+ε2u2+ε3u3+. . . )

and using the form of u1 we obtain

ε2(i∂t + ∆)u2 + ε3(i∂t + ∆)u3 = ε3ei(kx−|k|
2t) +O(ε4).

Evidently, we should require (i∂tu + ∆)u2 = 0 so we choose u2 = 0. The effect of
the (cubic) nonlinearity occurs at ε3 in the expansion and suggests that we choose
u3 to satisfy

(i∂t + ∆)u3 = ei(kx−|k|
2t).

By Duhamel’s formula,

u3(t) = i

∫ t

0

S(t− τ)ei(kx−|k|
2τ)dτ,

where
S(t)φ(x) =

∫
ei(kx−|k|

2t)φ̂(k)dk.

We calculate to find

u3(t) = i

∫ t

0

eikxe−i|k|
2(t−τ)e−i|k|

2τdτ.

Observe that the τ dependence cancels in the integrand leaving

u3(t) = i

∫ t

0

dτei(kx−|k|
2t)

which is a secular term growing linearly with t.

As regular perturbation fails due to the appearance of secular terms, we try
a different approach based on a multiple scale expansion. We imagine that the
complex amplitude of the “carrying wave” is no longer constant but depends on
the “slow” variables T = εt,X = εx, and its evolution is prescribed by solvability
conditions that eliminate the resonances which led to secular terms above. A similar
set of ideas occurs in applying the Poincaré-Lindstedt method to the nonlinear
oscillator in [22].

Let us reexpress the (branch of the) dispersion relation by writing

(3.5) (i∂t − ω(−i∂x))Aei(k·x−ωt) = 0

where ∂x is the gradient with respect to x and ω(−i∂x) is the (pseudo)-differential
operator obtained by replacing k by −i∂x in ω(k).

In a weakly nonlinear medium responding instantaneously to a finite wave am-
plitude, the nonlinearity is expected to affect the dispersion relation. This
means that the frequency ω will depend upon the intensity of the wave, so we re-
place ω(k) by Ω(k, ε2|A|2) with Ω(k, 0) = ω(k). [It is in this step that we retain
some aspects of the nonlinearity and throw much of the complicated structure of
the nonlinearity away.] Furthermore, the (complex) amplitude A is no longer con-
stant but is modulated in space and time, so we imagine it depends upon the slow
variables X = εx and T = εt, that is A = A(X, T ). In (3.5) we now replace ∂t by
∂t + ε∂T and ∂x by ∂x + ε∇ where ∇ = ∂X. [So, we will consider a “more flexible”
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version of the plane wave by considering a plane wave solution with an amplitude
which can vary on long spatial scales.] Therefore, a candidate generalization of
(3.5) (which might allow us to study next order nonlinear effects with no secular
terms) is

(3.6) [i∂t + iε∂T − Ω(−i∂x − iε∇, ε2|A|2)]Aei(k·x−ωt) = 0.

This can be rewritten as a nonlinear dispersion relation

(3.7) [ω + iε∂T − Ω(k− iε∇, ε2|A|2)]A = 0.

Now, ε is small and we Taylor expand Ω to second order about ε = 0

Ω(k− iε∇, ε2|A|2) = ω(k) + Ωk(k, 0) · (−iε∇)

+ Ωkikj (k, 0)([−iε∇i][−iε∇j ]) + ΩI(k, 0)ε2|A|2 +O(ε3)

where ΩI indicates differentiation of Ω with respect to the second slot (intensity)
and Ωk refers to differentiating with respect to the first slot(s) of Ω. We write v
for Ωk(k, 0).

Substituting this expansion for Ω into (3.7) gives

(3.8) (i∂T + v · ∇)A+ ε[Ωkikj (k, 0)]∇i∇jA+ ε[ΩI(k, 0)]|A|2A = O(ε2)

at this order of approximation.
Observe that ΩI(k, 0) is just a constant vector and Ωkikj (k, 0) is a constant

matrix. In particular, if Ωkikj (k, 0) is the identity matrix then the second derivative
operator in (3.8) is just the Laplacian. We will observe later that the sign of the
ΩI term relative to the sign of the second derivative terms has a drastic influence
on the behavior of solutions.

Remark 3.1. Whenever the physical system under consideration is
(1) strongly dispersive,
(2) weakly nonlinear,

and the solutions of interest are
(3) nearly monochromatic plane waves,

the amplitude of the wave will likely [23] be governed by the nonlinear Schrödinger
equation. By strongly dispersive, we mean that D2ω(k) 6= 0. Weakly nonlinear
means the size of the nonlinearity is small relative to the amplitude of the plane
wave. A nearly monochromatic plane wave has its Fourier transform supported
essentially near one particular wave-number k. We can imagine such a wave as an
amplitude modulated plane wave as in (3.2) with the modulation taking place on
a much longer spatial scale than the period of the spatial oscillation ∼ 1

|k| .

NLS from nonlinear Klein-Gordon Equation [23]
We carry out the above general derivation for a particular equation, namely the
nonlinear Klein-Gordon Equation,

(3.9)


∂ttu− ∂xxu+ u = uuu, {x ∈ R, t > 0}
u(x, 0) = A(εx)eikx, {x ∈ R, t = 0},

ut(x, 0) = −iω(k)A(εx)eikx, {x ∈ R, t = 0}

where

(3.10) ω2(k) = 1 + k2.
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Notice that we are considering initial data which is nearly monochromatic which is
of amplitude A, of order 1. So, the solutions we are looking for are not necessarily
small in amplitude. However, the size of the nonlinearity is much smaller than
the amplitude in light of the ε2 in the equation. Therefore, this system is weakly
nonlinear. A calculation shows that w′′(k) 6= 0 which shows this problem is strongly
dispersive.

Remark 3.2. The Klein-Gordon equation is physically relevant. It occurs naturally
in relativistic quantum mechanics [11], [27]. Explain de Broglie plus relativity
modifys Schrodinger dynamics to KG.

In 1967, McCall and Hahn discovered the phenomenon of “self-induced trans-
parency”, an effect whereby the leading edge of an optical pulse is used to invert an
atomic population while the trailing edge returns the population to its initial state
by standard emission. This process is realizable if it takes place in a time short
compared to the phase memory of the medium and the pulse is sufficiently strong.
In a certain simplification, this process can be modelled by

uxt = sinu.

Here x is distance in the medium, t is (retarded) time and the electric field envelope
E is proportional to ux. These comments are taken from [29].

Finally, the Sine-Gordon equation is the continuum limit of a string of plane
pendula hanging from a horizontal torsion wire. This is known as the Scott model
[25].

We seek a nearly monochromatic wave u = uε in the form

uε ∼ uε(x,X; t, T1, T2, . . . )

where X = εx, Tj = εjt and uε = u0 + εu1 + . . . . Substituting in the PDE and
balancing powers of εj yields

(∂2
t − ∂2

x + 1)u0 = 0
(∂2
t − ∂2

x + 1)u1 = −2∂T1u0,t + 2∂Xu0,x

(∂2
t − ∂2

x + 1)u2 = ±u0u0u0 − 2∂T1u1,tt + 2∂Xu1,x − [2∂T2u0,t + (∂2
T1
− ∂2

X)]u0

with initial data

uε(x,X; 0, 0, . . . ) = A(x)eikx

uεt(x,X; 0, 0, . . . ) = −iω(k)A(x)eikx.

Exercise 5. Justify the preceding paragraph by calculating the coefficients of powers
of ε in the expansion.

A particular solution of the u0 equation is

u0(x,X, t, T1, T2, . . . ) = A(X;T1, T2, . . . )ei[kx−ω(k)t].

At order ε1 we get

(∂2
t − ∂2

x + 1)u1 = 2i[ω∂T1A+ k∂XA]ei[kx−ω(k)t].

With respect to the fast scales x, t, the coefficient on the right may be considered
to be a constant. Integration of this equation in time will generate a secular term
unless we require

ω(k)∂T1A+ k∂XA = 0.
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The dispersion relation implies k = ωω′ so we can write

ω(k)[∂T1A+ ω′(k)∂XA] = 0

which shows the amplitude A should propagate at speed ω′(k)

A(X;T1, T2, . . . ) = A(X − ω′(k)T1, T2, . . . ).

We introduce the natural change of variable Y = X − ω′(k)T1 to put ourselves
in the frame of the moving amplitude. The preceding restriction on A makes the
right-side of the u1 equation vanish and we choose u1 = 0.

At next order ε2,

(∂2
t − ∂2

x + 1)u2 = {±AAA+ 2i∂T2A− (∂2
T1
− ∂2

X)A}ei[kx−ω(k)t].

We will again encounter a secular term unless we require A to satisfy

2i∂T2A− (AT1T1 −AXX)±AAA = 0.

Since A(X,T1, T2, . . . ) = A(X − ω′(k)T1, T2, . . . ) we have

AT1 = −ω′(k)AX = −ω′(k)AY
which after some calculation shows The dispersion relation may be differentiated
to show (ω′(k)2 − 1) = ω(k)ω′′(k) and we finally observe

(3.11) 2i∂T2 − ω(k)ω′′(k)AY Y ±AAA = 0.

Fourier Mode Perspective on Nonlinear Dispersive Waves [29]
The linear evolution

(3.12) [∂t + iω(−i∂x)]u = 0

has plane wave solutions of the form

ei(k0ẋ−ω(k0)t), fixed k0 ∈ Rn.
Moreover, the general solution can be expressed

u(x, t) =
∫
ei(k·x−ω(k)t)φ̂(k)dk.

Let 0 < δ � |k0| and imagine φ̂(k) = 0 if |k− k0| & δ. So, we have a wave-packet

(3.13) u(x, t) =
∫

|k−k0|<δ

ei(k·x−ω(k)t)φ̂(k)dk

consisting of a superposition of wave-numbers extremely close to the center wave-
number k0. Some algebraic manipulations shows the wave-packet may be rewritten

(3.14) u(x, t) = ei(k0·x−ω(k)t)

∫
|κ|<δ

ei(κ·x−[ω(k0+κ)−ω(k0)]t)c̃(κ)dκ

where k = k0 + κ and c̃ = φ̂(k0 + κ). Since |κ| < δ, to change eik·x on the order of
0(1) requires x to change on the order of 0( 1

δ ). On what scale should t change for
ei[ω(k0+κ0)−ω(k0)]t to change O(1) if |κ| < δ?. Expanding via Taylor’s theorem,

ω(k0 + κ) = ω(k0) +∇kω(k0) · κ+
1
2
ω
′′

ij(k0)κiκj +O(δ3),

so
[ω(k0 + κ)− ω(k0)] = vg · κ+

1
2
ω
′′

ijκ
iκj +O(δ3).
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Let’s assume vg = 0 since we can always change variables to remove a transport

term. Let’s also assume ω
′′

ij(k0) 6= 0 (as a matrix) so ei
1
2ω

′′
ij(k0)κ

iκkt changes O(1) if
t changes O( 1

δ2 ).
The preceding remarks show that the integral term in (3.13) may be thought of

as A(X,T2) where X = εx and T2 = ε2t. Therefore, the wave-packet is a nearly
monochromatic wave.

Summarizing, we have observed that the linear dynamics (3.12) has nearly
monochromatic solutions of the form

(3.15) u(x, t) = A(x, t)ei(k0·x−ω(k)t)

where

(3.16) A(x, t) =
∫

|κ|<δ

ei(κ·x−ω̃(κ)t)c̃(κ)dκ

with ω̃(κ) = ω(k0 + κ) − ω(k0) and A(x, t) changes O(1) when x changes O( 1
δ )

or when t changes O( 1
δ2 ). Observe also that the linear dynamics sends c̃(κ) 7−→

c̃(κ)e−iω̃(κ)t = c̃(κ, t) which satisfies

(3.17) ∂tc̃(κ, t) + iω̃(κ)c̃(κ, t) = 0.

Suppose now that we consider the nonlinear evolution

∂tu+ iω(−i∂x)u = i|u|2u

for u in the form (3.15). We wish to calculate |u|2u and gain some insights into the
dynamics of c̃(κ, t) in this nonlinear case. We calculate

(Aei[·])(Aei[·])(Aei[·]) = AAAei[·].

Using (3.16), a calculation shows

AAA(x, t) =
∫

|ki|<δ

ei(κ1−κ2+κ3)·xe−i[ω̃(κ1)−ω̃(κ2)+ω̃(κ3)]tc̃(κ1)c̃(κ2)c̃(κ3)dκ1dκ2.dκ3

This calculation identifies the result of interacting the wave (3.15) with its complex
conjugate and with itself again: a three wave interaction. Observe that |κ1 − κ2 +
κ3| < 3δ so the frequency content of A broadens through the nonlinear action but
still 3δ � |k0| so we are retaining the nearly monochromatic wave structure. The
contribution to the dynamics of c̃(κ, t) due to the nonlinear interaction is

(3.18) i

∫
κ1−κ2+κ3=κ, |κi|<δ

eiκ·xe−i[ω̃(κ1)−ω̃(κ2)+ω̃(κ3)]tc̃(κ1)c̃(κ2, t)c̃(κ3, t)dκ123

and (3.17) changes with the nonlinearity to
(3.19)

∂tc̃(κ, t)+iω̃(κ)c̃(κ, t) = i

∫
κ1−κ2+κ3=κ, |κi|<δ

e−i[ω̃(κ1)−ω̃(κ2)+ω̃(κ3)]tc̃(κ1)c̃(κ2, t)c̃(κ3, t)dκ123

Taylor expanding ω̃(κ) = ω(k0 + κ)− ω(k0) and using ∇kω(k0) = vg = 0 gives
(3.20)

∂tc̃(κ, t)+i
1
2
ω
′′

ij(k0)κiκj c̃(κ, t) = i

∫
κ1−κ2+κ3=κ, |κi|<δ

e−i
1
2ω

′′
ij(k0)[κ

i
1κ

j
1−κ

i
2κ

j
2+κ

i
3κ

j
3]c̃(κ1)c̃(κ2, t)c̃(κ3, t)dκ123.
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The equation (3.19) gives an explicit evolution of the Fourier mode c̃(κ, t) due
to the linear dispersion and teh nonlinear three-wave interaction. It (and therefore
the approximation (3.20) reveals some of the complicated structure of the cubic
nonlinearity. We will return to these complications later.

Remark 3.3. 3 wave resonances, compare with failure of regular perturbation.

3.2. Fiber Optics. [29] [?]

3.3. Hartree-Fock.

3.4. Gross-Pitaevskii; superstuff. [29], [7]
Describe the Ginzburg-Landau theory of superconductivity and superfluidity.

Note the appearance of topological obstructions to solving a minimization problem
for S1 valued maps on R2. Sketch the votex motion result of [7]. Make connection
with vorticity in fluid dynamics via Madelung transformation.

Exercise 6. Show that for x ∈ R2,∫
ε<|x|<1

|∇ x

|x|
|
2
dx→∞ as ε→ 0.

Find the rate of divergence as ε→ 0.

3.5. Bose-Einstein Condensates?

3.6. Zakharov System. [32], [29]

3.7. Universal Derivation of KdV. The following remarks, taken from [26],
reveal why the KdV equation is frequently encountered in wave propagation prob-
lems. Like the NLS equation, one can identify a class of problems where the next
order effects due to dispersion and weak nonlinearity lead to the KdV equation.

Wave processes in various homogeneous media are described by the wave equation
∂2
t ψ = c20∂

2
xψ. There are 3 assumptions made in deriving this equation.

(1) No dissipation. (Assume the equation is invariant under t 7−→ −t.)
(2) Weak nonlinearity. (Small amplitude solutions =⇒ small nonlinearity.)
(3) No dispersion. (Propagation velocity does not depend on frequency and

wavelength.)
We wish to identify an improved model to describe wave behavior by including

terms to account for nonlinear and dispersive effects. Of course, an even better
model will include dissipation. The dynamical effect of dissipation is to cause the
wave to decay. Dispersion tends to blur wave packets and nonlinearity can steepen
fronts.

Solutions of the wave equation ∂2
t ψ = c20∂

2
xψ may be written

ψ(x, t) = ψ1(x− c0t) + ψ2(x+ c0t), c0 > 0.

For small dispersive and nonlinear effects, we can treat waves travelling in different
directions independently. A wave moving in the positive x-direction, e.g. ψ1,
satisfies

(3.21) ∂tψ1 + c0∂xψ1 = 0.

We search for the corrections to this equation. Note that we are considering real-
valued solutions to an equation with real-valued coefficients.
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What is the correction due to dispersion? Let the exact law of dispersion for
linear waves in the medium be

ω(k) = ku(k).

As k → 0, the velocity of propagation should go to c0. So, when we expand u(k) in a
power series in k, the first term is c0. Recall that the dispersion relation represents
the (linearized) PDE which we know to have real coefficients. For ω to be real (no
dissipation), it is necessary that u be expandable in even powers of (ik).

For small k, therefore, we have to first interesting correction, the dispersion
relation

(3.22) ω(k) = c0k − βk3.

In order to obtain such a dispersion relation, we must modify (3.21) by adding a
term

(3.23) ∂t + c0∂x + β∂3
xψ = 0.

What is the correction due to nonlinearity? Most physically relevant wave equa-
tions describe some oscilliatory behavior about an equilibrium. We assume that
the wave equation describes some conserved quantity by assuming it to be of the
form

(3.24) ∂tψ + ∂xj = 0.

