University of Toronto – MAT246H1-S – LEC0201/9201 Concepts in Abstract Mathematics

Homework questions - Week 11

Jean-Baptiste Campesato

April 5th, 2021 to April 9th, 2021

Exercise 1.

Given three sets *E*, *F*, *G*, prove that if $E \subset F \subset G$ and |E| = |G| then |E| = |F|.

Exercise 2.

Given a set *S*, prove that $|\mathcal{P}(S)| = |\{0,1\}^S|$ where $\{0,1\}^S$ denotes the set of functions $S \to \{0,1\}$. *Remark: this formula generalizes the fact that if S is a finite set with* n = |S| *then* $|\mathcal{P}(S)| = 2^n$. *Therefore it is common to denote the powerset of a set S by* $2^S := \mathcal{P}(S)$.

Exercise 3.

1. What is $|\{0,1\}^{\mathbb{N}}|$? i.e. what is the cardinality of the set of functions $\mathbb{N} \to \{0,1\}$?

2. What is $\mathbb{N}^{\{0,1\}}$? i.e. what is the cardinality of the set of functions $\{0,1\} \to \mathbb{N}$?

Exercise 4.

1. What is the cardinality of $S = \{A \in \mathcal{P}(\mathbb{N}) : A \text{ is finite}\}.$

2. Is $T = \{A \in \mathcal{P}(\mathbb{N}) : A \text{ is infinite}\}$ countable?

Exercise 5.

Prove that any set *X* of pairwise disjoint intervals which are non-empty and not reduced to a singleton is countable,

i.e. if $X \subset \mathcal{P}(\mathbb{R})$ satisfies

(i) $\forall I \in X$, *I* is an interval which is non-empty and not reduced to a singleton

(ii) $\forall I, J \in X, I \neq J \implies I \cap J = \emptyset$

then *X* is countable.

Exercise 6.

Prove that a set is infinite if and only if it admits a proper subset of same cardinality.

Exercise 7.

- 1. Prove that $\mathbb{R} \setminus \mathbb{Q}$ is not countable.
- 2. Prove that $|\mathbb{R} \setminus \mathbb{Q}| = |\mathbb{R}|$.

Exercise 8.

Prove that $|(0,1)| = |\mathbb{R}|$.

Exercise 9.

- 1. Prove that $|\mathbb{R}^2| = |\mathbb{R}|$.
- 2. Prove that $\forall n \in \mathbb{N} \setminus \{0\}, |\mathbb{R}^n| = |\mathbb{R}|.$
- 3. Prove that $|\mathbb{R}^{\mathbb{N}}| = |\mathbb{R}|$ where $\mathbb{R}^{\mathbb{N}}$ is the set of sequences/functions $\mathbb{N} \to \mathbb{R}$.

Exercise 10.

Set $S^2 := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$. Prove that $|S^2| = |\mathbb{R}|$.

Exercise 11.

What is the cardinality of the set *S* of all circles in the plane?

Cheatsheet

Recollection of some results about cardinality

Definition. We say that two sets *E* and *F* have same *cardinality*, denoted by |E| = |F|, if there exists a bijection $f : E \to F$.

Proposition.

- 1. If E is a set then |E| = |E|.
- 2. Given two sets E and F, if |E| = |F| then |F| = |E|.
- 3. Given three sets E, F and G, if |E| = |F| and |F| = |G| then |E| = |G|.

Theorem. A set *E* is infinite if and only if for every $n \in \mathbb{N}$ there exists $S \subset E$ such that |S| = n.

Definition. Given two sets *E* and *F*, we write $|E| \le |F|$ if there exists an injective function $f : E \to F$.

Proposition.

- 1. If E is a set then $|E| \leq |E|$.
- 2. *Given two sets* E and F, if $|E| \le |F|$ and $|F| \le |E|$ then |E| = |F| Cantor–Schröder–Bernstein theorem.
- 3. Given three sets E, F and G, if $|E| \leq |F|$ and $|F| \leq |G|$ then $|E| \leq |G|$.

