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I. Physical context

I Fluid domain : Two layers of immiscible fluid of different
densities separated by a interface. Idealization of a fluid
with a sharp variation in temperature or salinity.

I Large amplitude - long wavelength nonlinear waves can be
generated at the interface and they can propagate over
large distances.
Internal waves are generated for example when tides cause
water to move over submerged mountains on the ocean floor.
Cold water from the bottom gets pushed up over the ridge and
sets up a disturbance.

I Early measurements [ Perry-Schimke (1965) ] in the
Andaman sea : Groups of internal waves up to 80m high,
2000 m long on the main thermocline at 500 m in water
1500 m deep.



Figure: Bathymetry map of the Andaman sea



Figure: Isotherm contours on Oct. 25, 1976; Internal wave is
materialized by isotherms. Osborne-Burch, ‘Internal Solitons in the
Andaman Sea’, Science, 208 (1980), 451.



I Combination of in situ and remote sensing observations +
progress in detection technology over the last 40 years,
have shown that internal soliton-like waves are common
features of costal oceans.

I On the practical side, internal waves can influence
measurements of currents, undersea navigation,
submerged engineering construction ... They play an
important role in mixing different layers of water in the
ocean.

I They are not directly visible to the observer, but they may
sometimes produce small scale patterns at the surface that
appears as a strip of rough waters, propagating over the
internal wave.
These distinct features on the surface are a signature of
the presence of an internal wave.



Next 2 slides :
Sequence of photographs of the Andaman sea surface taken
from an observation vessel [Oct. 27, 1976] as a rip of rough
waters approaches from the west at a speed of 2.2m/sec .
(Osborne-Burch 1980).



Figure: (a) The rip is seen in the distance, stretching from one
horizon to the other as a well-defined line of breaking waves. The
background sea state preceding the ‘rip’ was ∼ 0.6 m. (b) continues
to approach; (c) the rip has just arrived at the vessel with wave
heights 1.8 m. (d) The vessel is tossed about in the 1.8m waves.



Figure: (e) The rear-ward edge of the rip is visible in 1.8 m waves; (f)
The rear-ward edge of the rip has receded as the wave dropped to
1.3 m; (g) The wave amplitudes have dropped to 0.6 m; (h) The rip
has completely passed as waves dropped to ripples of 0.1 m. : ‘the
mill pond effect’.



Photographs taken from the space shuttle : The ripples induced by
the internal waves have been imaged under the highly incident
light of late afternoon. Under oblique lighting, their presence
gives rise to a differential reflectancy property.

Figure: Photograph taken on May 5, 1985. [ Atlas of Oceanic internal
solitary waves, the Andaman sea; Office of Naval Research, 2002.

]





On a historical note, there is a description of such a
phenomenon in a book by F.M. Maury :
‘Physical Geography of the sea and its meteorology’ (1885)
(quoted in Osborne-Burch 1980)
In the entrance of the Malacca Straits, near the Nicobar and Acheen
Islands, and between them and Junkseylon, there are often very
strong ripplings, particularly in the southwest monsoon; these are
alarming to persons unacquainted, for the broken water makes a
great noise when the ship is passing through the ripplings in the
night. In most places, ripplings are thought to be produced by strong
currents, but here they are frequently seen when there is no
perceptible current..... so as to produce an error in the course and
distance sailed, yet the surface of the water is impelled foreward by
some indiscovered cause.



The ripplings are seen in calm weather approaching from a distance,
and in the night their noise is heard a considerable time before they
come near. They beat against the sides of the ship with great
violence, and pass on , the spray sometimes coming on deck; and a
small boat could not always resist the turbulence of these remarkable
ripplings.



Internal waves in the Strait of Gibraltar.

The two layers of fluid correspond to different salinity and the
current is caused by the tides passing through the Strait.



Figure: Strait of Gibraltar; from the Atlas of Oceanic internal solitary
waves, Office of Naval Research



Figure: Strait of Gibraltar; [the Atlas of Oceanic internal solitary
waves, Office of Naval Research]



I Extensive collection of measurements and images of
various regions in the world can be found at
http://www.internalwaveatlas.com.



II. Mathematical Models
Due to its importance in oceanography, large literature on
internal waves in a variety of scaling regimes.
2 physical settings : (i) fixed lid; (ii) or internal/surface wave
coupling,

I Stable configuration : ρ > ρ1; ρ1/ρ close to 1
I layer thickness ratio h1/h plays important role.