The derivation of the correction due to nonlinearity rests on obtaining an approxi-
mate expression for the flux j in terms of ψ. From (3.23), we have j = c0ψ+β∂2

xψ.
The next approximation of j, resulting from turning on the simplest possible non-
linear effect, involves adding on a term 1

2αψ
2. Addition of such a term to j and

rewriting (3.24) reveals

(3.25) ∂tψ + c0∂xψ + β∂3
xψ + αψ∂xψ = 0.

As we have seen several times already, the change of variable y = x−c0t will remove
the c0 term collapsing (3.25) to the KdV equation ut + βuxxx + αuux = 0.

3.8. Long waves on shallow water. [31]
The KdV equation arises natural as an approximation to the equations describing

long waves on shallow water.

3.9. Kadomtsev-Petviashvili Equations. [25]
The Kadomtsev-Petviashvili equations are a two dimensional generalization of

the KdV equation. They were introduced to study the stability of the KdV soliton
to transverse dispersion.

3.10. Generalized KdV and NLS Equations, KdVp and NLSp. [13], [4]
A basic issue is to understand the competition between nonlinear and dispersive

effects. We have observed that NLS and KdV arise as approximate problems to
account for weak nonlinearity and dispersion from rather general principles. More-
over, we have described particular physical settings where NLS is a natural model.
To better understand the interplay between nonlinearity and dispersion, we intro-
duce some generalizations of KdV and NLS. The generalized KdV equation is

(3.26) ∂tu+ ∂3
xu+ ∂xf(u) = 0.
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The special case when f(z) = 1
p+1z

p+1 will be denoted KdVp. Similarly, we intro-
duce the generalized nonlinear Schrödinger equation

(3.27) i∂tu+ ∆u+ f(|u|2)u = 0

and the special case when f(z) = z
p−1
2 will be denoted NLSp.

One can also consider generalizations of the dispersive terms by, for example,
replacing ∂3

x by ∂5
x but we do not formalize such generalizations with any notation

at this time. There are also natural generalizations of the KP equations and the
Zakharov system.

Exercise 7. A. Suppose x ∈ R and u is a solution of KdVp. Find α, β ∈ R such
that uσ = σαu(σx, σβt) also solves KdVp.
B. Suppose x ∈ Rn and u is a solution of NLSp. Find α, β ∈ R such that uσ =
u(σx, σβt) also solves NLSp.

This exercise identifies the scaling invariance of NLSp and KdVp.

4. Basic Dynamical Effects

4.1. Dispersion. The solution of the initial value problem for Airy’s equation

(4.1)
{
∂tu+ ∂3

xu = 0, R× {t > 0}
u(x, 0) = φ(x), Rn × {t = 0}

can be explicitly written using the dispersion relation as

(4.2) u(x, t) =
∫
ei(ξx+ξ

3t)φ̂(ξ)dξ = (S(t)φ)(x).

We can factor out a common ξ in the exponential to rewrite the exponential above
as eiξ(x+ξ

2t). This shows that the wave number ξ is “moved to the left” at speed
ξ2.

This point of view on the dynamics leads to a nice heuristic picture guiding one’s
intuition into many of the basic dynamical properties of dispersive waves. Suppose
that φ is a function compactly supported near the origin. We imagine that φ
is a sum of different oscillating functions, some of fast spatial oscillation, some
oscillating quite slowly. The fast oscillating parts of φ should “move to the left”
extremely fast while the slower oscillations move left more slowly. At a later time,
a fixed interval of x containing the origin should no longer contain any extremely
high frequencies in φ since they have all moved out of the interval. As a result, the
solution of Airy’s equation should be quite smooth in the fixed interval at the later
time since there are no high frequency parts required to express it there. We can
therefore expect that the solution becomes smoother locally in x and it should also
decay locally in x.

Note that we can multiply Airy’s equation by u and integrate by parts to prove
that ∂t

∫
R u

2(x, t)dx = 0. This shows there is no decay in the mass as u evolves but
the “move to the left at speed ξ2” picture suggests there should be local smoothing
and decay despite the conservation of L2 mass.

We can turn the dispersive smoothing heuristic around by imagining a function
with oscillations growing faster and faster as x → ∞. These oscillations could
perhaps be arranged to “move to the left” under the Airy dynamics in such a way
that they all overlap at a particular location in x at some time t > 0 causing
something bad to happen. Such a construction is carried out in [2].
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Decay estimate
The Airy equation has solution given by (4.2). Stationary phase suggests there

should be decay as t → ∞ like t−
1
3 . This turns out to be the case. For the

Schrödinger equation, the corresponding representation of the solution has |ξ|2 in
place of ξ3 and we are in Rn. A quick guess based on stationary phase suggests
decay like t−

1
2 as t→∞. However, since we are integrating over Rn, we encounter

such decay from each separate 1d integral leading to t−
n
2 .

The calculations which follow show the solution of the linear Schrödinger equa-
tion decay as t → ∞ at the rate t−

n
2 . Moreover, we obtain a new way to express

the solution as a convolution and make a nice contact with the heat equation.
Consider the i.v.p for the Schrödinger equation

(4.3)
{
i∂tu+ ∆u = 0, Rn × {t > 0},
u(x, 0) = φ(x), Rn × {t = 0}.

The solution may be expressed using the Fourier transform and the dispersion
relation as

(4.4) u(x, t) = S(t)φ(x) =
∫
eix·ξe−i|ξ|

2tφ̂(ξ)dξ.

The reader should verify that the correct choice of sign has been made by formally
differentiating under the integral sign. Next, we reexpress the solution of (4.3) as
a convolution integral. First, we write out the Fourier transform appearing in (4.4)∫

eix·ξe−i|ξ|
2t

∫
e−iy·ξφ(y)dydξ.

Interchanging the integrations leads to

(4.5)
∫ ∫

ei(x−y)·ξ−i|ξ|
2tdξφ(y)dy.

Next, we wish to evaluate explicitly the ξ integration. By completing the square
above the exponential, the inner integral may be rewritten∫

e−it|ξ−( x−y
2t )|2dξeit|

x−y
2t |2 .

The x−y
2t term may be translated away in the above integral. The change of variables

η = i
1
2 t

1
2 ξ, dη = i

n
2 t

n
2 dξ leads to

(4.6)
1

i
n
2 t

n
2

∫
e−|η|

2
dηeit|

x−y
2t |2 .

The integral of the Gaussian in Rn gives an (explicit) constant cn and the inner
integral in (4.5) has been calculated. Therefore, we can now reexpress

(4.7) u(x, t) = S(t)φ(x) =
cn
i

n
2 t

n
2

∫
ei
|x−y|2

4t φ(y)dy.

From (4.7), the following decay estimate follows immediately,

(4.8) ‖u(t)‖L∞x ≤
C

t
n
2
‖φ‖L1

x
.

Remark 4.1. The initial value problem for the heat equation{
∂tu−∆u = 0, Rn × {t > 0}
u(x, 0) = φ(x), Rn × {t = 0}
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has the explicit solution

(4.9) u(x, t) =
cn
t

n
2

∫
e−

|x−y|2
4t φ(y)dy.

Observe that the formula (4.9) transforms into (4.7) upon replacing t by it and,
similarly, the heat equation transforms into the Schrödinger equation under such a
transformation to imaginary time.

Exercise 8. Prove that the solution of the linear Schrödinger equation decays like
t−

n
2 by using the Fourier multiplier representation of the solution and the method

of stationary phase. Assume that the Fourier transform of the data is as nice as
you’d like.

Conformal Transformation
The preceding calculations showed that we have two ways of representing solu-

tions of the initial value problem for the linear Schrödinger equation

(4.10) u(x, t) =
∫
eix·ξe−i|ξ|

2tφ̂(ξ)dξ =
cn

(it)
n
2

∫
ei
|x−y|2

4t φ(y)dy.

If we replace t by 1
t in the Fourier multiplier representation, we encounter an

expression somewhat similar to the convolution representation. This observation
motivates the following calculations which reveal an important symmetry property
of the Schödinger equation. By completing the square above the exponential, we
can write

u(x, t) = eit|
x
2t |

2
∫
e−it|ξ−

x
2t |

2
φ̂(ξ)dξ.

Some manipulations allow us to write

= eit
|x|2
4t

(i 1
4t )

n
2

cn

cn

(i 1
4t )

n
2

∫
e
i
|ξ− x

2t
|2

4( 1
4t

) φ̂(ξ)dξ

= eit
|x|2
4t c̃n

1

(it)
n
2
S(

1
4t

)φ̂(
x

2t
).

We summarize. Let v(x, t) = S(t)φ̂(x). Form the function

(4.11) u(x, t) =
cn

(it)
n
2
v(
x

2t
,

1
4t

)ei
|x|2
4t .

Then u(x, t) = S(t)φ(x)! Not only does the transformation (4.11) manufacture
another solution of the linear Schrödinger equation from v, it manufactures one
whose initial data is essentially the Fourier transform of the original function. The
transformation v 7−→ u given in (4.11) is called the conformal transformation.

We linger a bit and consider the conformal transformation in one spatial dimen-
sion. Form the function

(4.12) v(x, t) = t−
1
2 e

x2
4itu(

x

t

A direct calculation shows that

i∂tv = i(−1
2
t−

3
2 )e−

|x|2
4it u+ it−

1
2 e−

|x|2
4it (

x2

4it2
)u

+it−
1
2 e−

|x|2
4it ux(

x

t2
) + it−

1
2 e−

|x|2
4it ut(

1
t2

).
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Similarly,

∂2
xv = t−

1
2 e−

|x|2
4it (

4x2

16it2
)u+ t−

1
2 e−

|x|2
4it (− 1

2it
)u

+t−
1
2 e−

|x|2
4it ux(−1

t
)(− 2x

4it
) + t−

1
2 e−

|x|2
4it (− 2x

4it
)ux(−1

t
) + t−

1
2 e−

|x|2
4it uxx(

1
t2

).

Combining these expressions reveals that

(4.13) i∂tv + ∂2
xv = t−

5
2 e−

|x|2
4it

{
i∂tu+ ∂2

xu
}
.

Now, suppose that i∂tu+ ∂2
xu− |u|pu = 0. Then, we see that

(4.14) i∂tv + ∂2
xv = t

p−4
2 |v|pv.

In particular, if p = 4, the conformal transformation maps solutions of 1d quintic
NLS into solutions of the same equation. For other values of p, the conformal
transformation maps solutions of NLSp into an NLS-type equation with a power
of t in front of the nonlinearity.

We have seen that for a particular value of p, depending on the spatial dimension,
this map sends solutions of the nonlinear problem NLSp into solutions of NLSp.
This special power of p is called the conformal power. On R2, the conformal NLSp
contains the standard cubic nonlinearity.

Exercise 9. L4(Rx × Rt) norm invariance of conformal transformation.

Local smoothing
Consider the solution of the initial value problem for Airy’s equation

u(x, t) =
∫
eixξeiξ

3tφ̂(ξ)dξ.

The heuristics of dispersion suggest that this solution should be smoother locally
in x than the initial data. The following calculation, first observed in the Doctoral
Thesis of Luis Vega, shows this smoothing effect in a sharp form.

We first take α derivatives in x by writing

∂αx u(x, t) =
∫
eixξ(iξ)αeiξ

3tφ̂(ξ)dξ.

Now, we localize in x by setting x = x0. Write φ̃(ξ) = eix0ξφ̂(ξ). We change
variables in the resulting expression∫

eiξ
3t(iξ)αφ̃(ξ)dξ

by writing ξ3 = η, ξ = η
1
3 , dξ = 1

3η
− 2

3 dη to obtain

1
3

∫
eiηt(iη

1
3 )
α
φ̃(η

1
3 )η−

2
3 dη.

The point of the change of variables was to rewrite the expression as an inverse
Fourier transform. By the Plancherel Theorem, the L2

t norm of this expression
equals

‖∂αx u(x0, ·)‖L2
t

= cπ

(∫
|(iη 1

3 )
α
φ̃(η

1
3 )η−

2
3 |

2
dη

) 1
2

.
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Write ξ = η
1
3 and change back to get

3cπ

(∫
|φ̃(ξ)|

2
ξ2α−2dξ

) 1
2

.

Upon choosing α = 1 and observing the lack of dependence upon x0 we obtain the
sharp form of Kato’s local smoothing effect

(4.15) ‖∂xu‖L∞x L2
t

= ‖φ‖L2
x
.

The norm ‖ · ‖L∞x L2
t

= ‖ ‖ · ‖L2
t
‖
L∞x

.

Exercise 10. A. Let u be the solution of the initial value problem{
∂tu+ ∂5

xu = 0,
u(0) = φ.

Find β such that
‖∂βxu‖L∞x L2

t
= ‖φ‖L2

x
.

B. If ∂5
x is replaced by ∂2j+1

x for j ∈ {1, 2, . . . }, can you find β(j) so that the
smoothing estimate holds?

Notice that the decay property for the Schrödinger equation (4.8) and the smooth-
ing property for Airy’s equation (4.15) are properties of linear evolutions. We are
ultimately interested in understanding the (physically relevant) nonlinear general-
izations: NLS and KdV. These linear estimates will play an important role in the
rigorous study of the nonlinear equations as will be described later.

4.2. Modulational Instability. [29], [25]
The first chapter of these notes showed, through the method of characteristics,

that nonlinearities can steepen wave profiles. This process occurs when the charac-
teristics compress as we go forward in time. The method of characteristics is quite
suggestive of nonlinear effects but not directly applicable to study the nonlinear
terms in the presence of dispersive terms (which are not first order). Ultimately,
we will carry out a detailed analysis of the nonlinearity using the representation
(3.19). Before doing so, we develop some heuristic understanding of the nonlinearity
in the nonlinear Schrödinger equation.

We consider here the cubic nonlinear Schrödinger equation i∂tu+∆u±|u|2u = 0.
Recall that we derived this as the equation which governs the (slowly) varying am-
plitude of a nearly monochromatic wave acted upon by weak nonlinearity and strong
dispersion. The (linear) monochromatic wave at the previous order of approxima-
tion had constant amplitude. Note that the NLS does have explicit solutions of
constant modulus with no spatial dependence

(4.16) u(x, t) = Ae−iω(A)t.

Substituting into the equation leads to the condition ω(A) = ∓|A|2, revealing that
the nonlinearity changes the linear dispersion relation through the wave’s intensity.

We examine the linear stability of this solution. In particular, we wonder if small
changes in the amplitude and phase of the constant amplitude spatially independent
solution (4.16) lead to the complete destruction or small change in the form of the
solution. Therefore, consider a function of the form

v(x, t) = Ae−i(ω(A)t+εθ(x,t))(1 + εψ(x, t)),
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where θ and ψ are R-valued. What conditions must θ, ψ satisfy for v to be a
solution of NLS? By Taylor expansion of the exponential,

v = Ae−iω(A)t(1 + iεθ + εψ) +O(ε2).

We calculate

i∂tv + ∆v ± |v|2v = {ω(A)(1 + iεθ + εψ) + ε(iψt − θt) + ε(i∆θ + ∆ψ)

± |A|2(1 + iεθ + 3εψ)}Ae−iω(A)t.

Therefore, we should require

0 = ω(A) + ∂tψ + ∆θ ± |A|2θ = ψt + ∆θ,

0 = ω(A)− θt + ∆ψ ± 3|A|2ψ = −θt + ∆ψ ± 2|A|2ψ.
We can combine these equations by requiring

(4.17) ψtt + ∆2ψ ± 2|A|2∆ψ = 0.

Finally, suppose that ψ = (constant)eik·xeσt. Then we must have

(4.18) σ2 = |k|2(±2|A|2 − |k|2).

In case ±2|A|2 − |k|2 < 0, the right-side of (4.18) is negative and σ is purely
imaginary. For these “modulations” of the spatially boring solution (4.16), the
perturbation does not change the solution much. In case ±2|A|2 − |k|2 > 0, which
requires we choose + and have |k| be small relative to |A|, then σ can be real which
leads to exponential growth of the perturbation thereby violently destroying the
form of (4.16).

The preceding discussion described the modulational instability of the nonlin-
ear Schrödinger equation. This instability mechanism was first observed in 1967
by Benjamin and Feir in the context of water waves so it is sometimes referred
to as the Benjamin-Feir instability. Our discussion shows the linear instability of
long-wave (meaning small spatial frequency) perturbations of the spatially constant
solution. Recall that in the physical problem for which NLS is an improved ap-
proximation to a linear problem with monochromatic solution, this corresponds to
“sideband” modulations of frequency close to the carrier frequency which can grow
exponentially in time.

In some cases, the modulational instability can run wild and leads to singularity
formation in the solution. In other cases, the instability develops until a wave form
which balances the dispersion at high spatial frequencies with the low frequency
instability. There is a huge difference in these two behaviors so a characterization
of the contexts in which each occurs is an important topic for study.

4.3. Explicit Solutions and Scaling.
• Travelling waves

We begin by recalling some facts from calculus. The function sech x =
2

ex+e−x satisfies ( sech x)′ = sech x tanhx ( sech x)′′ = ( sech x)3+ sech x[1−
( sech x)2]. Since [1−( sech x)2] = (tanhx)2, ( sech x)′′ = sech x. One can
then easily verify that [( sech x)

2
p ]′′ = 4

p2 ( sech x)
2
p − 2

p
2−p
p [( sech x)

2
p ]p+1.