Proposition. *If* $E \subset F$ *then* $|E| \leq |F|$ *.*

Proposition. *If* $|E_1| = |E_2|$ *and* $|F_1| = |F_2|$ *then* $|E_1 \times F_1| = |E_2 \times F_2|$ *.*

Theorem. Given two sets *E* and *F*, $|E| \le |F|$ if and only if there exists a surjective function $g : F \to E$.

Theorem. Given two sets *E* and *F*, if |E| = |F| then $|\mathcal{P}(E)| = |\mathcal{P}(F)|$.

Notation. We set $\aleph_0 \coloneqq |\mathbb{N}|$ (pronounced *aleph nought*).

Definition. A set *E* is countable if either *E* is finite or $|E| = \aleph_0$.

Proposition. *If* $S \subset \mathbb{N}$ *is infinite then* $|S| = \aleph_0$.

Proposition. A set *E* is countable if and only if $|E| \leq \aleph_0$ (i.e. there exists an injection $f : E \to \mathbb{N}$), otherwise stated *E* is countable if and only if there exists a bijection between *E* and a subset of \mathbb{N} .

Proposition. $|\mathbb{N} \times \mathbb{N}| = \aleph_0$

Theorem. A countable union of countable sets is countable, i.e. if I is countable and if for every $i \in I$, E_i is countable then $\bigcup_{i \in I} E_i$ is countable.

Theorem. If *E* is an infinite set then there exists $T \subset E$ such that $|T| = \aleph_0$, i.e. \aleph_0 is the least infinite cardinal.

Theorem. $|\mathbb{Z}| = \aleph_0$

Theorem. $|\mathbb{Q}| = \aleph_0$

Theorem. $\aleph_0 < |\mathbb{R}|$

Theorem (Cantor's theorem). *Given a set* E, $|E| < |\mathcal{P}(E)|$.

Theorem. $|\mathbb{R}| = |\mathcal{P}(\mathbb{N})|$

Sample solutions to Exercise 1.

Since $E \subset F$, we know that $|E| \leq |F|$. Besides, since $F \subset G$, we have $|F| \leq |G| = |E|$. By Cantor–Schröder–Bernstein theorem, we have |E| = |F|.

Sample solutions to Exercise 2.

We define ψ : $\mathcal{P}(S) \to \{0,1\}^S$ by $\psi(A)(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}$.

Let's prove that ψ is a bijection:

- ψ is injective. Let $A, B \subset S$ be such that $A \neq B$. WLOG we may assume that there exists $x \in S$ such that $x \in A$ and $x \notin B$. Therefore $\psi(A)(x) = 1$ and $\psi(B)(x) = 0$. Thus $\psi(A) \neq \psi(B)$.
- ψ is surjective. Let $f : S \to \{0, 1\}$ be a function. Define $A = \{x \in S : f(x) = 1\}$. Then $f = \psi(A)$.

Therefore $|\mathcal{P}(S)| = |\{0, 1\}^{S}|.$

Sample solutions to Exercise 3.

- 1. $|\{0,1\}^{\mathbb{N}}| = |\mathcal{P}(\mathbb{N})| = |\mathbb{R}|$
- 2. The idea here is that a function $\{0, 1\} \to \mathbb{N}$ is characterized by the values of 0 and 1. Define $\psi : \mathbb{N}^{\{0,1\}} \to \mathbb{N} \times \mathbb{N}$ by $\psi(f) = (f(0), f(1))$.
 - ψ is injective: let $f, g : \mathbb{N} \to \{0, 1\}$ be such that $\psi(f) = \psi(g)$. Then (f(0), f(1)) = (g(0), g(1)) so that f(0) = g(0) and f(1) = g(1). Therefore f = g.
 - ψ is surjective: let $(a, b) \in \mathbb{N} \times \mathbb{N}$. Define $f : \{0, 1\} \to \mathbb{N}$ by f(0) = 1 and f(1) = b. Then $\psi(f) = (a, b)$.

Therefore $\left|\mathbb{N}^{\{0,1\}}\right| = \left|\mathbb{N} \times \mathbb{N}\right| = \aleph_0$.

Sample solutions to Exercise 4.

1. Define $f : S \to \mathbb{N}$ by $f(A) = \sum_{k \in A} 2^k$.

Then *f* is bijective by existence and uniqueness of the binary positional representation of a natural number. Therefore $|S| = |\mathbb{N}| = \aleph_0$.