I Fix lid : Large class of scaling regimes .
Weakly nonlinear models for interface (Boussinesq, KdV,
BO, ILW) ; Benjamin ’67, Ono, ’75, Camassa-Choi ’96, ’06,
Nguyen-Dias ’07
Fully nonlinear models 1d: Matsuno (1993), and in the 2d
case : Camassa and Choi (1999).
Derivation + consistency analysis : Bona-Lannes-Saut ’08

I coupling interface/free surface: Long wave/long wave
Gear-Grimshaw ’84, Parau-Dias, ’01 Matsuno ’93,
Craig-Guyenne-Kalisch ’05, Barros-Gravilyuk-Teshukov,
’07

I Fix lid, internal wave propagation over periodic bottom
topography Ruis de Zárate-Vigo-Alfaro-Nachbin-Choi 2009

Recent survey article by Helfrich and Melville (Ann. Rev.Fluid
Mech 2006) with an overview of properties of internal solitary
waves and vast bibliography.



Long wave/short wave interaction

I Regime that displays features of the pictures shown
earlier: i.e. a free surface displaying small rough ripples
created by the presence of a relatively large interface.

I In classical oceanographic models, the ‘ray method’ gives
a qualitative description of the rip.
A passing internal wave is represented by a near-surface
current with a prescribed form. Surface waves are
described statistically by a density function.

I Surface waves tend to shorten and steepen in regions of a
converging current induced by a passing internal wave.
(Gargett-Hughes 1972, Lewis-Lake-Ko 1974, Caponi et al.
1988, Bakhanov & Ostrovsky 2002).



I A classical explanation of the mill pond effect is that they
are thus more likely to break, leaving calmer water after
the internal wave passage.

I Direct numerical simulations by Donato, Peregrine and
Stocker (1999) show the focusing and near-breaking of
short surface waves due to a sinusoidal current.



III. Overview of results

From the Euler equations for stratified potential flow (restrict to
2d physical problem), we derive a mathematical model in the
physically relevant regime:

I Long wave regime for the interface, interacting with ‘small’
modulated quasi-monochromatic surface waves.

I Resonant interaction: We identify the resonant surface
wave numbers obtained when the group velocity of the
free-surface coincides with the phase velocity of long
internal waves.

I The resulting system : KdV for the evolution of the internal
wave coupled to a linear Schrödinger equation for the
modulation of the free surface. Solutions to the KdV
equation appear as a potential in the Schrödinger equation.



∂τ r + a1r∂X r + a2∂
3
X r = 0 ,

∂τ1v = i
[1

2
ω′′1(k0)∂2

X v + a3r(X , ετ1)v
]
,

with τ = ετ1.

I The coefficients in the system only depend on the physical
parameters h1/h (mean depth ratios) and ρ1/ρ (density
ratio) . They are given by explicit formulas.
→ Detailed parametric analysis in realistic situations:
ρ1/ρ ∼ 1, small h1/h .

I This regime of parameters corresponds to i.e. an internal
soliton of depression for KdV, (the potential for Schrödinger
being a well) and a very small coefficient of dispersion for
the Schrödinger equation (semi-classical limit).



We interpret the evolution of the free surface as a problem of
radiative absorption and reflection:

I We relate the surface modulation of waves advected by
fluid motion induced by internal waves to bound states of
the linear Schrödinger equation.
Wave energy from the sea surface is trapped by these
bound states during the internal wave passage, which
gives rise to the phenomenon of a region of rip.

I These bound states are computed numerically and found
to be very localized in space, which is consistent with
observations that the rip usually appears as narrow bands
of rough water.



I We show that the reflection and transmission coefficients,
b(k) and c(k) respectively, for the solution of the
Schrödinger equation in the semi-classical regime, are
asymptotic to b = −1 and c = 0 for a range of sideband
wave numbers k near zero. In the reference frame of the
internal soliton entering a background sea state,
quasi-monochromatic surface waves are absorbed into the
rip as bound states, or else they are effectively reflected in
front of it.

I The fact that very little of the surface sea state is
transmitted through the soliton region is an explanation of
the mill pond effect.



IV.a The Euler Equations for stratified potential flow.
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∆ϕ = 0 , in the lower domain S(t ; η)

∆ϕ1 = 0 , in the upper domain S1(t ; η, η1) .