We look for a travelling wave solution u(x, t) = f(x − ct) of the gener-
alized KdV equation ut + uxxx + (up+1)x = 0. Substituting in the desired
form leads to the ODE −cf ′ + f ′′′ + (fp+1)′ = 0. We integrate once and
set the integration constant to 0 since we seek a function f which decays at
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±∞. The preceding calculus discussion shows that, up to certain constants,
the function f(x) = ( sech x)

2
p satisfies this ODE.

These explicit solutions reveal that the dispersive decay can exactly bal-
ance with the nonlinear effect resulting in a travelling wave.
• Time-periodic solutions of NLS
• Scaling invariance

Let u(x, t) be a known solution of the generalized KdV equation ut +
uxxx + (up+1)x = 0. We form a one parameter family of solutions by
rescaling,

uσ(x, t) = σ
2
p (σx, σ3t).

5. Hamiltonian Structure and Conserved Quantities

5.1. Classical Mechanics. Suppose we are given L : Rnẏ ×Rny × I 7−→ R where I
is an interval in R. Assume that L is smooth and convex with respect to the first
slot ẏ. The function L is called the Lagrangian. Form the Action Functional

I[w] =
∫ t1

t0

L(ẇ(t), w(t), t)dt

for w ∈ A = {competitors subject to some boundary conditions}.
Hamilton’s Principle: Motions of a mechanical system governed by the La-

grangian L coincide with extremals of the Action Functional I[·].
By the calculus of variations, extremizers of I[·] solve the Euler-Lagrange equa-

tions

(5.1) − d

dt
(Lẏ(ẏ(t), y(t), t) + Ly(ẏ(t), y(t), t) = 0.

This is a system of n second order equations in y(t).
Define p(t) = Lẏ(ẏ(t), y(t), t) and H(p(t), y(t), t) = supẏ(p(t) · ẏ − L(ẏ, y(t), t)).

Notice that H is the Legendre transform of L. Then, the Euler-Lagrange equations
(5.1) can be rewritten

(5.2)

{
ṗ = −∂H∂y ,
ẏ = ∂H

∂p

This is a system of 2n first order equations in (p(t), y(t)). The equations (5.2) are
called Hamilton’s Equations.

Remarks

• Mechanical motions are canonically described as a consequence of a varia-
tional principle.
• Hamilton’s equations are special among a general class of equations.{

ẋ = F (x, y),
ẏ = G(x, y)

In particular, the form of Hamilton’s equations implies phase space volume
is conserved under the dynamics. Under certain conditions, this property
implies the mechanical motion is recurrent (Poincaré recurrence).
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Suppose we write w = (p, y), w ∈ R2n. We rewrite Hamilton’s equations by
writing Hz = (Hp,Hy) and defining the matrix

(5.3) J =
[
0 −I
I 0.

]
With these notations, Hamilton’s equations (5.2) may be written

(5.4) ẇ = JHw.

Note that J is essentially a rotation matrix and in this notation we can interpret
the dynamics of Hamilton’s equations as “move perpindicular to the gradient of
H”. Notice also that J2 = −I and Hamilton’s equations are defined on an even
dimensional space. This suggests there may be a nice connection with complex
numbers.

Complex Notation: For (x, y) ∈ R2, define z = x + iy, z = x − iy, i2 = −1.
Notice that z, z give x, y and vice-versa. Define ∂z = 1

2 (∂x − i∂y) and ∂z = 1
2 (∂x +

i∂y). Observe that ∂zz = (∂x + i∂y)(x + iy) = 0. If f(x, y) and g(x, y) are two
R-valued functions, we can form u(x, y) = f(x, y) + ig(x, y). Then, u is complex-
analytic if, upon reexpressing x and y via z, z, we see that ∂zu = 0. Analytic
functions depend only upon z and not z (or vice versa).

Now, suppose we write z1 = y1 + ip1, z2 = y2 + ip2, . . . . Reexpress H(p, y) =
H(z, z). Consider the following system of n equations in the complex variables zj(t)
given by

(5.5) żj = iHzj
.

Calculating żj and taking the ∂zj derivative shows this system is equivalent with
(5.2).

Example 5.1. Let

H = H(p, y) = |p|2 + |y|2 =
∑
j

p2
j + y2

j .

We can rewrite this using the notation above as

H(z, z) = |z|2 =
∑
j

|zj |2 =
∑
j

zjzj .

Hamilton’s Equations then read{
ṗj = −yj = −∂H∂y ,
ẏj = pj = ∂H

∂p

and can be rewritten
żj = iHzj

= izj .

This says the dynamics moves the complex components zj of the complex vector z
“perpindicular to zj with speed |zj |.”

Example 5.2. (slightly fancier)
Change the Hamiltonian in the previous example by writing

H(z, z) =
∑
j

j2|zj |2 =
∑
j

j2zjzj .

Hamilton’s equations are then

(5.6) żj = ij2zj
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which says the complex number zj moves perpindicular to itself with speed j2|zj |.
We still have the motion of each of the components of z moving indepedently of
the other components, which is to say the motion is uncouple. In this example, the
speed of motion also depends on the index j.

Example 5.3. (NLS)
Let u : T × I 7−→ C where T is the 1d torus and I is a time interval. Form the
Hamiltonian Functional

H = H[u, u] =
∫

T
|∇u|2 =

∫
T
∇u∇udx.

(Recall that this is just the classical Dirichlet energy.) The usual calculus of varia-
tions argument shows

lim
τ→0

H[u, u+ τv]−H[u, u]
τ

=
∫

T
(−∆u)vdx = 〈−∆u, v〉.

Therefore, Hu[u, u] = −∆u and Hamilton’s equations in this case read

u̇ = iHu = −i∆u
which is precisely the linear Schrödinger equation!

The initial value problem

(5.7)
{
i∂tu+ ∆u = 0, T× {t > 0}
u(x, 0) = φ(x), T× {t = 0}.

has solution
u(x, t) =

∑
k

eikxe−i|k|
2tφ̂(k).

We can reexpress the Hamiltonian in terms of the Fourier transform by writing

H[u, u] =
∫

T
∇u∇udx

=
∫

T

(∑
k

eikx(ik)e−i|k|
2tφ̂(k)

)(∑
k′

eik′x(ik′)e−i|k′|2tφ̂(k′)

)
dx

=
∑
k

|k|2|φ̂|
2
.

So, Schrödinger’s equation is an infinite dimensional Hamiltonian system in which
each Fourier coefficient behaves like the solution of a Harmonic oscillator. Recall
that the dispersion relation calculation showed that

d

dt
û(t)(k) = i|k|2û(t)(k)

which is essentially the same as appeared in (5.6).

5.2. Action symmetries and conservation laws. KdV and NLS have been de-
rived as approximate models for various physical phenomena. From physical prin-
ciples, we expect the KdV and NLS evolutions to take place leaving certain integral
quantities, associated with mass, energy, momentum, etc. to be time invariant.
Time-invariant quantities are said to be conserved. For example

∂tu+ ∂3
xu+

1
2
∂xu

2 = 0,
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can be multiplied by u and rewritten

1
2
∂tu

2 + ∂x(uuxx −
1
2
u2
x + [

1
3
u3]) = 0.

Upon integrating over all of x ∈ R (assuming that u and its derivatives decay as
|x| → +∞) we learn

∂t

∫
u2dx = 0.

Therefore, the KdV evolution satisfies conservation of the L2 norm

‖u(t)‖L2
x

= ‖u(0)‖L2
x
.

This places a basic constraint on the dynamics: all the motion takes place on a
sphere in L2

x. We are interested in finding other conserved quantities to constrain
(and therefore better understand) the dynamics. However, the method used above
to discover the L2 conservation law for KdV requires a bit of cleverness that may not
be easily available for discovering more complicated conservation laws. A systematic
approach to discovering some conservation laws is contained in: E. Noether’s
Principle: If a variational principle is invariant under a family of transformations,
then solutions of its Euler-Lagrange equation satisfy a conservation law.

Recall that mechanical motions are characterized as extremizers of the action
which is a variational principle. The present discussion borrows from [?], [29], [?].

Let L : Rm × R 7−→ R, L = L(p, w) and u : Rm 7−→ R. Let U ⊂ Rm. Form
I[u] =

∫
U L(Du, u)dx. The calculus of variations shows that u is a smooth critical

point of I[·] if and only if the Euler-Lagrange equation

−
m∑
i=1

∂xi
(Lpi

(Du, u)) + ∂wL(Du, u) = 0

is satisfied.
Noether’s principle allows us to look for invariances of the variational principle

instead of for the conservation laws. The former turn out to be easier to find than
the latter.

Notation The following notation is introduced to flexibly describe a one pa-
rameter family of transformations. Let g : Rm × R 7−→ Rm, w : Rm × R 7−→
R, φ : Rm 7−→ Rm. We define a domain variation x′ = g(x, τ) = x + τφ(x) +
o(τ), φ = ∂g

∂τ |τ=0. We define a function or target variation u′(x′) = w(x(x′), τ) =
u(x) + τv(x) + o(τ), v = ∂x

∂τ |τ = 0. Naturally U′ = g(U, τ).
The value of the domain and target varied action at parameter value τ is

i(τ) =
∫

U′
L(Du′, u′)dx′.

We are interested in characterizeing situations where i(·) is independent of its ar-
gument or when i(·) is infinitessimaly invariant: i′(0) = 0.

Lemma 5.1.

(5.8) i′(0) =
∫

U
Lpi

[vxi
− uxj

φjxj
] + (∂wL)v + Lφixj

dx.

Proof. follow your nose and change variables. Expand out the jacobian determinant
using divergence. �
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Theorem 5.1. (Noether) Given L : Rm × R 7−→ R, U ⊂ Rm, u : Rm 7−→ R,
we form the action functional I[u] =

∫
U
L(Du, u)dx. Suppose that u is a smooth

critical point of the action functional I[·]. Assume that I[·] is invariant under a
family of transformations u 7−→ u′, x 7−→ x′ (so U 7−→ U′), for all regions U,

(5.9)
∫

U
L(Du, u)dx =

∫
U′
L(Du′, u′)dx′.

Then,

(5.10) ∂xi

{
∂pi

L(Du, u)[v − uxj
φjxj

] + L(Du, u)φi
}

= 0.

Proof. It suffices to show that the integrand in the lemma may be rewritten as
the divergence appearing in (5.10). This may be verified using the fact that u is a
solution to the Euler-Lagrange equation. �

Remark 5.1. In case u : Rm 7−→ C, the conclusion changes to the statement

(5.11) ∂xi

{
∂L

∂(∂xi
u)

[v − uxj
φj ] +

∂L

∂(∂xi
u)

[v − uxj
φj ] + Lφi

}
= 0

5.3. Lagrangian Structure of NLS. The nonlinear Schrödinger dynamics may
be described using a variational principle. To show this, we introduce a Lagrangian,
form the associated action functional and then calculate NLS as the Euler-Lagrange
equation characterizing smooth critical points of the action functional.

Consider the nonlinear Schrödinger equation

iψt + ∆ψ + f(|ψ|2)ψ = 0,

posed for x ∈ Rd. We assume ψ and its derivatives are smooth and vanish as
|x| → ∞. The nonlinearity f is a smooth function of its argument and we define

F (λ) =
∫ λ

0

f(s)ds.

Define

(5.12) L =
i

2
(ψψt − ψψt)− [|Dψ|2 + F (|ψ|2)].

Evidently, L = L(ψ,ψ, ψt, ψt, Dψ,Dψ). Form the action functional

(5.13) I[ψ] =
∫ t1

t0

∫
Rd

L dxdt,

defined for ψ ∈ A, some appropriate class of admissible functions.
The usual calculus of variations argument shows that if ψ is a smooth critical

point of I[·] then ψ satisfies the Euler-Lagrange equation

∂L

∂ψ
=

n∑
i=1

∂

∂xi

∂L

∂(∂xi
ψ)

+
∂

∂t

∂L

∂(∂tψ)
.

We calculate the various terms using L to find (the complex conjugate of) NLS

−iψt + ∆ψ + f(|ψ|2)ψ = 0.
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Noether’s theorem applied to NLS We write Rmy = R1
t × Rdx, distinguish-

ing the time variable t from the spatial variables x. A one parameter family of
transformations is defined when we specify φ0, φ and v

(5.14)

 t 7−→ t′ = t+ τφo(x, t, ψ),
x 7−→ x′ = x+ τφ(x, t, ψ),

ψ(x, t) 7−→ ψ′(x′, t′) = ψ(x, t) + τv(x, t).

Suppose that the NLS action in (infintessimally) invariant under the family of
transformations (5.14). Noether’s theorem implies that (5.11) holds. Recalling the
distinguished time variable, if we integrate over the spatial domain, we obtain the
conservation law

∂t

∫
Rd

{
∂L

∂(∂tψ)
[v − ψtφ0 −Dxψ · φ] +

∂L

∂(∂tψ)
q[v − ψtφ0 −Dxψ · φ] + Lφ0

}
dx = 0.

We apply this formalism to identify certain invariances of the NLS action func-
tional and thereby infer certain conservation laws for NLS.

Invariance by phase shift: Consider the transformation ψ 7−→ ψ̃ = eiτψ. For
tiny τ , this is equivalent to

(5.15)


t 7−→ t̃ = t,
x 7−→ x̃ = x,

ψ 7−→ ψ̃ = ψ + iτψ.

This transformation leaves the Lagrangian invariant and therefore the action func-
tional is also invariant so Noether’s theorem applies. Comparing with (5.14), we
see that φ0 = 0, φ = 0, v = iψ. Recalling the Lagrangian and calculating

∂L

∂(∂tψ)
=
i

2
ψ,

∂L

∂(∂tψ)
=
i

2
ψ,

we find that ∫
Rd

(
i

2
ψ)(iψ) + (− i

2
ψ)(−iψ)dx = −

∫
Rd

|ψ|2dx,

is conserved. Define

(5.16) N =
∫

Rd

|ψ|2dx.

The conserved quantity N represents the mass, wave action, plasmon number, or
wave power in various applications of NLS as a model equation. Note that the
conservation law prior to spatial integration related to this invariance is

(5.17) ∂t|ψ|2 +Dx · {i(ψDxψ − ψDxψ)} = 0.

The quantity {i(ψDxψ − ψDxψ)} may then be interpreted as a current.
The invariance by phase shift is sometimes referred to as gauge invariance.
Invariance by time translation: We define a transformation

(5.18)

t 7−→ t′ = t+ τφ0,
x 7−→ x′ = x,
ψ 7−→ ψ′ = ψ.

This transformation leaves the Lagrangian and, hence, the action functional invari-
ant. In the notation of (5.14), we have φ = 0, v = 0, φ0 6= 0. Noether’s theorem
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implies the time invariance of∫
Rd

{
i

2
ψ
[
−ψtφ0

]
+ (− i

2
)
[
−ψtφ0

]
+ Lφ0

}
dx.

Substituting L from (5.12) reveals that

(5.19) H =
∫

Rd

|Dψ|2 − F (|ψ|2)dx

is conserved. This quantity is the Hamiltonian for the NLS equation. It represents
the energy in various applications.

Exercise 11. Find the flux associated to the Hamiltonian. In particular, use the
full strength of Noether’s theorem to identify G such that ∂tH +Dx ·G = 0.

Invariance by space translation: We define a transformation

(5.20)

 t 7−→ t′ = t,
x 7−→ x′ = x+ τb,
ψ 7−→ ψ′ = ψ.

This transformation leaves L invariant so the associated action functional is also
invariant. Here φ = b, φ0 = 0, v = 0. Noether’s theorem implies∫

Rd

i

2
ψ[−Dxψ · b] + (− i

2
ψ)[−Dxψ · b]dx

is conserved. Therefore, i
2

∫
Rd [ψDxψ − ψDxψ]dx · b is conserved. Since b was

arbitrary, we have that the linear momentum of solutions of NLS

(5.21) P = i

∫
Rd

[ψDxψ − ψDxψ]dx

is conserved.
Let’s also define the mass center of the NLS wave,

(5.22) X =
1
N

∫
Rd

x|ψ|2dx.

Note that

N
dX
dt

=
∫
x∂t|ψ|2dx = −

∫
xDx · {i(ψDxψ − ψDxψ)}dx.

We integrate by parts to find

(5.23) N
dX
dt

= P.

The mass center moves with constant momentum.

Exercise 12. (Galilean Invariance) Consider the transformation

(5.24)


t 7−→ t′ = t,

x 7−→ x′ = x− ct,
ψ(x, t) 7−→ ψ′(x′, t′) = e−i[

1
2c·x′+ 1

4 |c|
2t′]ψ(x′ + ct′, t′).

Verify that this transformation leaves the action associated to NLS invariant. Use
this fact to find a conserved quantity.
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Scaling invariance for power law nonlinearities Suppose f(|ψ|2) = q|ψ|p−1, q =
±1. The resulting equation NLSp is invariant under the scale transformation

(5.25)
{

t 7−→ t′ = t
λ2 ,

x 7−→ x′ = x
λψ(x, t) 7−→ ψ′(x′, t′) = λ

2
p−1ψ(λx′, λ2t′)

Is the associated action invariant?
Psuedoconformal invariance
Morawetz identity?
Variance Identity
type out ∂2

t |u|2 = Dx ·Dx · Sij . Then, the appearance of the double divergence
motivates multiplying by |x|2 and integrating, so that IBP yields a nice identity for
the variance. Conclude that negative energy initial data (focussing case) evolves
into a singularity.

