Homework questions - Week 11

Jean-Baptiste Campesato

April $5^{\text {th }}, 2021$ to April $9^{\text {th }}, 2021$

Exercise 1.

Given three sets E, F, G, prove that if $E \subset F \subset G$ and $|E|=|G|$ then $|E|=|F|$.

Exercise 2.

Given a set S, prove that $|\mathcal{P}(S)|=\left|\{0,1\}^{S}\right|$ where $\{0,1\}^{S}$ denotes the set of functions $S \rightarrow\{0,1\}$.
Remark: this formula generalizes the fact that if S is a finite set with $n=|S|$ then $|\mathcal{P}(S)|=2^{n}$.
Therefore it is common to denote the powerset of a set S by $2^{S}:=\mathcal{P}(S)$.

Exercise 3.

1. What is $\left|\{0,1\}^{\mathbb{N}}\right|$? i.e. what is the cardinality of the set of functions $\mathbb{N} \rightarrow\{0,1\}$?
2. What is $\left|\mathbb{N}^{\{0,1\}}\right|$? i.e. what is the cardinality of the set of functions $\{0,1\} \rightarrow \mathbb{N}$?

Exercise 4.

1. What is the cardinality of $S=\{A \in \mathcal{P}(\mathbb{N}): A$ is finite $\}$.
2. Is $T=\{A \in \mathcal{P}(\mathbb{N}): A$ is infinite $\}$ countable?

Exercise 5.

Prove that any set X of pairwise disjoint intervals which are non-empty and not reduced to a singleton is countable,
i.e. if $X \subset \mathcal{P}(\mathbb{R})$ satisfies
(i) $\forall I \in X, I$ is an interval which is non-empty and not reduced to a singleton
(ii) $\forall I, J \in X, I \neq J \Longrightarrow I \cap J=\varnothing$
then X is countable.

Exercise 6.

Prove that a set is infinite if and only if it admits a proper subset of same cardinality.

Exercise 7.

1. Prove that $\mathbb{R} \backslash \mathbb{Q}$ is not countable.
2. Prove that $|\mathbb{R} \backslash \mathbb{Q}|=|\mathbb{R}|$.

Exercise 8.

Prove that $|(0,1)|=|\mathbb{R}|$.

Exercise 9.

1. Prove that $\left|\mathbb{R}^{2}\right|=|\mathbb{R}|$.
2. Prove that $\forall n \in \mathbb{N} \backslash\{0\},\left|\mathbb{R}^{n}\right|=|\mathbb{R}|$.
3. Prove that $\left|\mathbb{R}^{\mathbb{N}}\right|=|\mathbb{R}|$ where $\mathbb{R}^{\mathbb{N}}$ is the set of sequences/functions $\mathbb{N} \rightarrow \mathbb{R}$.

Exercise 10.

Set $S^{2}:=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}$. Prove that $\left|S^{2}\right|=|\mathbb{R}|$.

Exercise 11.

What is the cardinality of the set S of all circles in the plane?

Cheatsheet
Recollection of some results about cardinality

Definition. We say that two sets E and F have same cardinality, denoted by $|E|=|F|$, if there exists a bijection $f: E \rightarrow F$.

Proposition.

1. If E is a set then $|E|=|E|$.
2. Given two sets E and F, if $|E|=|F|$ then $|F|=|E|$.
3. Given three sets E, F and G, if $|E|=|F|$ and $|F|=|G|$ then $|E|=|G|$.

Theorem. A set E is infinite if and only if for every $n \in \mathbb{N}$ there exists $S \subset E$ such that $|S|=n$.
Definition. Given two sets E and F, we write $|E| \leq|F|$ if there exists an injective function $f: E \rightarrow F$.

Proposition.

1. If E is a set then $|E| \leq|E|$.
2. Given two sets E and F, if $|E| \leq|F|$ and $|F| \leq|E|$ then $|E|=|F|$ Cantor-Schröder-Bernstein theorem.
3. Given three sets E, F and G, if $|E| \leq|F|$ and $|F| \leq|G|$ then $|E| \leq|G|$.