Boundary conditions
On the fixed bottom {y = −h} of the lower fluid, the boundary
condition is

∂yϕ(x ,−h) = 0 ,

On the interface {y = η(x , t)}, three boundary conditions - 2
kinematic , 1 dynamic (Bernouilli):

∂tη = ∂yϕ− ∂xη ∂xϕ
∂tη = ∂yϕ1 − ∂xη ∂xϕ1

ρ(∂tϕ+
1
2
|∇ϕ|2 + gη) = ρ1(∂tϕ1 +

1
2
|∇ϕ1|2 + gη) ,

On the top free surface {y = h1 + η1(x , t)}, 2 boundary
conditions:

∂tη1 = ∂yϕ1 − ∂xη1 ∂xϕ1

∂tϕ1 +
1
2
|∇ϕ1|2 + gη1 = 0 .

The goal is to describe simultaneously the evolution of the free
surface and free interface.



IV.b. Hamiltonian Formulation

It is possible to write the system in the form of a Hamiltonian
system where the canonical variables are obtained in analogy
with methods of classical mechanics.

I If the absence of internal wave (one fluid), the canonical
variables are (η, ξ) where
η is the free surface
ξ = ϕ(x , η(x)) the trace of the velocity potential on the free
surface (Zakharov 1968).
The water wave problem takes the form

∂t

(
η
ξ

)
=

(
0 1
−1 0

)(
δηH
δξH

)
,

I Hamiltonian = Total energy.



Dirichlet to Neuman operator : Central objet in the study of
Water Waves.

Restrict to a single layer.
Let ϕ be harmonic in domain {(x , y),−h < y < η}, with Neumann
boundary conditions on the bottom (∂yϕ(x ,−h) = 0. The
Dirichlet–Neumann operator for the domain is defined by

G(η)ξ =
√

1 + (∂xη)2 ∂ϕ

∂n

∣∣∣
y=η

.

where ξ = ϕ(x , η(x)) is the trace of the velocity potential on y = η(x).
The kinetic energy takes the form:∫

|∇ϕ|2dxdy =

∫
ξ G(η)ξ dx .



Choice of canonical variables follow principles of classical
mechanics: Given a curve η(·, t) in configuration space, the
Lagrangian given by

L := L(η, η̇) = kinetic energy− potential energy

Rewrite the kinetic energy entirely in terms of (η, η̇) : Use the
kinematic equation on free surface

η̇ = ∂yϕ− ∂xη∂xϕ =
√

(1 + η2
x )
∂ϕ

∂n
= G(η)ξ

L(η, η̇) =

∫
1
2
η̇G−1(η)η̇ dx −

∫
g
2
η2(x) dx .

The Legendre transform will identify the coordinate canonically
conjugate to η. Indeed,

δη̇L = G−1(η)η̇

which dictates that ξ(x) = ϕ(x , η(x)) is the appropriate choice.



I G(η) has a Taylor expansion with respect to η
(Coifman-Meyer ’82); Terms can be calculated explicitly
(recursion formulas). Useful to derive asymptotic models.

I Well-posedness theory (Lannes ’05, Metivier-Alazard’09,
Alazard-Burq-Zuily ’11,’12...)

I Numerical simulations of water waves ( Guyenne ’06-08...)



I For stratified fluids, similar construction of canonical
variables (η, ξ, η1, ξ1).(Benjamin-Bridges, 1997).
η is the interface ; h1 + η1 is the free surface
ξ = ρΦ− ρ1Φ1, ξ1 = ρ1Φ2 where
Φ = ϕ(x , η(x)), Φ1 = ϕ1(x , η(x)), Φ2 = ϕ1(x ,h1 + η1(x)).

I Hamiltonian = Kinetic energy + Potential energy.

The kinetic energy is the weighted sum of the Dirichlet integrals

K =
1
2

∫ ∫ η(x)

−h
ρ|∇ϕ|2 dydx +

1
2

∫ ∫ h1+η1(x)

η(x)
ρ1|∇ϕ1|2 dydx ,

and the potential energy is

V =
1
2

∫
g(ρ− ρ1)η2(x) dx +

1
2

∫
gρ1

[
(h1 + η1)2(x)− h2

1

]
dx .

∂t


η
ξ
η1
ξ1

 ≡ J∇H =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0



δηH
δξH
δη1H
δξ1H

 ,

Express the kinetic energy in terms of the canonical variables.