5.4. Lagrangian Structure of KdV. See Mirua’s survey article [24] Be sure
to cover the galilean transformation for KdV to justify introducing the spectral
parameter λ into the Schrödinger eigenvalue problem, see (4.6) in [24].

5.5. Hamiltonian Structure of NLS. Verify that NLSp for p = 1 + 4
n has

the property that the conformal transformation (4.11) maps solutions to solutions.
Verify that Lqxt for q = 2(n+2)

n is invariant under the conformal transformation.

5.6. Symplectic Hilbert Space. [18], [19], [5]

5.7. Insights from Finite-dimensional Hamiltonian Systems. [1]
Anticipated Phenomena, Behavior
Integrability vs. Ergodicity
New Behavior occurring in Infinite Dimensions

6. Integrable Model: KdV Equation

6.1. History.
• Russell’s Observations of waves in a channel
• Korteweg and de Vries
• Fermi-Pasta-Ullam Experiment
• Kruskal and Zabusky discover the Soliton [17]
• Gardener-Greene-Kruskal-Miura discover IST [10]
• Lax Pair[25]

6.2. Inverse Scattering Transform (IST) overview. Some explicit calculus
sechx = 2

ex+e−x , tanhx = ex−e−x

ex+e−x , sech2x+ tan2 x = 1 .

Form f(x) =
(
sechx2

)2 .

f ′(x) = 2
(
sech

x

2
)(

sech
x

2
)′ =

(
sech

x

2
)2(tanh

x

2
) .

f ′′(x) =
(
sech

x

2
)2(tanh

x

2
)2 + 1

2

(
sechx2

)4
=

(
sech

x

2
)2 [(sech

x

2
)2 + (tanh

x

2
)2
]
− 1

2

(
sechx2

)
=

(
sech

x

2
)2 − 1

2

(
sechx2

)4



42 J. E. COLLIANDER

1
2
f2 =

1
2

(sech
x

2
)4

⇒ f ′′ +
1
2
f2 − f = 0 .

More generally,

fc(x) = 3c
(
sech
√
c

2
x
)2 solves f ′′ +

1
2
f2 − cf = 0.

Travelling wave solutions of KdV. Can we find solutions u in the form
u(x, t) = f(x− ct) (with f decaying as |x| → ∞) of the KdV equation ut + uxxx +
ux = 0 ? Inserting the ansatz for u leads to the ODE −cf ′ + f ′′′ + ( 1

2f
2)′ = 0

which we rewrite as f ′′ + 1
2f

2 − cf = 0. So. one possible solution is u(x, t) =
fc(x− ct) = 3c

(
sech

√
c

2 (x− ct)
)2. This is a travelling wave solution of KdV which

is distinguished with the name soliton. The dispersion in KdV suggests localized
pulses should spread out, resulting in decay, but the nonlinearityi sharpens fronts.
The solitons reveal these two effects can balance in KdV.

We will study a method for solving the KdV initial value problem{
∂tu+ ∂3

xu+ ∂x( 1
2u

2) = 0
u(x, 0) = φ(x),

which has several unexpected twists. Here we will assume that φ is a very nice
function. A basic test of our understanding of this new method will be to show
that {

∂tu+ ∂3
xu+ ∂x( 1

2u
2) = 0

u(x, 0) = fc(x) (nice) ,

has the solution u(x, t) = fc(x− ct).
The presentation that follows is largely unmotivated but does provide a direct

illustration of the method and it’s underlying ideas. Later, we will also explain how
the inverse scattering method for solving KdV was found and to what extent the
method generalizes to other evolution equations.

Schrödinger Eigenvalue Problem The Schrödinger Eigenvalue problem

(6.1)
d2

dx2
ψ + (V (x) + λ)ψ = 0, x ∈ R,

arises naturally in Quantum Mechanics. Indeed, the dynamics of a quantum wave
function Φ(x, t) are governed by the true dependent Schrödinger equation

i~
∂Φ
∂t

= EΦ = − ~
2m

∆Φ + V (x)Φ

Assuming Φ(x, t) = e−iλtψ(x) leads to λ~ψ = − ~2

2m
∆ψ + V (x)ψ which up to

sign and constants is the Schrödinger eigenvalue problem (6.1).
From the theory of Sturm-Liouville problems or basic QM, we know that, for

appropriate potentials, there are some real eigenvalues λn. Eigenfunctions corre-
sponding to distinct eigenvalues are orthogonal, etc. In case V (x) = 0, solutions
are of the form

ψ(x) = e±
√
−λx

which are exponentially decaying/growing if λ < 0 and oscillatory if λ > 0.
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Remark 6.1. If we replace V (x) in (Schoeigen) by V (x, α) where α is some pa-
rameter, the eigenvalues may vary with α. The associated eigenfunctions may also
depend upon α.  λ = λ(α), ψ = ψ(α).

Bold Fact. The eigenvalue problem

(6.2)
∂2ψ

∂x
+ ( 1

6v(x, t) + λ)ψ = 0

and the evolution −∂tu+∂3
xu+∂x( 1

2u
2) = 0 (note: – sign is merely a convenience)

are spectacularly interrelated!
The main point of this section is to introduce this relationship and forecast some

aspects of its systematic study.
Notice that if ψ vanishes so does ∂2

xψ. So we solve (6.2) for u,

(6.3) u(x, t) = −6
(
λ+

1
ψ

∂2t

∂x2

)
We can calculate ut, ux, uxxx in terms of λ and ψ. For example

ux = −6
(
ψxxx
ψ
− ψxxψx

ψ2

)
= −6

1
ψ2

(ψψxxx − ψxψxx)

= − 6
ψ2

∂x(ψψxx − ψ2
x) .

A tedious calculation shows −ut + uxxx + ∂x( 1
2u

2) = 0 may be rewritten in
terms of ψ as

(6.4) λtψ
2 − ∂

∂x
ψ2 ∂

∂x

(
ψxxx − ψt + ( 1

2u− 3λ)ψx
ψ

)
= 0 .

Integrate this over x ∈ R, assuming ψ is a nice decaying eigensolution of (6.2) and
that u is also nice and decaying, to conclude λt = 0 ! If u(x, t) evolves according
to KdV then the eigevalue problem (6.2) with t-dependent potential u(x, t) has
t-independent eigenvalues.

Since λt = 0, ψ2 ∂
∂x ( ) = const.

Our decay assumptions on u and ψ ⇒ const = 0, so

∂

∂x

(
ψxxx − ψt + ( 1

2u− 3λ)ψx
ψ

)
= 0 .

From (6.2),

ψxxx = ∂x(−{1
6
u+ λ}ψ) = −1

6
uxψ −

1
6
uxψx − λψx ,

⇒ ∂

∂x

(
ψt + 1

6uxψ + 4λψx − 1
3uψx

ψ

)
= 0

and therefore
∂t + 1

6uxψ + 4λψx − 1
3uψx

ψ
= const.

Since this constant is independent of x, we can determine its value by studying the
asymptotic behavior as x → ±∞. The appearance of ψt suggests we may be able
to learn how the eigenfunctions change as the potential u(x, t) evolves.

Bound states. λ = −κ2.
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Suppose λ = −κ2, κ ∈ R is an eigenvalue with associated eigenfunction ψ(x).
Since u, uκ vanish as x→ ±∞, we must have

ψ(x)→ Ae−κx as x→ +∞ .

Normalization: A = 1, for all time. Note that the normalization guarantees
ψt → 0 as x→ +∞.

ψt + 1
6uxψ + 4λψx − 1

3uψx

ψ
−→

x→+∞
4λ

ψx
ψ

= −4λκ = 4κ3 .

Therefore
ψt + 1

6uxψ + 4λψx − 1
3uψx − 4κ3ψ = 0 .

Multiply by ψ and integrate to learn
d

dt
1
2

∫
ψ2dx− 4κ3

∫
ψ2dx = 0 .

Define c−1(t) =
∫
ψ2(x, t)dx and we learn

d

dt
c−1(t) = 8κ3c−1(t) =⇒ c(t) = c(0) e−8κ3t .

Scattering states. λ = k2 ≥ 0.
We choose the solution of (6.2) to have the asymptotic forms

ψ(x, t)→ eikx +R(K, t)e−ikx as x→ −∞
ψ(x, t)→ T (k, t)eikx as x→ +∞

Interpretation: “scattering”, (explain more)
eikx

−→
| potential v(x, ·) |

R(k) e−ikx ← → T (k) eikx

A basic property of the reflection coefficient R(k, t) and the transmission coeffi-
cient is |R(k, t)|2 + |T (k, t)|2 = 1 (inferred from Wronskian analysis).

ψt + 1
6uxψ + 4λψx − 1

3uψx

ψ
−→

x→−∞

Rt e
−ikx + 4λiκeikx − 4λiκRe−ikx

eikx +Re−ikx

=
(Rt − 4iλkR)e−ikx + 4iλk eikx

eikx +Re−ikx

For this to be constant, we must have

Rt − 4iλkR = 4iλkR⇒ Rt = 8iλkR = 8ik3R

(6.5) ⇒
R(k, t) = R(k, 0) e8ik

3t

|T (K, t)| = |T (K, 0)|

Summary. If u(x, t) evolves according to KdV, ∂tu+ ∂3
x + ∂x( 1

2u
2) = 0, in the

Schrödinger eigenvalue problem

∂2ψ

∂x2
+ ( 1

6u(x, t) + λ)ψ = 0

then
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(i) The eigenvalues are time independent.
(ii) The L2 mass of the eigenfunction with eigenvalue λ = −κ2 < 0

satisfies a simple linear ODE.
(iii) The reflection coefficient of the scattering states satisfies

a simple linear ODE.
The initial condition u(0) determines the scattering data {−κ2, cκ(0), R(K, 0)}. As-
suming the potential u evolves with t according to KdV, we know the scattering
data evolves along simple ODEs.

Schematically, u(0) −→
(direct

scattering)

{−κ2, cκ(0), R(K, 0)} −→
(evolve

linearly)

{−κ2, cκ(t), R(K, t)}

Inverse scattering. The initial data for KdV, namely, u(x, 0), determines the
scattering data {κn, cn(0), R(K, 0)}. The converse is also true.
Gelfand–Levitan–Machenko Equation. Form the following function

(6.6) B(x) =
1

2π

∫ i

−∞
R(κ)eiκxdK +

N∑
n=1

cn e
−κnx

So, B is determined with the scattering data. Consider the equation

(6.7) K(x, y) +B(x+ y) +
∫ ∞

x

K(x, z)B(y + z)dz = 0 , y ≥ x

This is an integral equation in K called the Gelfand–Levitan–Machenko equation.
Suppose we solve this equation for K.
Then

(6.8)
1
6
u(x) = 2

∂

∂x
K(x, x)!

The scattering data determines the potential, so we can reconstruct u(t) from the
scattering data at time t.

6.3. Soliton emerges from IST. Take initial data for KdV to be p(x) = 12 sech2x =
f4(x). We know that the solution is a travelling wave u(x, t) = 12 sech2(x + 4t).
Our goal is to carry out the inverse scattering method for this data to recover the
known solution.

The eigenvalue problem becomes
∂2ψ

∂x2
+ 2sech2xψ = −λψ. For −λ = κ2 = 1,

it can be shown that there is exactly one associated eigenfunction ψ(x) = 1
2 sechx

after normalization. Note that 1
2 is chosen so that

ψ(x)→ ex as x→ −∞
ψ(x)→ e−x as x→ +∞ .

Exercise 13. Verify that ψ(x) is an eigenfunction for λ = −1 by calculus.

We need to find the normalization constant c(0),

c(0) =
(∫ ∞

−∞
ψ2(x)dx

)−1

=
(

1
4

∫ ∞

−∞
sech2x dx

)−1

=
(

1
2

∫ ∞

0

sech2x dx

)−1

=
(

1
2

∫ 1

0

d(tanhx)
)−1

= 2
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The time evolution of the normalization constant is

(6.9) c(t) = c(0) e−8t = 2e−8t .

It is a fact that sech2 potentials are reflectionless.
⇒ R(K, t) = 0⇒ |T (K, t)|2 = |T (K, 0)|2 = 1.

The Gelfand-Levitan-Marchenko equation in this case becomes

K(x, y, t) +B(x+ y, t) +
∫ ∞

x

K(x, z, t)B(y + z, t)dz = 0

where B(x, t) = c(t)e−x = 2e−8t−x. We seek a function K(x, y, t) satisfying

K(x, y, t) + 2e−8t−x−y + 2
∫ ∞

x

K(x, z, t)e−8t−y−z = 0 .

Let’s look for K in the form K(x, y, t) = w(x, t)e−y,

w(x, t) + 2e−8t−x + 2w(x, t)
∫ ∞

x

e−8t−2z dz = 0∫ ∞

x

e−2zdz = 1
2e
−2z|∞x

= − 1
2e
−2x

w(x, t)(1 + e−8t−2x) = −2e−8t−x

w(x, t) =
−2 e−8t−x

1 + e−8t−x

So

K(x, y, t) =
−2 e−8t−x−y

1 + e−8t−2x

⇒ K(x, x, t) = − 2e−8t−2x

1 + e−8t−2x
= −2 +

2
1 + e−8t−2x

2
∂

∂x
K(x, x, t) =

8e−8t−2x

(1 + e−8t−2x)2
=

8
(e4t+x + e−4t−x)2

= 2sech2(x+ 4t)

But 1
6u(x, t) = 2 ∂

∂x K(x, x, t) ⇒ u(x, t) = 12sech2(x+ 4t), as we had hoped.
2-Soliton via the scattering method. [20]

6.4. Miura transform → Ricatti → Eigenvalue problem. Miura trans-
form. [24]

Ricatti equation.
Gardner’s extended Miura transform.
Infinitely many conserved quantities.

Suppose v solves KdV2 (aka modified KdV )

∂tv + ∂x3v − 6v2vx = 0.

Form
u = v2 + vx.
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Then
∂tu+ ∂3

xu− 6uux = 0!

Remark: Similar in spirit to Hopf–Cole Transformation

ut + uux = εuxx.

Form w = −2εux

u . Then w solves

wt = εwxx.

We calculate

∂tu = 2vvt + vxt

∂xu = 2vvx + vxx → 6u∂xu = 12(v2 + vx)vvx + 6(v2 + vx)vxx
∂2
xu = 2vvxx + 2v2

x + vxxx

∂3
xu = 2vvxxx + 2vxvxx + 4vxvxx + vxxxx

= 2vvxxx + 6vxvxx + vxxxx.

Combining these expressions reveals that

∂tu+ ∂3
xu− 6uux = 0.

Indeed, we have that

2vvt + vxt + 2vvxxx + 6vxvxx + vxxxx

−[12v3vx + 12v(vx)2 + 6v2vvxx + 6vxvxx]
6∂x(6(v2vx)) = 12vv2

x + 6v2vxx

2v(vt + vxxx − 6v2vx) + ∂x(vt + vxxx − 6v2vx) = 0.

Summarizing, we have that

(∂tu+ ∂3
xu− 6uux) =

(
2v +

∂

∂x

)
(v2 + vxxx − 6v2vx)

if u = v2 + vx.
Suppose u is known.
The ODE vx + v2 = u is called a Ricatti equation. Solving the Ricatti equation

begins with the transformation

v =
ψx
ψ
.

Calculating

vx =
ψxx
ψ
− ψ2

x

ψ2
⇒ vx + v2 =

ψxx
ψ
− ψ2

x

ψ2
+
ψ2
x

ψ2
=
ψxx
ψ
.

So, the Ricatti equation transforms into

ψxx − uψ = 0.

This is almost, but not quite, the Schrödinger eigenvalue problem. We soup
things up a bit using the Galilean invariance of KdV and lack of Galilean invariance
of mkdV.

Remark: The Ricatti equation in a more general form should include a lower order
term αv.

Galilean Invariance of KdV
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Suppose u solves KdV in the form ut + uxxx − 6uux = 0. Form the change of
variables  t′ = t

x′ = x+ αt
u′(x′, t′) = u(x, t)− β.

Select α, β such that ∂t′u′ + ∂3
x′u

′ − 6u′∂x′u′ = 0. A calculation shows that

α+ 6β = 0

yields a certain cancellation. This identifies a one parameter family of solutions of
kdV obtained from any one solution.

The same calculation shows that kdV2 does not possess this family of solutions.
These observations motivated Gardener to generalize Miura’s transformation.

Exercise: Let w solve wt + wxxx − 6(w + εw2)(Gardener equation)wx = 0. Form
u = w + εwx + ε2w2. (The expression for u in terms of w is called Gardener’s
Transformation; it is a Ricatti-type ODE in w.) Show

∂tu+ ∂3
xu− 6u∂xu = 0.

The Ricatti substitution leads to Schrödinger eigenvalue problem

εwx + ε2w2 + w = 0.

Let w = ε
ψx
ψ

wx = ε
ψxx
ψ
− εψ

2
x

ψ2

ε2
ψxx
ψ
− ε2ψ

2
x

ψ2
+ ε2

ψ2
x

ψ2
+
ψx
ψ

= u.

ε2ψxx + ψx = ψu.

ψxx +
1
ε2
ψx =

1
ε2
ψu.