Proposition. If $E \subset F$ then $|E| \leq|F|$.
Proposition. If $\left|E_{1}\right|=\left|E_{2}\right|$ and $\left|F_{1}\right|=\left|F_{2}\right|$ then $\left|E_{1} \times F_{1}\right|=\left|E_{2} \times F_{2}\right|$.
Theorem. Given two sets E and $F,|E| \leq|F|$ if and only if there exists a surjective function $g: F \rightarrow E$.
Theorem. Given two sets E and F, if $|E|=|F|$ then $|\mathcal{P}(E)|=|\mathcal{P}(F)|$.
Notation. We set $\aleph_{0}:=|\mathbb{N}|$ (pronounced aleph nought).
Definition. A set E is countable if either E is finite or $|E|=\aleph_{0}$.
Proposition. If $S \subset \mathbb{N}$ is infinite then $|S|=\aleph_{0}$.
Proposition. A set E is countable if and only if $|E| \leq \aleph_{0}$ (i.e. there exists an injection $f: E \rightarrow \mathbb{N}$), otherwise stated E is countable if and only if there exists a bijection between E and a subset of \mathbb{N}.

Proposition. $|\mathbb{N} \times \mathbb{N}|=\aleph_{0}$
Theorem. A countable union of countable sets is countable,
i.e. if I is countable and if for every $i \in I, E_{i}$ is countable then $\bigcup_{i \in I} E_{i}$ is countable.

Theorem. If E is an infinite set then there exists $T \subset E$ such that $|T|=\aleph_{0}$, i.e. \aleph_{0} is the least infinite cardinal.
Theorem. $|\mathbb{Z}|=\aleph_{0}$
Theorem. $|\mathbb{Q}|=\aleph_{0}$
Theorem. $\aleph_{0}<|\mathbb{R}|$
Theorem (Cantor's theorem). Given a set $E,|E|<|\mathcal{P}(E)|$.
Theorem. $|\mathbb{R}|=|\mathcal{P}(\mathbb{N})|$

Sample solutions to Exercise 1.

Since $E \subset F$, we know that $|E| \leq|F|$.
Besides, since $F \subset G$, we have $|F| \leq|G|=|E|$.
By Cantor-Schröder-Bernstein theorem, we have $|E|=|F|$.

Sample solutions to Exercise 2.

We define $\psi: \mathcal{P}(S) \rightarrow\{0,1\}^{S}$ by $\psi(A)(x)=\left\{\begin{array}{ll}1 & \text { if } x \in A \\ 0 & \text { otherwise }\end{array}\right.$.
Let's prove that ψ is a bijection:

- ψ is injective.

Let $A, B \subset S$ be such that $A \neq B$.
WLOG we may assume that there exists $x \in S$ such that $x \in A$ and $x \notin B$.
Therefore $\psi(A)(x)=1$ and $\psi(B)(x)=0$. Thus $\psi(A) \neq \psi(B)$.

- ψ is surjective.

Let $f: S \rightarrow\{0,1\}$ be a function. Define $A=\{x \in S: f(x)=1\}$. Then $f=\psi(A)$.
Therefore $|\mathcal{P}(S)|=\left|\{0,1\}^{S}\right|$.

Sample solutions to Exercise 3.

1. $\left|\{0,1\}^{\mathbb{N}}\right|=|\mathcal{P}(\mathbb{N})|=|\mathbb{R}|$
2. The idea here is that a function $\{0,1\} \rightarrow \mathbb{N}$ is characterized by the values of 0 and 1 .

Define $\psi: \mathbb{N}^{\{0,1\}} \rightarrow \mathbb{N} \times \mathbb{N}$ by $\psi(f)=(f(0), f(1))$.

- ψ is injective: let $f, g: \mathbb{N} \rightarrow\{0,1\}$ be such that $\psi(f)=\psi(g)$. Then $(f(0), f(1))=(g(0), g(1))$ so that $f(0)=g(0)$ and $f(1)=g(1)$. Therefore $f=g$.
- ψ is surjective: let $(a, b) \in \mathbb{N} \times \mathbb{N}$. Define $f:\{0,1\} \rightarrow \mathbb{N}$ by $f(0)=1$ and $f(1)=b$. Then $\psi(f)=(a, b)$.

Therefore $\left|\mathbb{N}^{\{0,1\}}\right|=|\mathbb{N} \times \mathbb{N}|=\aleph_{0}$.

Sample solutions to Exercise 4.