In the case of a 2 layer-fluids, we define

I The Dirichlet–Neumann operator for the lower domain is defined
by

G(η)ϕ(x , η(x , t), t) =
√

1 + (∂xη)2∇ϕ · n
∣∣∣
y=η

.

I For the upper fluid, the traces of ϕ1 on η, and η1 contribute to the
exterior normal derivative of ϕ1 on each boundary. The
Dirichlet–Neumann operator is a matrix operator:

(
G11 G12
G21 G22

)(
ϕ1(x , η(x , t), t)

ϕ1(x ,h1 + η1(x , t), t)

)
=

 −
√

1 + (∂xη)2∇ϕ1 · n
∣∣∣
y=η√

1 + (∂xη1)2∇ϕ1 · n1

∣∣∣
y=h1+η1

 .



IV.c Linear analysis near fluid at rest
Linearized equations:

∂tη = δξH(2), ∂tξ = −δηH(2)

∂tη1 = δξ1H
(2), ∂tξ1 = −δη1H

(2) .

The quadratic part H(2) of the Hamiltonian is given by (D = −i∂x )

H(2) =
1
2

∫
(ξ, ξ1)A(D)

(
ξ
ξ1

)
+ g(ρ− ρ1)η2 + gρ1[(h1 + η1)2 − h2

1]

where A(D) is a 2× 2 matrix of Fourier multipliers.
To simplify H(2), we make two canonical transformations. First, a
rescaling of the dependent variables (η, ξ, η1, ξ1). This replaces the
two last terms of H(2) by η2 + η2

1 . We then diagonalize the kinetic
energy in H(2) by performing a rotation.
As a result, H(2) takes the simpler form

H(2) =
1
2

∫ [
ξω2(D)ξ + η2 + ξ1ω

2
1(D)ξ1 + η2

1

]
dx ,



(ξ, η) represent the ‘internal’ modes, while (ξ1, η1) are the
‘free-surface’ modes

(ω2(k), ω2
1(k)) are the two roots of the quadratic equation

defining the dispersion relation :

ω4 − gρk
1 + tanh(kh) coth(kh1)

ρ coth(kh1) + ρ1 tanh(kh)
ω2

+ g2(ρ− ρ1)k2 tanh(kh)

ρ coth(kh1) + ρ1 tanh(kh)
= 0 .



V.a Scaling regimes

h : typical depth of lower fluid
a : order of amplitude of interface
λ : order of wavelength of interface

I Long wave/small amplitude regime for interface (KdV)

h
λ

= ε,
a
h

= ε2

h1 : typical depth of upper fluid
a1 : order of amplitude of free surface

I (very) small amplitude for surface: (modulational regime)

a1

h1
= ε1, ε1 = ε2+α, α ≥ 0



V.b Scaling Ansatz and resonant condition

Roughly speaking...
I Long wave/small amplitude regime for interface (KdV)

η ∼ ε2r(X , τ); X = εx , τ = ε3t

I (very) small amplitude for surface: (modulational regime)

η1 ∼ ε1v(X , τ1)ei(k0x−ω1(k0)t) + c.c, ε1 = ε2+α, τ1 = ε2t

I Assume unidirectional motion for the interface at velocity c
(where c2 = ω2(0)′′/2. The wavenumber k0 will be chosen such
that wave packets on the free surface (moving at group velocity
ω′1(k0)) move at same speed as interface:

ω′1(k0) = c

‘Linear resonant condition’ between internal and surface
waves.
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Figure: Depth ratio h1/h vs. wavenumber k0 corresponding to the
linear resonance condition for ρ1/ρ = 0.1(left); ρ1/ρ = 0.99(right).

There is always a surface mode of wavenumber k0 satisfying the
resonance condition and thus traveling at the same linear speed as a
long internal mode.
The smaller h1/h, or the closer ρ1/ρ to 1, the larger k0 (hence the
shorter the surface mode). Also, k0 varies monotonically as a function
of h1/h.