Multiply by eg. Consider (egψ)xx = egψxx + 2egg′ψx + eg(g′)2ψ + egg′′ψ.

(egψ)xx − 2egg′ψx − eg(g′)2ψ − egg′′ψ +
1
ε2
egψx =

1
ε2
egψu

choose g s.t.

−2g′ +
1
ε2

= 0

g′ =
1

2ε2
, g =

1
2ε2

x ⇒ g′′ = 0

(egψ)xx =
(

1
ε2
u+ (g′)2

)
(egψ).

Let φ = egψ

φxx =
(

1
ε2
u+

1
4ε4

)
φ

This is a Schrödinger eigenvalue problem.
Let us reexpress the w-equation in conservative form

wt + (−3w2 − 2ε2w3 + wxx)x = 0.
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Now w is linked to u though the (generalized) diuna transformation

u = w + εwx + ε2w2
x.

Suppose that w could be solved in the form

w =
∞∑
j=0

εjPj Ansatz

where 8j is a polynomial in u and its derivatives.

Exercise: Formally solve for w in terms of u in our asymptotic series to find
P0, P1, P2.

Then

∂tw + px(stuff) = 0⇒
∞∑
j=0

εj∂tPj + ∂x(stuff) = 0.

Now integration in x yields (assuming decay to kill ∂x (stuff))

∂t

∫
Pj = 0!

Using independence implied by arbitrariness of ε. So there exists infinitely many
conserved quantities of KdV. (We saw this via Leonard earlier.)

6.5. Lenard Operator. An algorithmic approach to generating the collection of
equations described above, due to Lenard, is presented in the book of Das [8]. This
approach exploits a “bi-hamiltonian” formulation of the KdV equation.

Let A0 = 1 and define Aj , j = 1, 2, . . . recursively by writing

(6.10) (D3 +
1
3

(Du+ uD))Aj = DAj+1.

Now set

(6.11) −ut = (D3 +
1
3

(Du+ uD))An

to observe the n-th equation in the KdV hierarchy. One can verify that the n = 0
case identifies the PDE characterizing translation of the potential. The n = 1 case
gives the KdV equation.

Exercise 14. Explicitly write out a few more equations in the KdV hierarchy.

6.6. Lax Pair for KdV.. Consider a potential u(x, α) (where α ∈ R is a param-
eter) for Schrödinger’s equation

(6.12)
d2

dx2
y + [λ− u(x, α)]y = 0,

with decaying boundary conditions as |x| → ∞. For a fixed function of x, u(x), re-
placement of the potential u(x) by a translate u(x+α) will not affect the eigenvalues
λj . Note that functions u(x+ α) satisfy the PDE uα − ux = 0.

We will see shortly that if u satisfies the nonlinear PDE uα + uux + uxxx = 0,
the λj is also time independent. In fact, we will see that this equation, known as the
KdV equation, is one element of a set of infinitely many nonlinear equations whose
solutions are one-parameter families of potentials for (6.12) with λj independent of
the parameter.
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Express the Sturm-Liouville problem (6.12) as

(6.13) Ly = λy, L = D2 − u(x, t), D =
d

dx
.

Taking the time derivative of both sides of this equation and rearranging reveals

(6.14) Lyt − uty = λty + λyt.

We now impose a time dependence on y which is quite general. Our goal will to
make clever choices about this time dependence to force λt = 0. Suppose that

(6.15) yt = By

where B is a linear differential operator which depends upon u and the higher
spatial derivatives of u. Using this in (6.14) gives

LBy − λBy − uty = λty

(6.16) (−ut + [LB −BL])y = λty,

where we used the linearity of B in the second step. Note that we have a wide
freedom in the choice of B. We can restrict B to certain classes of operators at our
convenience.

Example 6.1. Let B1 = aD where a is initially allowed to be any function of u
and higher spatial derivatives of u. From the definition of L, we have

[L,B1]y := [LB1 −B1L]y
= (D2 − u)(ayx)− aD(D2y − uy)
= 2axyxx+ axxyx + auxy.

If 2ax = 0, axx = 0, (so that a = const ) then [L,B1]y = auxy and the PDE on u
is

(6.17) (ut − aux)y = −λty.
So, if we require u to satisfy ut − aux = 0, then λt = 0. We observed this before
just after (6.12).

Next, we consider a more complicated form of the operator B.

Example 6.2. Let B3 = aD3 + fD + g. Here, we will take a to be constant and
allow f, g to depend upon u and its higher spatial derivatives. Simple calculations
show

(6.18) [L,B3] = (2fx+3aux)D2y+(fxx+2gx+3auxx)Dy+(gxx+auxxx+fux)y.

Again, we obtain a PDE for u provided the coefficients of D2y and Dy vanish. This
can be forced by choosing

f = −3
2
au+ c1

g = −3
4
aux + c2

where c1, c2 are arbitrary integration constants. For such a choice of f, g we get

[L,B3]y = [
1
4
a(uxxx − 6uux) + c1ux]y

which gives the evolution equation for u through (6.16), −ut+ 1
4a(uxxx−6uux) = 0.

We can choose a = −4 to obtain a simpler expression.
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We have seen that taking perhaps the simplest choice of the operator B (in
selecting B1) above that we were led to a simple PDE for u, namely ut−ux = 0, to
guarantee time independence of the eigenvalues. With the slightly more complicated
choice B3 we were led to the nonlinear evolution ut + 6uux +uxxx = 0 which leaves
the λj time invariant. This approach can be continued by making higher order
choices of B, selecting certain functions to cause higher order derivative terms in y
to vanish, leading to an infinite family of equations. The solutions of these equations
all have the property that the eigenvalues of the problem (6.12), with the evolving
solution u the potential, have time-independent eigenvalues.

The preceding discussion is originally due to Lax [21] and was taken from [20].

6.7. Direct Scattering (long topic). sech 2 potentials are reflectionless. identify
decay hypotheses on the potential. (Deift-Trubowitz?) [20]

6.8. Inverse Scattering (long topic). [20]
explain the G-L-M equation. comment on potential recovery from scattering

data in higher dimensions.
Scattering and Inverse Scattering

The goal of this lecture is to “explain” the Gelfand–Lewiston–Marchenko equa-
tion. We will fail. In particular, we wish to see that with appropriate “scattering
data” one can reconstruct the potential giving rise to such data.

Consider the operator L = −∂2
x + q acting on x ∈ R. q smooth decaying as

|x| → ∞. For q = 0, the solutions of

−∂2
xf = k2f, k ∈ R

are superpositions of eikx, e−ikx. For q 6= 0, the decay assumption ⇒ solutions of

Lf = k2f, k ∈ R

should be nearly superpositions of eikx, e−ikx, for |x| large. Any three solutions of
Lf = k2f must be linearly dependent. Let’s choose a convenient basis of solutions.
The Jost Functions are characterized by

f+(x, k) ' eikx as x→ +∞
C-valued.

f−(x, k) ' e−ikx as x→ −∞

Clearly,
f+(k) = f+(−k), f−(k) = f−(−k).

By linear dependence[
f−(k) = a+(k)f̄+(k) + b+(k)f+(k)
f+(k) = a−(k)f̄−(k) + b−(k)f−(k).

Recall the Wronskiga bilinear form

w(f, g) = det
(

f g
f ′ g′

)
= fg′ − f ′g. w(f, g) = −w(g, f). antisymmetric.

Claim. If f, g are solutions of Lf = k2f , w̄(f, g) is independent of x.

Proof. d
dx w̄(f, g) = 0.
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We can use this fact and asymptotics implied by decay of q to infer properties
linking a±(k), b±(k).

w̄(f+(k), f̄+(k)) = −2ik
w̄(f−(k), f̄−(k)) = 2ik

w̄(f−(k),f+(k))
2ik = a+(k)

w̄(f−(k),f̄+(k))
2ik = −b+(k).

⇒

w̄(f−(k), f+(k)) = w̄(f−(k), a−(k)f̄−(k) + b−(k)f−(k)→ 0)
= a−(k)(2ik)

w̄(f−(k), f+(k)) = w̄(a+(k)f+(k)→ 0 + b+(k)f̄+(k), f+(k)) = b+(k)(2ik)

⇒ a−(k) = a+(k) → a(k)

Exercise. Show
1 = |a−|2 − |b−|2 and 1 = |a+|2 − |b+|2.

Show R+(−k) = R+(k) and R−(−k) = R−(k).

Let’s divide the connecting relation by a(k). Can we divide by a(k)? We’ll see
more on this later.

T (k)f−(k) = f̄+(k) +R+(k)f+(k)
T (k)f+(k) = f̄−(k) +R−(k)f−(k)

where

T (k)(transmission coefficient)(k) =
1

a(k)
, R±(reflection coefficient)(k) =

b±(f)
a(k)

.

In light of the asymptotic behavior of f± near x = ±∞, we can view the first of
these equations as a harmonic wave Cauchy from x = +∞, being partly transmitted
and partly reflected by q, the potential.

Dividing the exercise by |a(k)|2 ⇒ |T (k)|2 + |R±(k)|2 = 1.

For k large, gf is small compared to k2f so most of the signal coming in from
+∞ will be transmitted ⇒

lim
k→∞

R±(k) = 0, lim
k→∞

T (k) = 1.

Asymptotic behavior for k large

Ansatz: f+(x, k) = eikx+p(x,k) ' eikx(1 + p + . . . ) ' eikx
(

1 + p1
k1

+ . . .
)

. We

expect p→ 0 as k →∞. Since f+ satisfies Lf+ = k2f+, we can calculate to find

p′′ + 2ikp′ + (p′)2 = q.

Based on our large k expectations, take

p ' p1

k
+
p2

k2
+ . . . (→ 0 as k →∞).

⇒
p′1 =

q

2i
at order k0.

p2 =
q

4
at order k1.
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So, the large asymptotic behavior as k → ∞ is determined by the potential (not
surprising). We will use this in the other direction in a while. . .

f+(k, k) = eikx
(
1 + p1

k + . . .
)

p′1 = q
2i

Complex Values of k

The Jost solutions

f+(x) = eikx as x→ +∞
f−(x) = e−ikx as x→ −∞

make sense and we bounded for k ∈ C, Im k > 0.

Lemma 6.1. For all x,

e−ikxf+(x, k)− 1 ∈ H2
+

eikxf−(x, k)− 1 ∈ H2
+.

Definition. g ∈ H2
+ if g is analytic on UHP = {k : Im k > 0} and∫

Im k=c1

(g(k))2 < c2 <∞ for all c1 > 0.

Since w̄(f+(k),f−(k))
2ik = a(k), we know a(k) is analytic in UHP . The zeros of a(k)

in ŪHP are important. Suppose a(n) = 0. Then w̄(f+(n), f−(n)) = 0⇒ df+(n) =
f−(n). When Im n > 0, this shows f+(x, n) decays exponentially as x → +∞
and f−(x, n) decays exponentially as x → −∞ ⇒ f+(n) is square integrable and
is therefore a proper eigenfunction of L. Since L is self-adjoint, its eigenvalues are
real ⇒ the zeros of a(k) lie on the imaginary axis n = in.

Next, we calculate the derivative of a(k) at n
(
ȧ = d

dka
)

ȧ(in) = − 1
2n
{w̄(ḟ−, f+) + w̄(f−, ḟ+)}.

Using df+(n) = f−(n)→

ȧ(in) = − 1
2n
{d−1w̄(ḟ−, f−) + dw̄(f+, ḟ+)}.

The functions f± satisfy
−fxx + qf = k2f × ḟ

⇒
−ḟxx + qḟ = k2ḟ + 2kf × f subtract

(ḟfx − fḟx)x = 2kf2

(w̄(ḟ , f))x
⇒

w̄(ḟ+, f+)(x) = −2k
∫ ∞

x

f2
+dx, w̄(ḟ−, f−)(x) = 2k

∫ x

−∞
f2
−dx.
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Set k = in and substitute into ȧ equation. Use linear dependence relation to
eliminate

f− ⇒ ȧ(in) = −id
∫ ∞

−∞
f2
+(x, in)dx ⇒ zeros are simple.

Let

B(x, y) =
∫
e−iky (f+(x, k)− eikx)︸ ︷︷ ︸

skew symmetric in k. (f̄+(k) = f+(−k))
⇒ B is Real.

dk.

Facts:
• f+ analytic in k in UHP .
• f+(x, k)e−ikx − 1 ∈ H2

+

)
= (Paler Wienar)⇒ B(x, y) is supported on [x,∞) and B is nice.

Inverting,

f+(x, k) = eikx +
∫ ∞

x

B(x, y)eikydy IBP

= eikx −B(x, x)
eikx

ik
+
i

k

∫
By(x, y)eikydy

But recalling the asymptotics as k →∞,

eikx −B(x, x)
eikx

ik
+
i

k

∫
By(x, y)eikydy = eikx +

eikxp1

k
+ . . .

⇒

iB(x, x) = P1(x) so q(x) = −2
d

dx
B(x, x)

6.9. KdV Phenomenology via IST.
• Solitary Wave Resolution [28]
• Almost Periodicity of KdV Flow on T

7. Integrable Structure

7.1. Lax Pair and other integrable models. insert a summary of what ap-
peared above. abstraction allowed to see NLS as completely integrable.

7.2. Ablowitz-Kaup-Newell-Segur System.

7.3. NLS phenomenology via IST.

7.4. Other integrable models. KPI, KPII, Davey-Stewartson, sine-Gordon, ??

We have seen that the eigenvalues of the eigenvalue problem

∂2ψ

∂2
x

+
(

1
6
u(t) + λ

)
ψ = 0

with time-dependent potential u(x, t) satisfying the kdV equation

−∂tu+ ∂3
xu+ ∂x

(
1
2
u2

)
= 0

are time invariant: ∂tλ = 0!
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• A direct calculation (solve eigenvalue problem for u, apply kdV → (∂tλ)ψ2+
∂x( ) = 0⇒ λt = 0) revealed this.
• Miura transform suggested a relationship between kdV and Schrödinger

eigenvalue problem.
Peter Lax discovered a deeper explanation of λt = 0 which led Zakhorov and

Shobat and later Ablowitz, Kemp, Newel and Segure to discover the “kdV miracles”
exist in other nonlinear PDE.

Suppose we have a linear Hamiltonian evolution problem{
i∂tφ = Hφ
u(0) = φ

φ 7→ ψ(t) = e−iHtφ := (know form of unitary operator here)U(t)φ

We would like to construct operators whose eigenvalues are time invariant.

A(0) 7→ A(t)? s.t. if A(0)φ = λφ then A(t)ψ(t) = λψ(t).

A(o)U(t)(U(t)φ) = A(o)φ = λφ
U(t) U(t)

(U(t)A(o)U(t))φ(ε) = λψ(t)

⇒ A(t) = U(t)A(o)U(t).
A(t) unitarily equivalent to A(o).

Rewriting,
U(t)A(t)U(t) = A(o).

Take ∂t
ŪtAU + ŪAtU + ŪAUt = 0.

U(t) = e−iHt ⇒ Ut = −iHU = (H is time independent)− iUH
∂U
∂t

= (−iH)︸ ︷︷ ︸
antihermitian

U

Ūt = iHŪ = iŪH.
Ū(iHA+At − iAH)U = 0

(At − i[A,H]) = 0

∂A

∂t
= i[A(t),H]. Heissenberg Picture

We mimic the preceding in the case where we have a nonlinear Hamiltonian
evolution.

Let
L(u(x, t)) = L(t)

denote a linear operator we hope to find. We assume it is Hermitian and its eigen-
values are time independent. For this to be true, there must exist(?) a unitary
operator U(t) such that

U(t)L(t)U(t) = L(o).
Differentiate ?? t

∗ ∂U
∂t
LU + Ū ∂L

∂t
U + ŪL∂U

∂t
= 0.

We do not know the form of U(t), but since U is unitary

Ū(t)U(t) = 1⇒ ∂Ū
∂t
U+Ū ∂U

∂t
= 0⇔ ∂U(t)

∂t
= B(t)U(t) with B(t) antihermitian. Why?
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Substituting this into ∗ gives

#
∂L(t)
∂t

= [B(t), L(t)] (operator equation)

as a condition for L(t) to be isospectral.
Given L(o), self-adjoint. We wish to flow L(o) into L(t) in such a way that the

eigenvalues of L(o)
L(o)v = λv

are t-independent. “Isospectral deformation”.
A unitary operator U satisfies ŪU = I. (More precisely, Range(Ū) = H and U is

isometric
〈Uv,Uw〉 = 〈v, w〉 for all v, w ∈ H.

Fact: L̂ = U−1LU has the same spectrum as L. Form w = U−1v where v is an
eigenfunction with eigenvalue λ.

L̃w = U−1LU(U−1v) = U−1Lv = U−1λv = λ(U−1v)
= λw.

One must also show that λ /∈ σ(L)→ λ /∈ σ(L̄) and this may be done.

So conjugation by unitary operators is a way to generate an isospectral operator
L̃ from a given operator L. To make a flow, we need a device to make a flow of
unitary operators.

Let B be an antiselfadjoint operator 〈u,Bv〉 = −〈Bu, v〉.
Examples: ∫

u(iv) = −
∫

(iu)v∫
u∂xv = −

∫
(∂xu)x.

Form the family of unitary operators U(t) by solving{
Ut = BU

U(o) = I
B = B(t).