1. Define $f: S \rightarrow \mathbb{N}$ by $f(A)=\sum_{k \in A} 2^{k}$.

Then f is bijective by existence and uniqueness of the binary positional representation of a natural number. Therefore $|S|=|\mathbb{N}|=\aleph_{0}$.
2. Assume that T is countable then $\mathcal{P}(\mathbb{N})=S \sqcup T$ is countable as the union of countable sets. Which is a contradiction since $|\mathcal{P}(\mathbb{N})|=|\mathbb{R}|>\aleph_{0}$.

Sample solutions to Exercise 5.

Let X be as in the statement.
For $I \in X$, we can find $q_{I} \in I \cap \mathbb{Q}$ since I is an interval which is non-empty and not reduced to a singleton.
Define $f: X \rightarrow \mathbb{Q}$ by $f(I)=q_{I}$. Let's prove that f is injective.
Let $I, J \in X$ such that $q:=f(I)=f(J)$. Then $q=q_{I} \in I$ and $q=q_{J} \in J$. Therefore $q \in I \cap J \neq \varnothing$. Thus $I=J$ (use the contrapositive of (ii)).
Hence $|X| \leq|\mathbb{Q}|=\aleph_{0}$. So X is countable.

Sample solutions to Exercise 6.

\Rightarrow Let's prove that any infinite set admits a proper subset of same cardinality.
Let X be an infinite set. We want to construct $S \subsetneq X$ satisfying $|S|=|X|$.
Since X is infinite, $\aleph_{0} \leq|X|$, i.e. there exists an injective function $f: \mathbb{N} \rightarrow X$.
We define $g:\left\{\begin{array}{cccc}X & \rightarrow & X & \\ x & \mapsto & f(n+1) & \text { if } \exists n \in \mathbb{N}, x=f(n) \text {. } \\ x & \mapsto & x & \text { if } x \notin \operatorname{Im}(f)\end{array}\right.$

- g is well-defined: given $x \in X$, if $\exists n, m \in \mathbb{N}, x=f(n)=f(m)$ then $n=m$ since f is injective.
- g is injective: let $x, y \in X$ be such that $g(x)=g(y)$.
- First case: $g(x)=g(y) \in \operatorname{Im}(f)$ then there exists $n, m \in \mathbb{N}$ such that $x=f(n)$ and $y=f(m)$. Since $f(n+1)=g(x)=g(y)=f(m+1)$, we get that $n=m$ by injectiveness of f. Therefore $x=f(n)=f(m)=y$.
- Second case: $g(x)=g(y) \notin \operatorname{Im}(f)$ then $x=g(x)=g(y)=y$.

Note that $f(0) \notin \operatorname{Im}(g)$, thus $f(0) \in X \backslash \operatorname{Im}(g)$. Besides $g: X \rightarrow \operatorname{Im}(g)$ is a bijection. Hence $S=\operatorname{Im}(g)$ satisfies $S \subsetneq X$ and $|X|=|S|$.
\Leftarrow We are going to prove the contrapositive: if a set is finite then it doesn't admit a proper subset of same cardinality.
Let X be a finite set. Let $S \subsetneq X$ be a proper subset.
Then there exists $x_{0} \in X \backslash S$ so that $S \sqcup\left\{x_{0}\right\} \subset X$ and hence $\left|S \sqcup\left\{x_{0}\right\}\right|=|S|+1 \leq|E|$, i.e. $|S|<|E|$.

Sample solutions to Exercise 7.

1. Assume by contradiction that $\mathbb{R} \backslash \mathbb{Q}$ is countable. Then $\mathbb{R}=(\mathbb{R} \backslash \mathbb{Q}) \cup \mathbb{Q}$ is countable as the union of two countable sets. Hence a contradiction.
2. One way to solve this question is to take an injective function $\mathbb{R} \rightarrow \mathbb{R}$ whose range is a proper interval of \mathbb{R} and then to move the rational values in the complement of the range after making them irrational. For instance:
Define $f: \mathbb{R} \rightarrow \mathbb{R} \backslash \mathbb{Q}$ by

$$
f(x)=\left\{\begin{array}{cl}
e^{x} & \text { if } e^{x} \notin \mathbb{Q} \\
-e^{x}-e & \text { otherwise }
\end{array}\right.
$$