2. Assume that *T* is countable then $\mathcal{P}(\mathbb{N}) = S \sqcup T$ is countable as the union of countable sets. Which is a contradiction since $|\mathcal{P}(\mathbb{N})| = |\mathbb{R}| > \aleph_0$.

Sample solutions to Exercise 5.

Let *X* be as in the statement.

For $I \in X$, we can find $q_I \in I \cap \mathbb{Q}$ since I is an interval which is non-empty and not reduced to a singleton. Define $f : X \to \mathbb{Q}$ by $f(I) = q_I$. Let's prove that f is injective.

Let $I, J \in X$ such that $q \coloneqq f(I) = f(J)$. Then $q = q_I \in I$ and $q = q_J \in J$. Therefore $q \in I \cap J \neq \emptyset$. Thus I = J (use the contrapositive of (ii)).

Hence $|X| \leq |\mathbb{Q}| = \aleph_0$. So *X* is countable.

Sample solutions to Exercise 6.

 \Rightarrow Let's prove that any infinite set admits a proper subset of same cardinality. Let *X* be an infinite set. We want to construct $S \subsetneq X$ satisfying |S| = |X|. Since *X* is infinite, $\aleph_0 \leq |X|$, i.e. there exists an injective function $f : \mathbb{N} \to X$.

We define $g : \begin{cases} X \to X \\ x \mapsto f(n+1) & \text{if } \exists n \in \mathbb{N}, x = f(n) \\ x \mapsto x & \text{if } x \notin \text{Im}(f) \end{cases}$

- g is well-defined: given $x \in X$, if $\exists n, m \in \mathbb{N}$, x = f(n) = f(m) then n = m since f is injective.
- *g* is injective: let $x, y \in X$ be such that g(x) = g(y).
 - First case: $g(x) = g(y) \in \text{Im}(f)$ then there exists $n, m \in \mathbb{N}$ such that x = f(n) and y = f(m). Since f(n + 1) = g(x) = g(y) = f(m + 1), we get that n = m by injectiveness of f. Therefore x = f(n) = f(m) = y.
 - Second case: $g(x) = g(y) \notin \text{Im}(f)$ then x = g(x) = g(y) = y.

Note that $f(0) \notin \text{Im}(g)$, thus $f(0) \in X \setminus \text{Im}(g)$. Besides $g : X \to \text{Im}(g)$ is a bijection. Hence S = Im(g)satisfies $S \subsetneq X$ and |X| = |S|.

⇐ We are going to prove the contrapositive: if a set is finite then it doesn't admit a proper subset of same cardinality.

Let *X* be a finite set. Let $S \subsetneq X$ be a proper subset.

Then there exists $x_0 \in X \setminus S$ so that $S \sqcup \{x_0\} \subset X$ and hence $|S \sqcup \{x_0\}| = |S| + 1 \leq |E|$, i.e. |S| < |E|.

Sample solutions to Exercise 7.

- 1. Assume by contradiction that $\mathbb{R} \setminus \mathbb{Q}$ is countable. Then $\mathbb{R} = (\mathbb{R} \setminus \mathbb{Q}) \cup \mathbb{Q}$ is countable as the union of two countable sets. Hence a contradiction.
- 2. One way to solve this question is to take an injective function $\mathbb{R} \to \mathbb{R}$ whose range is a proper interval of \mathbb{R} and then to move the rational values in the complement of the range after making them irrational. For instance:

Define $f : \mathbb{R} \to \mathbb{R} \setminus \mathbb{Q}$ by

$$f(x) = \begin{cases} e^x & \text{if } e^x \notin \mathbb{Q} \\ -e^x - e & \text{otherwise} \end{cases}$$

- *f* is well-defined: if $e^x \in \mathbb{Q}$ then $-e^x e \in \mathbb{R} \setminus \mathbb{Q}$ (since $-e^x \in \mathbb{Q}$ and $-e \in \mathbb{R} \setminus \mathbb{Q}$).
- *f* is injective: let $x, y \in \mathbb{R}$ be such that f(x) = f(y).
 - First case: f(x) = f(y) > 0 then $f(x) = e^x$ and $f(y) = e^y$ thus $e^x = f(x) = f(y) = e^y$ and then x = y since exp is injective.
 - Second case: f(x) = f(y) < 0 then $f(x) = -e^x e$ and $f(y) = -e^y e$ thus $-e^x e = f(x) = -e^x e$ $f(y) = -e^{y} - e$, so that $e^{x} = e^{y}$ and hence x = y since exp is injective.