Verify that such a U(t) will consist of unitary operators. Now, look at

U−1(t)L(t)U(t) = U(t)L(t)U(t) = L(o).

Take a t-derivative
Ūt
‖
−ŪB

LU + ŪLtU + ŪLUt
BU

= 0.

Ū(Lt + [L,B])U = 0.
Isospectral deformation conditions:

Lt
“Lax Pair”

= [B(t), L(t)].

Assume L is linear in u(x, t). Then the left side of # is a multiplication operator.
Consequently, the right side must be as well.

Therefore, if we can find a linear operator L(t) and a second operator B(t), which
is not necessarily linear, such that the commutator [B(t), L(t)] is a multiplication
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operator and is proportional to the evolution of u(x, t) according to the nonlinear
equation, then the eigenvalues of L(t) would be time invariant.

Specialization to kdV

Set L(t) = ∂2
x + 1

6u(x, t) ⇒ ∂L(t)
∂t = 1

6
∂u
∂t . B(t) must be antihermitian so must

be odd in the number of derivatives. Choose simplest form

B(t) = a∂x.

[B(t), L(t)] =
a

6
∂u

∂x
.

Then
∂L

∂t
= [B,L]⇒ 1

6
∂u

∂t
=
a

6
∂u

∂x

∂u

∂t
= a

∂u

∂x

Next natural choice

B3 = a3∂
3
x + a1(Du+ uD)

[B3, L] =
(a3

6
− a1

)
(∂3
xu) +

a1

3
u∂xu

+
(a3

2
− 4a1

)
︸ ︷︷ ︸
make zero
a3
2 = 4a1

a3 = 8a1

((∂2
xu)∂x + (∂xu)∂2

x)

∂L

∂t
= [B,L]⇒ ∂u

∂t
= ∂3

xu+ u∂xu. kdV.

The Lax Pair for kdV is{
L(t) = ∂2

x + 1
6u

B(t) = 4∂3
x + 1

2 (∂xu+ u∂x).

Summary of Lax method

Suppose L(t)ψ(t) = −λψ(t) and ∂L(t)
∂t = [B(t), L(t)], where ∂ψ(t)

∂t = B(t)ψ(t).
Then ∂λ

∂t = 0.
Check this: Take true derivation of eigenvalue problem

∂L

∂t
ψ + L

∂ψ

∂t
= −∂λ

∂t
ψ − λ∂ψ

∂t
∂L

∂t
ψ + LBψ + λBψ = −∂λ

∂t
ψ

∂L

∂t
ψ + [LB −BL]ψ = −∂λ

∂t
ψ

+B(t)(L(t) + λ)ψ(
∂L

∂t
+ [L,B]

)
ψ = −∂λ

∂t
ψ.
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Assume
L(t)ψ(t) = −λψ(t)

and
∂ψ(t)
∂t

= B(t)ψ(t),

with
∂λ

∂t
= 0.

This requires that L and B satisfy the compatibility condition

∂L(t)
∂t

= [B(t), L(t)].

Let φ =
(
φ1
φ2

)
σ+ =

(
0 1
0 0

)
Generalize “L(t)ψ(t) = −λψ(t)” by writing σ− =

(
0 0
1 0

)
(
σ3

∂
∂x − qσ+ + rσ−

)
φ = −iζφ σ3 =

(
1 0
0 −1

)
.

Generalize “∂ψ(t)
∂t = B(t)ψ(t)” by writing Note:

σ2
3 = I

σ±σ3 = ∓σ± = −σ3σ±
σ±σ∓ = 1

2 (I ± σ3).

∂φ

∂t
= (Pσ+ +Qσ− +Rσ3)φ.

Take ∂
∂x .

Here q = q(x, t), r = r(x, t) are the dynamical variables, independent of spectral
??? ζ. The coefficient functions P , Q, R do depend on ζ and are functionals of
q(x, t), r(x, t).

Compatibility

σ3
∂

∂x
φ = (qσ+ − rσ− − iζφ)
⇒
∂

∂x
φ = (qσ+ + rσ− − iζσ3)φ

Take ∂
∂t .

A tedious calculation writes
∂

∂t

∂

∂x
φ = (A1σ+ +A2σ− +A3σ3 +A4I)φ

∂

∂x

∂

∂t
φ = (B1σ+ +B2σ− +B3σ3 +B4I)φ

A4 = B4 comes out in the wash.

Compatibility requires

A1 = B1 → qt = Px + 2qR+ 2iζP
A2 = B2 → rt = Qx − 2rR− 2iζQ
A3 = B3 → Rx = qQ− sP.
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We can write the compatibility condition:

L =
∂

∂x
−A(x, 3) =

∂

∂x
− qσ+ − rσ− + iζσ3

B = Pσ+ +Qσ− +Rσ3.

Compatibility requires
∂L

∂t
= [B,L].

Example: Choose r = 6. The rt equation gives

R =
1
12
Qx −

iζ

6
Q.

The Rx equation gives

P =
1
6

8Q− 1
72
Qxx +

iζ

36
Qx.

Using these in the qt equation becomes

qt = − 1
72
Qxxx +

1
3
qQx +

1
6
qxQ−

ζ2

18
Qx.

If we choose to write q = − 1
36u(x, t), this becomes

ut =
1
2

(
D3 +

1
3

(Du+ uD)
)
Q+ 2ζ2DQ

which encodes the kdV hierarchy with appropriate choices of Q.

Example: Choose q(x, t) =
√
κψ̄, r(x, t) =

√
κψ, κ ∈ R. Since q = r̄, consistency

of the qt, rt equations requires that

Q = (sgn κ)P̄ .

If we choose
R = 2iζ2 + iκψ̄ψ,

we obtain that

Q = i
√
κψx − 2ζ

√
κψ (using Rx eq. and Q = (sgn κ)P̄ ).

What do the rt, qt equations give? rt equation →
√
κψt = i

√
κψxx − 2

√
κψx − 2(

√
κψ)(2iζ2 + iκψ̄ψ)− 2iζ(i

√
κψx − 2ζ

√
κψ)

√
κψt = i

√
κψxx − 2iκ3/2|ψ|2ψ.

iψt + ψxx − 2
√
κ|ψ|2ψ = 0

Exercise: Let r(x, t) = −q(x, t) = 1
2wx(x, t). Let P = Q = i

4ζ sinw. Verify, using
qt, rt, Rx equations that

R =
i

4ζ
cosw

and
wx,t = sinw (sine-gordon equation).

Note:
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r = q =
1
2
wx

Q = −P =
i

4ζ
sinhw

⇒ R =
i

4ζ
coshw

wxt = sinhw (sinh-gordon equation).

Various nonlinear PDE can be formulated as compatibility conditions between

• a time dependent problem
• a time dependence of the eigenfunctions

∣∣∣∣⇒ time invariance of eigenvalues.

This perspective unifies various integrable equations as isospectral flows.

8. Wellposedness

Remark 8.1. Physical considerations motivate our interest in a wider class on non-
linear wave equations than those to which IST applies. To what extent is the
phenomena we observe via IST in integrable cases an expression of the underly-
ing integrability vs. the general behavior of nonlinear wave equations? To begin
to answer this, we first need to construct the solutions somehow using a different
technique than IST.

8.1. Local Wellposedness. ODEs, typical properties of proofs, initial value prob-
lem, initial-boundary value problem periodic initial value problem. Scaling heuris-
tic, sharp LWP problem

The integrable cases have “formulae” giving the solution of an initial value prob-
lem in terms of the initial data. This appears to be more than can be hoped for in
the nonintegrable case. We will be interested in wellposedness properties of

kdVp

{
∂tu+ ∂3

xu+ ∂x

(
1
p+1u

p+1
)

= 0

u(x, 0) = φ(x)
u : R× [0, T ]→ R

NLGp

{
i∂tu+ ∆u± |u|p−1u = 0
u(x, 0) = φ(x)

u : Rd × [0, T ]→ C .

ODE wellposedness. The initial value problem for an ODE is

ẏ = f(t, y) y(t) = y0 (∗)
Basic issues: Does the solution exist? If so, for how long? Is it unique? Does

it depend continuously on the initial data y0?
Examples. {

ẏ = y2

y(0) = a
has solution y(t) =

1
a− t

.

This shows solutions can exist and not be global in time.{
ẏ = y

1
3

y(0) = 0
has solution y(0) = 0 .
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But y(t) = αt3/2 is also a solution. This shows solutions are not necessarily unique.

Theorem. If f(t, y) is continuous and satisfies a Lipschitz condition for y in
a domain D, then for (t0, y0) ∈ D, there exists a unique exact solution at (∗) for
|t− t0| ≤ h, with h > 0 appropriately small.

Exercise. Write out a proof of this theorem using the Picard Contraction
Mapping Theorem. References: Arnold ODE, Hurewicz, Coddington-Levinson.

Recall that a Lipschitz function satisfies
|f(t, y1)− f(t, y2)| ≤M |y1 − y2|.

Idea.

y(t) = y0 +
∫ t

1

f(τ, y(τ))dt

Build a sequence of approximate solutions {yj},

y0(t) = y0

yj+1(t) = y0 +
∫ t

0

f(τ, yj(t))dτ .

Show yj is Cauchy,

‖yj+1 − yj‖ ≤ ‖
∫ t

0

f(τ, yj(τ))dτ −
∫ t

0

f(τ, yj−1(τ))dτ

≤ T sup
τ
‖f(τ, yj(t))− f(τ, yj−1(τ))‖

≤ TM︸︷︷︸
make small

‖yj − yj−1‖ .

Definition. The initial value problem (KdVp) is wellposed on the time interval
[0, T ] for data in H if there exists a uniquely defined continuous map

H 3 φ 7→ u ∈ X

with X ⊂ C([0, T ];H) and u “solves” KdVp. If T < ∞, the problem is locally
wellposed (LWP). If T may be taken arbitrarily large, the problem is said to be
globally wellposed (GWP). A similar definition applies to (NLSp).

Remarks.
(1) Rough spaces H require a careful notion of “solves”.
(2) Two notions of continuity in definition.
(3) Typical proofs of LWP have T ∼ ‖φ‖−αH , α > 0. In particular, big data

has a short lifetime.
(4) GWP in H follows from LWP if ‖u(t)‖H is bounded. How can we prove a

globalizing estimate ‖u(t)‖H < c(φ) ∀t? Often this is done by exploiting
the available conserved quantities. Available conserved quantities usually
involve L2 or H1 norms and therefore we encounter difficult issues in LWP
proof since such fractions are so rough.

(5) There are various strengthenings or relaxations of the definition. For ex-
ample φ 7→ u mapping H 7→ X may be better than continuous. Perhaps
u(t) is better than the function space H, etc.
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(6) There are other natural problems to consider other than the initial value
problem (KdVP) or the line above. For example, the periodic initial value
problem and various initial boundary value problems may naturally occur
in applications or due to curiosity.

8.2. Energy/compactness method. Construction of approximate solutions
Bounds =⇒ compactness
extract subsequence, Gronwall implies uniqueness

Energy method
The general theory of parabolic PDE shows (find ref: Temam?, Bona-Smith?){

∂tu
ε + ∂3

xu
ε + ∂x

(
1
p+1uε

p+1
)

= −ε∂4
xu

ε

u(x, 0) = φ(x)

has solutions. There is nothing terribly special about the 4th order parabolic term.
In fact, we could proceed with a standard second order regularization or boost the
power even higher. Moreover

∂t

∫
R

(uε)2dx = −ε
∫

R
(∂2
xu)2dx < 0

⇒ {uε} is uniformly bounded in L2. A similar calculation shows {uε} is uniformly
bounded in H1. Therefore, {uε} is compact in L2 and has a convergence subse-
quence {uε′} but {uε′} may not be uniquely defined.

This procedure of using compactness gives a rather quick and cheap proof of
existence of solutions obtained as limits of a natural sequence of approximations.
This leave uniqueness as an unresolved issue.

Uniqueness (via Gronwall inequality). Let u, ũ be two solutiosn of KdV. Form
w = u− ũ. Then w satisfies

∂tw + ∂3
xw = ũũx − uux

= −wwx + wũx − ũwx .
Multiply by w and integrate,

∂t

∫
R
w2dx+

∫
R
w∂3

xw dx = −
∫

R
w2wx dx+

∫
R
w2ũx − ũ wwx dx.

Integration by parts then reveals that

∂t

∫
R
w2dx =

∫
R
w2(ũx + ũx) dx

≤ C

∫
R
w2 .

(provided we assume enough regularity).

Gronwall inequality. If F ′ ≤ cF , F ≥ 0 and F (0) = 0 then F ≡ 0. Prove
this as an exercise.

Therefore if φ → u and φ 7→ ũ then w(0) = 0 ⇒
∫
w2(0)dx = 0, so, provided

‖ũx‖L∞ ≤ C, we know that w ≡ 0⇒ u = ũ which proves uniqueness.

Intuition behind the selection of the spaces involved in fixed point approach.
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Initial data space. What space(s) are scaling invariant? Not all problems have
a scaling structure.
• sp = 1

2 −
2
p : heuristic for ill posedness of s < sp.

• Sharp LWP problem. Find largest space H in which KdV p is LWP. Restrict to
a class of spaces H, e.g. Hs, s ∈ R.  extra information due to Sharpnesss, dy-
namical insights. mathematically natural problem. counterexamples to multilinear
estimates are related to weak turbulence wave resonances.

What spaces enjoy a globalizing estimate?
• Interpolation argument for energy conservation ⇒ globalizing estimate
• This question distinguishes problems with likely GWP from those with possible
blow-up.

What spaces have the algebra property?
• Stabilize the mapping properties for the nonlinearity.

u 7→ uP

u 7→ ∂xu
P , etc.

for all fixed t.
• Perhaps we can succeed at lower regularity by taking advantage of space-time
norms?

Space-time Space

8.3. Modular estimates for fixed point argument. Duhamel’s principle
Homogeneous problem estimates
Inhomogeneous problem estimates
Nonlinear bridge estimate
Contraction estimate
Example: KdVp following [13] smoothing effect & flow property  maximal
function

Modular decomposition and associated estimates
Homogeneous problem

(8.1)
{
∂tw + ∂3

xw = 0
w(0) = φ

w(0) =
∫
ei(xξ+tξ

3)φ̂(ξ)dξ

‖w‖X ≤ ‖φ‖H homogeneous estimate

Inhomogeneous problem

(8.2)
{
∂tv + ∂3

xv = h
w(0) = 0

v(x, t) =
∫ t

0

S(t− t′)h(x, t′)dt′

‖v‖X ≤ ‖h‖B inhomogeneous estimate
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Nonlinear problem

∂tu+ ∂3
xu+N(u, ∂x) = 0 ⇔ u(t) = S(t)φ−

∫ t

0

S(t− t′)N(u, ∂x)(t′)dt′

where the part after the ⇔ is an integral equation and v(0) = φ.
Fixed point estimate requires Nonlinear bridge estimate:

‖N(u, ∂x)‖B ≤ Ñ(‖u‖X).

Contraction mapping approach to LWP. The initial value problem KdVp
is equivalent to the integral equation (Duhamel’s formula)

v(t) = S(t)φ−
∫ t

0

S(t− τ)
(
∂x

[
1

p+ 1
up+1

]
(τ)
)
dτ .

We wish to find a function u : R× [0, T ]→ R which satisfies this integral equation.
This equivalence lets us define our notion of solution as one which satisfies the
integral equation.

Denote the right-hand side by Φφ[u]. We will have found a solution if we find a
fixed-point of Φφ: Φφ[u] = 0.

One way to find that a fixed point exists is to show the mapping is a contraction
on a Banach space. That is, we’d like to show

‖Φφ[u]− Φφ[v]‖ L ≤ θ‖u− v‖ L , 0 < θ < 1 .

Then, the Picard fixed-point theorem ⇒ ∃!u ∈  L such that Φφ[u] = u.
A necessary condition for Φφ to be a contraction on  L is that it map bounded

subsets of  L into bounded subsets of  L. Let’s first try to find an approach to verify
this simpler property.

Let φ ∈ H. Let u ∈  L. Form

Φφ[u] = S(t)φ−
∫ t

0

S(t− τ)
(
∂t

1
p+ 1

up+1(τ)
)
dτ .

Prove ‖Φφ[u]‖ L <∞.
This probably requires us to show that ‖S(t)φ‖L ≤ c‖φ‖H (linear homogeneous

estimate).

‖
∫ t

0

S(t− τ)
(
∂x

1
p+ 1

up+1(τ)
)
dτ‖ L ≤ c‖u‖p+1

 L

(nonlinear estimate). (Lp, Hs as  L look hopeless.)
The nonlinear estimate can be attacked in two stages: ∂tu+∂3

xu = f and u(0) = 0
has solution u(t) =

∫ t
0
S(t− τ)f(τ)dτ . Suppose we prove

‖
∫ t

0

S(t− τ)f(τ)dτ‖ L ≤ ‖f‖B

(linear inhomogeneous estimate). Then we’d like to show there is a nonlinear bridge
estimate

‖∂x up+1‖B ≤ c‖u‖p+1

 L
(nonlinear estimate).