V.c Long-wave scaling, modulational Ansatz

We assume that the ‘internal’ modes are long wave-small
amplitude:

X = εx , ξ(x , t) = ε2ξ̃(X , t) , η(x , t) = εη̃(X , t) ,

The ‘surface’ modes are quasi-monochromatic waves obeying
the modulational Ansatz, (ε1 = ε2+α, α > 0)

η1(x , t) =
ε1√

2
ω+(D)1/2

(
v(X , t)eik0x + c.c

)
+ ε2

1η̃1(X , t) ,

ξ1(x , t) =
ε1√
2i
ω+(D)−1/2

(
v(X , t)eik0x − c.c

)
+
ε2

1
ε
ξ̃1(X , t) ,

The function v represents the complex envelope of the free-surface
modes, and η̃1 and ξ̃1 the associated mean fields



I Since both internal and surface wave propagate with their
respective speeds, change the equations into a moving
frame of reference. This is done by subtracting a multiple
of the momentum I (Benjamin 1967)

I =

∫ (
ρ

∫ η(x)

−h
∂xϕdy + ρ1

∫ h1+η1(x)

η(x)
∂xϕ1 dy

)
dx

from the Hamiltonian, H → H − cI. (total momentum is
also a conserved quantity)



The next step is to enter these scalings into the Hamiltonian
and expand in powers of ε.....

Look at the dynamics of the system in a preferred direction of
propagation by decomposing the interface into two components
: r(X , t) is the component that is principally right-moving, while
s(X , t) (of smaller amplitude O(ε2) is principally left-moving.



This leads to a reduced Hamiltonian and the corresponding
equations of motion:

∂tU = J ′∇H ′

and J ′ a modified symplectic matrix, from which one derives the
evolution equations.



VI.a Effective equations
In the regime of long-wave internal modes in resonance with the free
surface, the motion is described by the coupled system

∂τ r + a1r∂X r + a2∂
3
X r = ε2αλ3∂X |v |2

∂τ1v = i
[1

2
ω′′1 (k0)∂2

X v + a3r(X , ετ1)v + κ1ε
2+2α|v |2v

]
.

I Time scales for KdV and Schrödinger are different, τ = ε3t and
τ1 = ε2t , (t = physical time) .

I The component r closely related to the internal wave ; v is the
modulated amplitude related to the fast oscillations of the
surface wave.

I Nonlinear terms in the Schrödinger negligible.

I Coupling with the KdV equation appears through a linear
operator given by the potential.

I if α > 0, KdV equation decouples from the Schrödinger
equation; If α = 0, another coupling appears as a forcing term in
the KdV equation.



VI.b. Dependence of coefficients on ρ1/ρ and h1/h

Assume that the amplitude of the surface wave is much smaller
than that of the internal wave : α > 0.
Leading-order approximation (τ = ετ1):

∂τ r + a1r∂X r + a2∂
3
X r = 0 ,

∂τ1v = i
[1

2
ω′′1(k0)∂2

X v + a3r(X , ετ1)v
]
,

All coefficients explicitly expressed in terms of two free
parameters: the relative density ρ1/ρ and the relative depth
h1/h.
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and 0.998 (right).

a2 is always positive while a1 changes sign when h1/h passes a
particular value of order 1. When h1/h is small (realistic situations),
the single KdV soliton

r(X , τ) =
3a2u0

a1
sech2

[√u0

2
(X − a2u0τ)

]
,

is a wave of depression.
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For ρ1/ρ and h1/h given, compute c0; wave number k0 uniquely
determined from the resonance condition c0 = ω′1(k0).
For ρ1/ρ close to 1, ω′′1 (k0) < 0 and a3 > 0, always. As h1/h
decreases, ω′′1 (k0) tends to zero while a3 ∼ O(1).



VII.a The case of a single KdV soliton (depression)

∂τ1v = i
[1

2
ω′′1(k0)∂2

X v + a3r(X , ετ1)v
]
,

Change of variables

v(X , τ1) = ei(p1y+p2z)w(y , z) ,

where y = X − εa2u0τ1, z = a3τ1 and

p1 =
εa2u0

ω′′1(k0)
, p2 =

(εa2u0)2

2a3ω
′′
1(k0)

,

and denoting
ω′′1(k0)

2a3
= −δ2 ,

the Schrödinger equation reduces to

−i∂zw = −δ2∂2
y w + r(y)w .



−i∂zw = −δ2∂2
y w + r(y)w .
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Figure: Parameter δ2 as a function of h1/h for ρ1/ρ = 0.95 (thin line),
= 0.99 (dashed line) and = 0.998 (thick line).



The general solution has a spectral decomposition in the form of a
linear superposition of solutions

w(y , z) =

∫
eiλzu(y , λ) dµ(λ) ,

where u(y , λ) satisfies

−δ2∂2
y u + ru = λu .

The spectrum of the operator −δ2∂2
y + r is composed of a finite

number of negative eigenvalues λ0 < λ1 < · · · < λN < 0 along
with the continuous spectrum λ > 0.