Note that $f(x) = f(y) \neq 0$ since $0 \in \mathbb{Q}$.

Thus $|\mathbb{R}| \leq |\mathbb{R} \setminus \mathbb{Q}|$. Besides $|\mathbb{R} \setminus \mathbb{Q}| \leq |\mathbb{R}|$ since $\mathbb{R} \setminus \mathbb{Q} \subset \mathbb{R}$. Hence $|\mathbb{R}| = |\mathbb{R} \setminus \mathbb{Q}|$ by Cantor–Schröder–Bernstein theorem.

Comment: (using the axiom of choice) it is true that if *A* and *B* are infinite sets then $|A \cup B| = \max(|A|, |B|)$ (but this statement was not proved in class, so you can't use it).

Therefore, since $|\mathbb{Q}| < |\mathbb{R} \setminus \mathbb{Q}|$, $|\mathbb{R}| = |(\mathbb{R} \setminus \mathbb{Q}) \cup \mathbb{Q}| = \max(|\mathbb{R} \setminus \mathbb{Q}|, |\mathbb{Q}|) = |\mathbb{R} \setminus \mathbb{Q}|$.

Sample solutions to Exercise 8.

Define $f : \mathbb{R} \to (0, 1)$ by $f(x) = \frac{\arctan(x) + \frac{\pi}{2}}{\pi}$. Then • f is well-defined: for $x \in \mathbb{R}, -\frac{\pi}{2} < \arctan(x) < \frac{\pi}{2}$ thus $0 < \arctan(x) + \frac{\pi}{2} < \pi$ and hence $0 < \frac{\arctan(x) + \frac{\pi}{2}}{\pi} < 1$, i.e. $f(x) \in (0, 1)$. • f is bijective: *prove it using that* $\arctan : \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ *is bijective*. Therefore $|(0, 1)| = |\mathbb{R}|$.

There are lots of such bijections, for instance:

Sample solutions to Exercise 9.

1. First method:

We define $f : (0, 1) \times (0, 1) \to (0, 1)$ as follows. Let $(x, y) \in (0, 1) \times (0, 1)$.

Denote the proper decimal expansions of x and y by $x = \sum_{k=1}^{+\infty} a_k 10^{-k} = 0.a_1 a_2 \dots$ where $a_k \in \{0, 1, \dots, 9\}$

are not all equal to 0 and $y = \sum_{k=1}^{+\infty} b_k 10^{-k} = 0.b_1 b_2 \dots$ similarly.

Then we set
$$f(x, y) = \sum_{k=0}^{+\infty} a_k 10^{-(2k+1)} + \sum_{k=1}^{+\infty} b_k 10^{-2k} = 0.a_1 b_1 a_2 b_2 \dots = \sum_{k=1}^{+\infty} c_k 10^{-k}$$
 where
 $c_k = \begin{cases} a_n & \text{if } \exists n \in \mathbb{N} \setminus \{0\}, \ k = 2n \\ b_n & \text{if } \exists n \in \mathbb{N}, \ k = 2n + 1 \end{cases}$

Then *f* a bijection by existence and uniqueness of the proper decimal expansion. Hence $|(0, 1) \times (0, 1)| = |(0, 1)|$. Since $|(0, 1)| = |\mathbb{R}$, we get $|\mathbb{R} \times \mathbb{R}| = |(0, 1) \times (0, 1)| = |(0, 1)| = |\mathbb{R}|$.

Second method:

Define $f : \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ by $f(A, B) = \{2k : k \in A\} \cup \{2l + 1 : l \in B\}$. Then f is bijective (*prove it*). Thus $|\mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})| = |\mathcal{P}(\mathbb{N})|$. Since $|\mathbb{R}| = |\mathcal{P}(\mathbb{N})|$, we get $|\mathbb{R} \times \mathbb{R}| = |\mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})| = |\mathcal{P}(\mathbb{N})| = |\mathbb{R}|$.