Strategy: Prove all the linear estimates we can. Pray these estimates “match
up” to build a bridge (Kenig-Ponce-Vega).
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How should we choose  L and B? We want LWP in H1 and then we plan to
iterate to get GWP. We want

u ∈ C([0, T ];H ′
x) ⊂ L∞([0, T ];H ′

x) “flow property”∥∥∥∥∥
∥∥∥∥∂x ∫ t

0

S(t− τ)(∂xu2)(τ)dτ
∥∥∥∥
L2

x

∥∥∥∥∥
L∞T

Cauchy-Schwarz

∥∥∥∥∥∥
∥∥∥∥∥
(∫ t

0

12dτ

) 1
2
(∫ t

0

|S(t− τ)(u∂2
xu(τ))|2dτ

) 1
2
∥∥∥∥∥
L2

x

∥∥∥∥∥∥
L∞T

We have chosen to concentrate on the term with all derivatives landing on one
function since it is probably the worst.∥∥∥∥∥

(∫∫ t

0

|u∂2
xu|2dτ dx

) 1
2
∥∥∥∥∥
L∞T

=

(∫ T

0

∫
|u∂2

xu|2dx dτ

) 1
2

⇒ flow through H ′  B = ‖ ‖L2
TH

1
x
. In particular, the flow property naturally

leads us to the space L2
TH

1
x as a candidate for the norm on the inhomogeneity.

We have to swallow one extra derivative. Recall the Kato smoothing estimate:

‖∂x∂xS(t)φ‖L∞x L2
t
≤ ‖∂xφ‖L2

x(∫ T

0

∫
|u∂2

xu|2dx dτ

) 1
2

=

(∫
x

∫ T

0

|u|2 |∂2
xu|2 dτ dx

) 1
2

≤

(∫
x

‖u‖2L∞T

∫ T

0

|∂2
xu|2dτ dx

) 1
2

≤ ‖∂2
xu‖L∞x L2

t

(∫
x

‖u‖2L∞T dx
) 1

2

= ‖∂2
xu‖L∞x L2

t
‖u‖L2

xL
∞
t ∈[0,T ]

The flow property and the Kato smoothing estimate have led us to another norm,
the maximal function norm, and together these norms define a space in which we
may possibly be able to prove a contraction estimate.

Summarizing, suppose y : R× [0, T ]→ R satisfying

‖y‖L∞T H′x + ‖y‖L2
xL

∞
T

+ ‖Dx∂xy‖L∞x L2
T
< c

Then y∂xy ∈ L2
T H

1
x.

We need to verify that the maximal function estimate ‖S(t)φ‖L2
xL

∞
T
≤ cT ‖φ‖H′x

is valid to continue with this approach. This can be done. do it!(∫ ∞

−∞
sup

t∈[−T,T ]

|S(t)φ(x)|2dx

)
≤? cT ‖φ‖H′x

One can show in fact a stronger estimate ∞∑
j=−∞

sup
|t|≤T

sup
j≤x<j+1

|S(t)φ(x)|2
 ≤ cT ‖φ‖HS



66 J. E. COLLIANDER

provided s > 3
4 . Combining all this stuff gives

Theorem (Kenig-Ponce-Vega, 1991). KdVp is LWP in Hs, s > 3
4 . And, there

are refinements of s based on p. In particular
p = 1 s > 3

4

p = 2 s ≥ 1
4

p = 3 s ≥ 1
12

p = 4 s ≥ 0
p ≥ 4 s ≥ Sp (the scaling exponent)

.

Consider the initial value problem{
∂tu+ ∂3

xu+ u∂xu = 0
u(0) = t ∈ Hs(R)

⇔ u(t) = S(t)φ−
∫ t
0
S(t− τ)(u∂xu(τ))dτ (:= Φφ[u], seek fixed point in some space

X) where S(t)φ(x) =
∫
ei·(x·ξ+tξ

3)φ̂(ξ)dξ.
For Φφ to be a contraction it must be bounded. Therefore we’ll need the space

 L to satisfy

‖S(t)φ‖ L ≤ c‖φ‖Hs linear homogeneous

{
∂tu+ ∂3

xu = 0
u(0) = φ

‖
∫ t

0

S(t− τ)(u∂xu(τ))dτ‖ L ≤ c‖u‖2 L

We break the second estimate into two pieces

‖
∫ t

0

S(t− τ)(f(τ))dτ‖ L ≤ c‖f‖B linear inhomogeneous

{
∂tu+ ∂3

xu = f

u(0) = φ

‖u∂xu‖B ≤ ‖u‖2Λ nonlinear bridge estimate

Last time we discussed the Kenig-Ponce-Vega approach to selecting  L, B. We want
u ∈ C([0, T ];HS(Rx)) ⊂ L∞([0, T ];HS(Rx)) so we verified

‖S(t)φ‖L∞T Hs
x
≤ c‖φ‖Hs

x

‖
∫ t

0

S(t− τ)f(τ)dτ‖L∞T Hs
x
≤ cT ‖f‖L2

TH
s
x

Our attention focussed on the bridge

‖Ds
x(u∂xu)‖L2

TL
2
x
≤ ‖uDs+1

x u‖L2
TL

2
x

+other ≤Hölder ‖u‖L2
xL

∞
T
‖Ds+1

x u‖L∞x L2
T

+other

This identifies  L = L2
xL

∞
T ∩ L∞x L2

T (Ds
x) ∩ L∞T Hs

x∩ (other).
To close the circle for iteration requires proving the linear homogeneous esti-

mates/properties

‖s(t)φ‖ L2
x L

∞
T

L∞x L2
T (Ds

x)
L∞T Hs

x

(other)

≤ ‖φ‖Hs
x
 KdV LWP in Hs(R), S > 3

4
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Not surprisingly, the proofs of each of these estimates follow from the explicit form
of

S(t)φ(x) =
∫
ei(xξ+ξ

3t)φ̂(ξ)dξ

Remark. A basic part of the strategy of [KPV] is to show the nonlinearity is a
“small” effect compared to the linear part or “small” time intervals. The choice of
the space  L is made to allow us to view the nonlinearity as a “small perturbation”
of the linear flow. Note that the basic property of the linear solution is that its
space-time Fourier transform is suported on the set {(ξ, λ) : λ = ξ3}.

We’d like to introduce a new space which
• captures the linear homogeneous properties which follow from “lives on

cubic”
• flexibly allows us to treat nonlinearities or perturbations.

These motivations led J.Bourgain to introduce the two-parameter spaces Xs,b with
norm

‖w‖Xs,b
=
(∫∫ ∣∣(1 + |ξ|)s(1 + |λ− ξ3|)b |û(ξ, λ)|

∣∣2 dξ dλ)
Sobolev estimates⇒ Xs,b ⊂ C([0, T ];Hs(R)) provided b > . We will take  L = Xs,b;
b = 1

2+. We need to verify

(8.3) ‖S(t)φ‖Xs,b
≤ c‖φ‖Hs

x

(8.4) ‖
∫ t

0

S(t− τ)(u∂xu(τ))dτ‖Xs,b
≤ c‖u‖2Xs,b

S(t)φ(x) =
∫
ei(x·ξ+tξ

3)φ̂(ξ) =
∫∫

ei(xξ+tλ)φ̂(ξ)δ{λ=ξ3}(λ)dξ dλ

⇒ (S(t)φ) L(ξ, λ) = φ̂(ξ)δ{λ=ξ3}(λ)(∣∣∣∣∫∫ (1 + |ξ|)s(1 + |λ− ξ3|)b φ̂(ξ)δ{ξ=ξ3}(λ)
∣∣∣∣2 dξ dλ

)

=
(∫
|(1 + |ξ|)sφ̂(ξ)|2dξ

)
‖S(t)φ‖Xs,b

≤ c‖φ‖Hs
x

so (1)

To check (2), let’s split it up as before by first considering

‖
∫ t

0

S(t− τ)f(x, τ)dτ‖Xs,b
≤ c‖f‖B

and then
‖u∂xu‖B ≤ c‖u‖2Xs,b

What is B?
Informally,

∫ t
0
S(t−τ)f(x, τ)dτ is the solution of (∂t+∂3

x)v = f . v = (∂t+∂3
x)−1f

?
Taking Fourier transforms

i(λ−K3)v̂(K,λ) = f̂(K,λ)

⇒ f̂(K,λ) =
1

i(λ−K3)
f̂(K,λ)
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so ‖v‖Xs,b
≤ ‖f‖Xs,b−1 . More formally,∫ t

0

S(t− τ)f(x, τ)dτ =
∫ t

0

(∫∫
ei(Kx+λτ) eiK

3(t−τ)f̂(K,λ) dK dλ

)
dτ

=
∫∫

ei(Kx+K
3t)

∫ t

0

ei(λ−K
3)τ dτ︸ ︷︷ ︸

ei(λ−K3)t−1
i(λ−K3)

=
∫∫

ei(Kx+λt)
f̂(K,λ)
i(λ−K3)

dK dλ+
∫∫

ei(Kx+K
3t) f̂(K,λ)

i(λ−K3)
dK dλ

Matters are now focussed on proving the nonlinear bridge estimate.

‖u∂xu‖Xs,b−1 ≤ ‖u‖2Xs,b
, b = + , which S?

Bourgain proved this estimate holds for s ≥ 0 ⇒ LWP of KdV in L2(R). Kenig-
Ponce-Vega proved this estimate holds for s > − 3

4 ⇒ LWP in Hs(R), but fails for
s < − 3

4 .

Remark. In Chapter 3 of the typed lecture notes, there is a small section called
“Fourier mode perspective on nonlinear dispersive waves”. The definitionn of the
space Xs,b and th eproof of the bilinear estimate

‖∂xuv‖Xs,b−1 ≤ c‖u‖Xs,b
‖v‖Xs,b

rigorizes some of that discussion.

8.4. Dispersive Estimates. Fourier Restriction Phenomena
Stein-Tomas Theorem
Strichartz Estimates
Smoothing Effect
Oscilliatory integrals and estimates
Periodic Strichartz estimates and conjectures
Exponential sums
Bourgain’s relaxed Strichartz estimates
F(f) =

∫
Rd e

−ix·ξf(x)dx Fourier transform

HY :
F : L1 7−→ L∞ F(L1) 7−→ C0 ∩ L∞
F : Lp 7−→ Lp

′ F(Lp) ? Lp
′

F : L2 7−→ L2 F(L2) = L2

F(L1) distinguishes itself from L∞ by pointwise restriction property :

∀x0 ∈ Rd, L1 3 f 7→ F(f)|x0 ∈ R is bounded
L∞ 3 g 7→ g|x0 is not even defined

Q: Does F(Lp) distinguish itself from Lp
′

through its restrictability to certain
measure zero sets?

Given S ⊂ Rd, |S| = 0, suppose A = {f : S → C | ‖f‖A(s) < ∞} is a class of
functions in S. We say that Lp has A-Fourier Restriction property to S if

(∗) ‖F(f)|S‖A . ‖f‖Lp , ∀ f ∈ Lp .
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Denote by F (S, P,A) the condition (∗).
F (x0, 1, “C∞”) — ok

F (?, 2, ?) — fails
Collapse to S = hypersurface ⊂ Rd.
Lebesgue measure on Rd induces natural surface measure on S: dσ.
Various function spaces may be defined using dσ: L1(s; dσ).

F (S, P, Lqloc(dσ)) := F(S, P, q) .

Stein observed: Lp has L2(dσ)-Fourier Restriction property for hypersurfaces
with appropriate curvature for certain p > 1.

F (Scurved, P, 2)

A “hypersurface” in R1 is a point but F (x0,∀ p > 1, ?) fails.
⇒ F (affine ⊂ Rd,∀ p > 1, ?) fails. This shows “flatness” is the enemy.

Knapp homogeneity argument.
S = {xd = |x′|2 = x2

1 + x2
2 + · · ·+ x2

d−1} parabolaid. Suppose dn is drawn,

f̂δ = χQs

µ(Qs) ∼ δd−1

µ(suppQs) ∼ δd+1

(drawing)
1 ≤ p ≤ 2

‖fs‖p ∼ ‖f̂s‖p′ ∼ δ
d+1
p′

‖f̂s|s‖q ∼ δ
d−1

q

F (s, p, q) requires δ
d−1

q . δ
d+1
p′ ∀ δ > 0, ⇔ 1 ≤ p ≤ q(d+ 1)

q(d+ 1)− (d− 1)
.

“Higher flatness” Knapp example (drawing:)

F (sk, p, q) requires 1 ≤ p ≤ q(d− 1 + k)
q(d− 1 + k)− (d− 1)

.

In the hypersurface setting and with q = 2,
decay of µ̂ implies F (S, P, Z) for certain 1 < P .
S has nonvanishing Gaussian curvature if det(∂2

ijφ) 6= 0
where S = {x ∈ Rd : xd = φ(x1, . . . , xd)}.

Theorem. S has nonvanishing Gaussian curvature. σ is natural induced surface
measure in S. dµ = ψdσ, ψ ∈ C∞0 .

|µ̂|(n) ≤ C|n|−
(d−1)

2 .

proof. Localization, stationary phase, Mouse Lemma.
Stein-Tomas. S ⊂ Rd is a hypersurface w.n.vv.g.c.

⇒ F (S, P, 2) for 1 ≤ p ≤ 2(n+1)
n+3 , i.e.(∫
|f̂(ξ)|2dµ(ξ)

) 1
2

≤ Cp,q‖f‖Lp(Rn) .
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proof. Note based entirely on the decay proeprty, does use hypersurface.
P.Tomas argument:∫

|f̂ |2dµ =
∫
f̂

¯̂
f dµ =

∫
f̂
'̂
f dµ =

∫
(f∗

'
f )∧ dµ =

∫
f∗

'
f dµ̂

=
∫ ∫ '

f (x− y)f(y)dyd̂µ(x)dx

=
∫
f(y)

∫
f̄(y − x)d̂µ(x)dy =

∫
f f̄ ∗ µ̂

≤ ‖f‖p ‖f̄ ∗ µ̂‖p′ .
reduced to ‖f ∗ µ̂‖p′ ≤ ‖f‖p.
Rf(T ) =

∫
R∧ e

−ix·ξ f(x)dx for ξ ∈ S.
Our question is: R : Lp(Rn)→ L2(dµ) ?
Formal adjoint of R is R∗f(x) =

∫
S
eix·ξf(ξ)dµ(ξ) for x ∈ R?

〈Rf,Rf〉L2(S,dµ) = 〈R∗Rf, f〉L2(Rn)

Holder
≤ ‖R∗Rf‖Lp′ (Rn)‖f‖Lp(Rn)

But

R∗Rf(x) =
∫

Rn

∫
S

eiξ·(x−y)dµ(ξ)f(y)dy

=
∫

Rn

µ̂(x− y)f(y)dy = µ̂ ∗ f(x)

Let Tf = µ̂ ∗ f(x). Show T : Lp → Lp
′
.

A decomposition of Rd (Littlewood-Paley).
B1 = {x ∈ Rd | |x| < 1}

A0 = {x ∈ Rd | 1 ≤ |x| < 2}
Aj = {x ∈ Rd | x2j ∈ A0}

Tf = µ̂ ∗ f = (χB1 +
∑
j

χAj
)µ̂ ∗ f = K−1 ∗ f +

∞∑
j=0

Kj ∗ f

K−1 = (χB1 µ̂ ∈ L1 ∩ L∞ ⇒ ‖K−1 ∗ f‖p′ ≤ C‖f‖Lp .

(Young’s inequality: ‖g ∗ h‖Lr ≤ ‖q‖Lq ‖h‖Lp
1
r = 1

p + 1
q − 1.)

We make two estimates

‖Kj ∗ r‖L∞ ≤ ‖Kj‖∞ |f‖1
‖Kj ∗ f‖L2 ≤ ‖K̂j‖L∞‖f‖L2 ← interpolate

‖Kj‖∞ = ‖χAj µ̂‖∞ ≤ (2j)−
(d−1)

2 = 2−
j(d−1)

2 using decay

‖K̂j‖∞ = ‖χ̂Aj ∗ µ‖i = 2id‖χ̂A0(2j ·) ∗ µ‖Li ≤ 2jd 2−j(d−1)∫
χB2−j (x− y)dµ(y) — hypersurface measure charges B2−j by at most (2−j)d−1

Tjf = Kj ∗ f

Tj : L1 → L∞ ‖Tj‖1,∞ ≤ 2−j
d−1
2

Tj : Lp → Lp
′ ‖Tj‖p,p′ ≤ 2−j

d−1
2 tanh2j(1−tanh)

Tj : L2 → L2 ‖Tj‖2,2 ≤ 2j
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Pick tanh such that tanh
(

1−d
2

)
+ (1− tanh) < tanh⇒ tanh > 2

d+1 ⇒ p < 2(d+1)
d+3

Q: Does F(Lp) distinguish itself from Lp
′

by a restriction property to certain
measure zero sets? M.Christ pointed out to me that the answer is yes.
∃ measures µ on Rd such that

suppµ ⊂ E with |E| = 0 (in fact, dimH E < d), µ decays.
Hausdorff dimension property replaces “hypersurface property” in controlling

‖K̂j‖L∞
for bounding ‖Kj ∗ f‖L2 . Decay property is as before and controls ‖Kj‖L∞ for
bounding
‖Kj ∗ f‖L∞ .
→ Flexibility in contructing µ permits finding a distinction between F(Lp) and

Lp
′

∀ 1 ≤ p < 2.
Gerd Mockenhaupt
Stern-Tomas. For a hypersurface S ⊂ Rd with nonvanishing Gaussian curva-

ture and ψ ∈ C∞0 (Rd), we have for 1 ≤ p ≤ 2(d+1)
d+3

(
∫
S

|f̂(ξ)|2ψ(ξ)dσ(ξ))
1
2 ≤ Cp‖f‖Lp(Rd)

The duality inequality reads

‖
∫
S

eix·ξφ̂(ξ)ψ̃(ξ)dσ(ξ)‖Lp′ (Rd) ≤ c‖φ̂‖L2(ψdσ)

2(d+ 1)
d− 1

≤ p′ ≤ i

For Schrödinger applications, we desire the dual inequality without the cutoff func-
tion. We will find that such an inequality is only possible for p = 2(d+1)

d−1 .
Rescaling argument. Let φ̂ be supported on the vast ball B1. We know that

(∗) ‖
∫

Rd−1

ei(x
′·ξ′+xd|ξ′|2 φ̂(ξ′)dξ′‖Lp(Rd) ≤ C‖φ̂‖L2(Rd−1)

Replace φ̂(ξ′) by φ̂σ = φ̂
(
ξ′

σ

)
. Note that suppφ̂

( ·
σ

)
⊂ Bσ. We change variables to

see if (∗) is invariant w.r.t. σ.
Q: ‖

∫
Rd−1

ei(x
′·ξ′+xd|ξ′|2 φ̂σ(ξ′)dξ′‖Lp(Rd) ≤ C‖φ̂σ‖L2(Rd−1) ?