VII.b Bound states in the regime h1/h < 1, ρ1/ρ ∼ 1.

Regime typical of coastal seas
δ � 1 and the internal soliton plays the role of a potential well
since r < 0.
This is analogous to the semi-classical limit in quantum
mechanics. There is a large finite number of negative e.v
{λj}j=0,...,N with corresponding localized bound states
{ψj(y)}j=0,...,N .



Numerical calculation for ρ1/ρ = 0.997, h1/h = 0.2 and
|r |L∞ = 0.5
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Figure: Superimposed image of three bound states ψj (ground state,
j = 2 and j = 20) .



Oceanic conditions corresponding to the Andaman Sea :
ρ1/ρ = 0.997, h1/h = 0.266 and ε2 ∼ a/h = 0.069, as reported by
Osborne & Burch (1980) .
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Figure: Internal and surface waves in the physical variables (η, η1) for
the choice of a ground bound state at the free surface. For clarity, the
surface wave is magnified.



Off the Oregon coast:
Typical parameters are ρ1/ρ = 0.998, h1/h = 0.035 and
ε2 ∼ a/h = 0.192, as given by Bakhanov & Ostrovsky (2002)
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Figure: Internal and surface waves in the physical variables (η, η1)



Both figures illustrate characteristic features of the rip
phenomenon (Osborne & Burch (1980) and Alpers (1985)).

I the disparity in length scales between the internal and
surface waves

I the localized shape of the surface modulation.



VII.c. Estimate the absorption of energy into the
bound states

w(y ,0) : initial state of the sea-surface modulation.
Projection of w(y ,0) onto the bound states :

〈w(y ,0), ψj(y)〉 =
1√
2π

∫ ∞
−∞

Sj(k)ŵ(k ,0) dk ,

where
Sj(k) =

1√
2π

∫ ∞
−∞

e−ikxψj(x) dx .

represents the Fourier absorption profile of the bound state ψj .

Proposition
In the limit δ → 0, for wave numbers k such that
0 < |k | < δ

√
|r(0)| − λj , there is a lower bound

C (δ/j)1/4 ≤ Sj(k) ,

on the amplitude of the absorption spectral density.



VII.d. Reflection and transmission coefficients

We now turn to the continuous spectrum : semi-axis λ > 0.

I From the frame of reference of the soliton, the background
sea state is incident on the potential well given by r(y), and
Fourier components of this sea state are absorbed,
reflected or transmitted by it.

I In the semi-classical regime δ � 1, the potential well acts
as a barrier : We show that for an interval of wave numbers
k2 = λ ∈ [0, λ(δ)], the reflection coefficient is dominant for
waves incident on the potential, and the transmission
coefficient is small.



We look for a solution with λ > 0 in the continuous spectrum, in
the form of plane waves at ±∞ with

u(y) ∼ e−i
√
λy/δ + b ei

√
λy/δ , as y → −∞ ,

u(y) ∼ c e−i
√
λy/δ , as y → +∞ .

The coefficients b and c are respectively the reflection and
transmission coefficients.

Proposition
In the limit δ and λ→ 0 with the condition

√
λ/δ → 0, the

coefficients of reflection and transmission have the asymptotic
values b = −1 + O(

√
λ) and c = O(

√
λ).



Interpretation of the ‘mill pond’ effect :

I From a stationary reference point on the sea surface, a
passing internal soliton absorbs a significant component of
the background sea state, while reflecting a further
significant component of the wave numbers
k ∈ [−

√
λ(δ),

√
λ(δ)], essentially sweeping this sea state

in front of it, and permitting little radiation to be transmitted
through the soliton to the sea surface behind it.

I Note that k =
√
λ/δ plays the role of sideband wave

numbers since it is associated with solutions of the
Schrödinger equation. Therefore, the limit k → 0 for
free-surface modes corresponds to the case of pure
monochromatic waves of carrier wave number k0.



Final remarks:

I This study is restricted to the physical water wave problem
in two dimensions. To do: consider the 3d problem (a
two-dimensional sea surface).

I The interpretation is restricted to internal wave in the form
of a single KdV soliton. It allows a transformation to a
stationary frame of reference.

I More general internal waves lead to the Schrödinger
equation with a time-dependent potential. A possible
approach would be through an adiabatic approximation of
Schrödinger evolution with slowly varying potentials.

I Develop a rigorous consistency analysis to justify the
asymptotic model.