- 2. Let's prove by induction on $n \in \mathbb{N} \setminus \{0\}$ that $|\mathbb{R}^n| = |\mathbb{R}|$.
 - *Base case at* n = 1: then $\mathbb{R}^1 = \mathbb{R}$ thus $|\mathbb{R}^1| = |\mathbb{R}|$.
 - *Inductive step:* assume that $|\mathbb{R}^n| = |\mathbb{R}|$ for some $n \in \mathbb{N} \setminus \{0\}$. Then

 $|\mathbb{R}^{n+1}| = |\mathbb{R}^n \times \mathbb{R}|$ = $|\mathbb{R} \times \mathbb{R}|$ since $|\mathbb{R}^n| = |\mathbb{R}|$ and $|\mathbb{R}| = |\mathbb{R}|$ = $|\mathbb{R}|$ by the previous question

- 3. One idea here is to notice that $|\mathbb{R}^{\mathbb{N}}| = |(\{0,1\}^{\mathbb{N}})^{\mathbb{N}}| = |\{0,1\}^{\mathbb{N}\times\mathbb{N}}| = |\{0,1\}^{\mathbb{N}}| = |\mathbb{R}|.$ Since we have not covered arithmetic of cardinals, we need to prove each equality.
 - Since $|\mathbb{R}| = |\mathcal{P}(\mathbb{N})| = |\{0,1\}^{\mathbb{N}}|$, there exists a bijection $\psi : \mathbb{R} \to \{0,1\}^{\mathbb{N}}$. We define $\varphi : \mathbb{R}^{\mathbb{N}} \to (\{0,1\}^{\mathbb{N}})^{\mathbb{N}}$ by $\varphi(f) = \psi \circ f : \mathbb{N} \to \{0,1\}^{\mathbb{N}}$. Then φ is a bijection (*check it*), and thus $|\mathbb{R}^{\mathbb{N}}| = |(\{0,1\}^{\mathbb{N}})^{\mathbb{N}}|$.

- We define $\xi : \{0,1\}^{\mathbb{N}\times\mathbb{N}} \to (\{0,1\}^{\mathbb{N}})^{\mathbb{N}}$ by $\xi(f) : \begin{cases} \mathbb{N} \to \{0,1\}^{\mathbb{N}} \\ n \mapsto (m \mapsto f(n,m)) \end{cases}$. Check that ξ is a bijection. Therefore $\left| \left(\{0,1\}^{\mathbb{N}} \right)^{\mathbb{N}} \right| = |\{0,1\}^{\mathbb{N}\times\mathbb{N}}|.$
- Since $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$, there exists a bijection $\zeta : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$. We define $\gamma : \{0,1\}^{\mathbb{N}} \to \{0,1\}^{\mathbb{N} \times \mathbb{N}}$ by $\gamma(f) = f \circ \zeta$. Check that γ is a bijection. Therefore $|\{0,1\}^{\mathbb{N} \times \mathbb{N}}| = |\{0,1\}^{\mathbb{N}}|$.

Sample solutions to Exercise 10.

Define $f : (0, 1) \to S^2$ by $f(t) = (\cos t, \sin t, 0)$. Then f is well-defined and injective. Thus $|\mathbb{R}| = |(0, 1)| \le |S^2|$. Besides, since $S^2 \subset \mathbb{R}^3$, we have that $|S^2| \le |\mathbb{R}^3| = |\mathbb{R}|$. By Cantor–Schröder–Bernstein theorem, we get that $|S^2| = |\mathbb{R}|$.

Sample solutions to Exercise 11.

A circle is characterized by its center and its radius. Therefore there is a bijection $\mathbb{R}^2 \times (0, +\infty) \to S$ mapping (x, y, r) to the circle centered at (x, y) of radius r. Thus $|S| = |\mathbb{R}^2 \times (0, +\infty)|$. Since exp : $\mathbb{R} \to (0, +\infty)$ is a bijection, we have $|(0, +\infty)| = |\mathbb{R}|$. Hence $|\mathbb{R}^2 \times (0, +\infty)| = |\mathbb{R}^3| = |\mathbb{R}|$. Therefore $|S| = |\mathbb{R}|$.