Re-express right-hand side:

‖φ̂r‖L2(Rd−1) = (∫
|φ̂
(
ξ′

σ

)
|2dξ′) 1

2

y′ = ξ′

σ
σd−1dy′ = dξ′

= σ
d−1
2 ‖φ̂‖L2(Rd−1)
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Re-express left-hand side:

‖
∫
ei(x

′·ξ′+xd|ξ|2)
φ̂
(
ξ′

σ

)
dξ′

y′ = ξ′

σ
σd−1dy′ = dξ′

dξ′‖L2(Rd
x)

σd−1‖
∫
ei(σx

′·y′+σ2xd|y′|2)φ̂(y′)dy′‖Lp′ (Rd
x)

z′ = σx′ zd = σ2xd
dz′ = σd−1dx′ dzd = σ2dxd
σ−(d+1)dz = dx

σd−1 σ−(
(d+1)

p )‖
∫
ei(z

′·y′+zd|y′|2)φ̂(y′)dy′‖Lp′ (Rd
z)

We want

σd−1 σ−(
(d+1)

p )‖ ‖Lp′ (Rd
z) ≤

? σ
d−1
2 ‖φ̂‖L2(Rd−1) ∀ large σ

This requires that
σ
d−1− d+1

p′ = σ
d−1
2 for large σ

d− 1
2
− d+ 1

p′
= 0⇒ p′ =

2(d+ 1)
d− 1

Proposition (Strichartz Inequality for Paraboloid.)

‖
∫

Rd

ei(x·ξ+t|ξ|
2)φ̂(ξ)dξ‖

L2+ 4
d (Rd

x×R1
t )
≤ C‖φ‖L2(Rd) .

Recall that
{
i∂tu+ ∆u = 0
u(0) = φ x ∈ Rd is solved by

S(t)φ(x) =
∫

Rd

ei(x·ξ+t|ξ|
2)φ̂(ξ)dξ

so
‖S(t)φ‖

L2+ 4
d (Rd

x×R1
t )
≤ C‖φ‖L2(Rd) .

It is also clear that we have the unitarity property of the flow in L2

‖S(t)φ‖L∞t L2
x
≤ c‖φ‖L2x .

Interpolation implies then that (genralized stochastic inequalities)

‖S(t)φ‖Lq
tL

r
x
≤ c‖φ‖L2x ∀q, r

satisfying 0 ≤ frac2q = 2
d −

d
r < 1. Exponents q, r satisfying these conditions are

said to be admissible.
Some functional analysis implies inhomogeneous Strichartz estimates. Let

(q1, r1) and (q2, r2) each be admissible pairs. Then

‖
∫ t

0

S(t− t′)f(x, t′)dt′‖Lq1
t∈IL

r1
x
≤ cI‖f‖

L
q′2
t L

r′3
x

.

In particular,

‖
∫ t

0

S(t− t′)f(x, t′)dt′‖
L

z+ 4
d

x,tε

≤ ‖f‖
2d+4
d+4
x,t .
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Application. Cubic NLS on R2 is LWP in L2.{
i∂tu+ ∆u± |u|2u = 0
u(0) = φ x ∈ R2

⇔ 0(t) = S(t)φ∓
∫ t
0
S(t− t′)(|u|2)(t′)dt′.

RHS := Φφ[u]. Φφ : (bounded subsets of L4
x,t∈I) → (bold subsets of L4

x,t∈I).

‖Φφ[u]‖L4
x,t

≤ ‖S(t)φ‖L4
x,t

+ ‖
∫ t

0

S(t− t′)(|u|2u)(t′)dt′‖L4
x,t

≤ ‖φ‖L2
x

+ ‖ |u|2v‖
L

4/3
xt∈I

≤ ‖φ‖L2
x

+ ‖u‖3L4
x,t∈I

Periodic Strichartz Inequalities
Problem. Let d ≥ 1, let S ⊂ Zd and q > 2. Find the optimal constant Kq(S)

(or at least a good estimate) such that

‖
∑
s∈S

û(S) eix·ξ‖Lq(Td) ≤ Kq(S)‖û‖`2(S) .

Remark. For q = 2 this is valid for all subsets S ⊂ Zd by Plancherel. For q > 2,
we are asking for a function on Td to satisfy the unlikely estimate ‖u‖Lq(Td)‖ ≤
‖u‖L2(T) for q > 2, by the knowledge that supp û ⊂ S ⊂ Zd.

Example. Suppose S = {2j : j ∈ N}. Kq(S) is bounded for all q > 2. Recall
the Littlewood-Paley square function Sf(x) = (

∑
j |Sjf(x)|2)

1
2 where Sjf(x) =∑

|k|∈
∑

2j ,2j+1 f̂(k)eikx. Since ‖Sf‖Lq ∼ ‖f‖Lq and |Sjf(x)| = |f̂(2j)|, we have
that

‖f‖Lq ∼

∑
j

|f̂(2j)|2
 1

2

∀ q .

The relationship of this problem to the Schrödinger equation is as follows.
Let us consider Schrödinger’s equation posed on T,{

i∂tu+ ∆u = 0
u(0) = φ x ∈ T

The solution operator is

S(t)φ(x) = f(x, t) =
∑
m∈Zd

φ̂(µ) ei(µx+µ
2t) .

The set Sd = {(µ, µ2) : µ ∈ Zd} ⊂ Zd+1 and we wonder if

‖f‖Lq(Td+1) ≤? kq(Sd)‖φ‖L2(T) ?

Notice this is a Strichartz type inequality.
Sometimes no finite kq(Sd) may exist. For such a situation, we may inquire

about a truncated version of the inequality. Define Sn = S ∩ {supp χN × Z}
where χN = χ{m∈Zd:|m|<N}. Then we ask for ‖f‖Lq(Td+1) ≤ Kq(SN )‖φ‖L2(T) when
φ̂ = χN φ̂. In this case we may end up with estimates of the form

‖f‖Lq(Td+1) ≤ Nβ ‖φ̂‖L2(Zd) ∼ ‖φ‖Hβ(Td
x)

where Nβ is a loss and the final term Hβ(Tdx) becomes derivative. Motivated by a
comparison with the standard Strichartz setting and certain explicit cases:
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Periodic Strichartz Conjecture (paraboloid).

Kq(Sd,N )
{
<< N ε for q = 2 + 4

d
Cq q < 2 + 4

d .

Two methods have led to partial progress on this conjecture:
• q = 2S is an even integer, exploit L2 properties

• Tomas argument
L1

L∞
and major-minor arc decomposition

(technical) exponential sums techniques.
Suppose that

f(x, t) =
∑
m∈Zd

ei(mx+m
2t)φ̂(m) .

Suppose φ̂ = χN φ̂ and q = 25.

‖f‖LB(πd+1) =
(∫

πd+1
|fs|2dx

) 1
25

= ‖f‖
1
s

LB(πd+1)
= ‖F(fs)‖

1
s

L2(Zd+1)

F(fs)(m,P ) =
∗∑
φ̂(m1) . . . φ̂(ms)∑∗ over {(m1, . . . ,ms), |mi| < N :

m = m1 + · · ·+ms

p = m2
1 + · · ·+m2

s }
.

Set rm,P = #{ } for fixed N .

‖F(fs)‖2L2(Zd+1) =
∑
m,P

|
∗∑
û(m1) . . . û(ms)|2

≤
∑
m,P

rm,P

∗∑
|û(m1) . . . û(ms)|2

≤ (sup
m,P

rm,P )‖u‖25L2

The problem is therefore reduced to estimating rm,P .

Special case. d = 1, d + 1 = 2, q = 4 = 2.2. Fix and satisfy m,P . Suppose
m1,m2 ∈ Z. How many (m1,m2)? m = m1 +m2, P = m2

1 +m2
2.

Answer: A bounded number independent of N .

⇒ s( · )φ
‖

‖f‖L4(Z2) ≤ ‖φ‖L2(Z)

Hence the application to cubic NLS above also works for periodic case.{
i∂tu+ ∆0 x ∈ Rd

u(0) = φ

u(x, t) = s(t)φ(x) =
∫

Rd

ei(x·ξ+t|ξ|
2)φ̂(ξ)dξ =

∫∫
ei(x·ξ+τt)φ̂(ξ) δ{??=|?|2}d??
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so û(ξ, τ) = φ̂(ξ) δ{t=|ξ|2}(τ).
Strichartz inequality

‖
∫∫

ei(x·ξ+τt)φ̂(ξ) δ{τ=|ξ|2}(τ)dτdξ‖
L

p(d)
xt
≤ c‖φ‖L2

x

Let ψ be a nice cutoff function to, say, [−1, 1].

(ψu)∧ = ψ̂ ∗ û =
∫
ψ̂(τ − τ1)û(ξ, τ1)dτ1

so (ψu)∧ looks like û only smeared out.

⇒ ‖
∫∫

ei(x·ξ+τt)φ̂(ξ)ψ̂(τ − |ξ|2)dτdξ‖
L

p(d)
xt
≤ c‖φ‖L2

x

where ψ ∼ χ[−1,1] only smooth.
How far can we relax the Fourier-support-near-paraboloid property and retain

the same estimate?
We are motivated to consider this because we want as general as possible a

criterion to recognize Lp functions when F.T. properties. In particular, nonlinear
pole have solutions which may not live on the dispersive surface.

Strichartz inequality

‖
∫∫

ei(x·ξ+τt)
a(ξ, τ)

(1 + |τ − |ξ|2|)b
dξ dτ‖

L
P (d)
x,t
≤? c‖a‖L2

ξ,τ
.

Claim: Strichartz ⇒ relaxed Strichartz if b > 1
2 .

Stack up parabolic level sets.
Wave-to-the-general.

∑
`

1
(1 + |`|)b

∫∫
{‖tau−|ξ|2|=`+O(1)}

ei(x·ξ+τt)a(ξ, τ)dξ dτ

=

∥∥∥∥∥∥∥∥∥∥
∑
`

1
(1 + |`|)b

∫∫
|θ|<1

τ=|ξ|2+`+O(2)

φ̂
`,tanh(ξ)︷ ︸︸ ︷

ei(x·ξ+|ξ|
2t)ei`t+tanhta(ξ, |ξ|2 + `+ θ) dξ dtanh

∥∥∥∥∥∥∥∥∥∥
P

≤
∑
`

1
(1 + |`|)b

∫
|θ|<1

‖
∫
eix·2+|ξ|

2t + φ̂`,θ(ξ)dξ‖P︸ ︷︷ ︸
‖φ̂

`,tanh(ξ)‖
L2

ξ

dθ

≤
∑
`

1
(1 + |`|)b

‖ ‖φ̂`,θ(ξ)‖L2
ξ
‖L2

θ

a(ξ, |ξ|2 + `+?)

≤

(∑
`

1
(1 + |ξ|)2h

) 1
2
(∑

`

‖φ̂`,tanh‖
2
L2

ξL
2
θ

) 1
2
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Certainly we also have∥∥∥∥∫∫ ei(x·ξ+τt)
a(ξ, τ)

(1 + |τ − |ξ|2|0
dξ dt

∥∥∥∥
L2

x,τ

≤ ‖a‖L2
ξ,τ

So, by interpolation∥∥∥∥∫∫ ei(x·ξ+τt)
a(ξ, τ)

(1 + |τ − |ξ|2|0
dξ dt

∥∥∥∥
L

p(β)
xt

≤ ‖a‖L2
ξ,τ

for 0 ≤ β ≤ 1
2 t = b and p = p(β) satisfying 2 ≤ p(β) ≤ p(d).

Suppose (1 + |τ − |ξ|2|)βc(ξ, τ) ∈ L2
ξ,τ . Then the preceding may be rewritten∥∥∥∥∫∫ ei(x·ξ+τt)c(ξ, λ)dξ dλ
∥∥∥∥
Lp

xt

≤ ‖(1 + |τ − |ξ|2|)c(ξ, τ)‖L2
ξ,τ

Definition:

‖u‖XS,b
=
(∫∫

(1 + |ξ|)25(1 + |τ − |ξ|2|)2b|û(ξ, τ)|2dξ dτ
) 1

2

Fact: ‖u‖
L

P (β)
x,t
≤ ‖u‖x0,β .

In particular, for the parabolid {(ξ, |ξ|2) : ξ ∈ Rd}, we have

‖u‖
L

P (β)
x,t

≤ ‖u‖x0,b ; b > 1
2 .

p(d) =
2(d+ 2)

d
.

Cubic NLS on R1 LWP in X0,b. L6 vs L4 KdV on R in Xs,b, s ≥ 0.
X ∈ R2 Strichartz inequality: ‖S(t)φ‖L4

xt
≤ c‖φ‖L2

x
.

Rewrite it as
‖(S(t)φ1)(S(t)φ2)‖2L2

xt
≤ c‖φ1‖L2

x
‖φ2‖L2

x
.

Bourgain observed that this bilinear estimate may be refined in the following sense:

Bourgain’s Strichartz refinement. Suppose p̂i ⊂ {ξ : |ξ| ∼ Ni}. Assume N2 ≤
N1. Then

‖(S(t)φN1)(S(t)φN2)‖2L2
xt
≤

(
N2

N1

) 1
2

‖φN1‖L2‖φN2‖L2

∼ ‖∂
1
2
x φN1‖L2‖∂−

1
2

x φN2‖L2 .

(gaining regularity)

8.5. Oscilliatory integrals approach to LWP. The initial value problem
for KdVp on the line
Schrödinger with derivative?
KdV on R+? KP?

Remark 8.2. Nonlinear term is treated via Hölder with this approach.

Remark 8.3. The use of the smoothing estimate restricts this approach to noncom-
pact domains. But does it really given the likely progress on KdV posed on an
interval?
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8.6. Bourgain’s approach to LWP. [3], [?]
Remarks on Duhamel terms

Relaxed Strichartz estimates
L4
xt treatment of cubic NLS

Xs,b treatment of cubic NLS on R, T
Xs,b treatment of KdV on R, T

Remark 8.4. Method applies to polynomial nonlinearities. More general nonlin-
earites may be approximated by polynomials, [3] ?, [?].

Remark 8.5. Detailed Fourier analysis of nonlinear term goes beyond the Hölder
idea in the Oscilliatory integrals approach in special cases where it can be done.

8.7. Multilinear estimates in Xs,b. Bilinear estimate for KdV [14]
Counterexamples
Bourgain’s refined Strichartz estimate
Bilinear estimates for NLS on R [15]
Bilinear estimates for NLS on R2 [6]
Induction on Scales [30]
KPI [?], [?], [?]
Multilinear notation

8.8. Applications of multilinear estimates. Wellposedness
Growth of high Sobolev norms
Correction terms and almost conservation laws

8.9. Global wellposedness. Conservation Law
Bourgain’s high/low frequency technique [4]
I-Method [?], [?]
Correction Terms [?]

9. Long-time behavior of solutions

Remark 9.1. The range of possible behaviors of solutions of nonlinear dispersive
equations is vast. Recurrence, dispersive decay, blow-up, turbulence may occur and
merit prediction and quantification.

9.1. Special solutions and their stability. orbital and asymptotic stability re-
sults. Pego-Weinstein, Martel-Merel, Cuccagna, Tsai-Yau, CKSTT

9.2. Scattering.

9.3. Weak turbulence.

9.4. Open questions?

10. Blow-up behavior

10.1. Physical relevance of blow-up analysis.
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10.2. Existence of singular solutions of NLS.
• Glassey’s argument
• Explicit singular solutions via conformal transformation

10.3. NLS blow-up.
• L2 mass concentration
• upper/lower bounds on rate of blow-up?
• stability of blow-up?

10.4. Zakharov system blow-up.

10.5. KdV blow-up.

11. Infinite Dimensional Hamiltonian Systems

11.1. Invariant Measures. [4]

11.2. Symplectic Capacities. [4]

11.3. Kolmogorv-Arnold-Moser Theory. [4]

11.4. Aubry-Mather Theory?

11.5. Arnold Diffusion? Nekorochev Estimates?
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