- f is well-defined: if $e^{x} \in \mathbb{Q}$ then $-e^{x}-e \in \mathbb{R} \backslash \mathbb{Q}$ (since $-e^{x} \in \mathbb{Q}$ and $-e \in \mathbb{R} \backslash \mathbb{Q}$).
- f is injective: let $x, y \in \mathbb{R}$ be such that $f(x)=f(y)$.
- First case: $f(x)=f(y)>0$ then $f(x)=e^{x}$ and $f(y)=e^{y}$ thus $e^{x}=f(x)=f(y)=e^{y}$ and then $x=y$ since \exp is injective.
- Second case: $f(x)=f(y)<0$ then $f(x)=-e^{x}-e$ and $f(y)=-e^{y}-e$ thus $-e^{x}-e=f(x)=$ $f(y)=-e^{y}-e$, so that $e^{x}=e^{y}$ and hence $x=y$ since exp is injective.
Note that $f(x)=f(y) \neq 0$ since $0 \in \mathbb{Q}$.
Thus $|\mathbb{R}| \leq|\mathbb{R} \backslash \mathbb{Q}|$. Besides $|\mathbb{R} \backslash \mathbb{Q}| \leq|\mathbb{R}|$ since $\mathbb{R} \backslash \mathbb{Q} \subset \mathbb{R}$.
Hence $|\mathbb{R}|=|\mathbb{R} \backslash \mathbb{Q}|$ by Cantor-Schröder-Bernstein theorem.
Comment: (using the axiom of choice) it is true that if A and B are infinite sets then $|A \cup B|=\max (|A|,|B|)$ (but this statement was not proved in class, so you can't use it).
Therefore, since $|\mathbb{Q}|<|\mathbb{R} \backslash \mathbb{Q}|,|\mathbb{R}|=|(\mathbb{R} \backslash \mathbb{Q}) \cup \mathbb{Q}|=\max (|\mathbb{R} \backslash \mathbb{Q}|,|\mathbb{Q}|)=|\mathbb{R} \backslash \mathbb{Q}|$.

Sample solutions to Exercise 8.

Define $f: \mathbb{R} \rightarrow(0,1)$ by $f(x)=\frac{\arctan (x)+\frac{\pi}{2}}{\pi}$. Then

- f is well-defined:
for $x \in \mathbb{R},-\frac{\pi}{2}<\arctan (x)<\frac{\pi}{2}$ thus $0<\arctan (x)+\frac{\pi}{2}<\pi$ and hence $0<\frac{\arctan (x)+\frac{\pi}{2}}{\pi}<1$, i.e. $f(x) \in(0,1)$.
- f is bijective: prove it using that $\arctan : \mathbb{R} \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ is bijective.

Therefore $|(0,1)|=|\mathbb{R}|$.
There are lots of such bijections, for instance:

$$
\begin{array}{ccccccccc}
(0,1) & \rightarrow & \mathbb{R} & (0,1) & \rightarrow & \mathbb{R} & \mathbb{R} & \rightarrow & (0,1) \\
x & \mapsto & \frac{1}{1+e^{x}} & x & \mapsto & \frac{2 x-1}{x-x^{2}} & x & \mapsto & e^{-e^{x}}
\end{array}
$$

Sample solutions to Exercise 9.

1. First method:

We define $f:(0,1) \times(0,1) \rightarrow(0,1)$ as follows. Let $(x, y) \in(0,1) \times(0,1)$.
Denote the proper decimal expansions of x and y by $x=\sum_{k=1}^{+\infty} a_{k} 10^{-k}=0 . a_{1} a_{2} \ldots$ where $a_{k} \in\{0,1, \ldots, 9\}$ are not all equal to 0 and $y=\sum_{k=1}^{+\infty} b_{k} 10^{-k}=0 . b_{1} b_{2} \ldots$ similarly.
Then we set $f(x, y)=\sum_{k=0}^{+\infty} a_{k} 10^{-(2 k+1)}+\sum_{k=1}^{+\infty} b_{k} 10^{-2 k}=0 . a_{1} b_{1} a_{2} b_{2} \ldots=\sum_{k=1}^{+\infty} c_{k} 10^{-k}$ where

$$
c_{k}= \begin{cases}a_{n} & \text { if } \exists n \in \mathbb{N} \backslash\{0\}, k=2 n \\ b_{n} & \text { if } \exists n \in \mathbb{N}, k=2 n+1\end{cases}
$$

Then f a bijection by existence and uniqueness of the proper decimal expansion.
Hence $|(0,1) \times(0,1)|=|(0,1)|$.
Since $|(0,1)|=\mid \mathbb{R}$, we get $|\mathbb{R} \times \mathbb{R}|=|(0,1) \times(0,1)|=|(0,1)|=|\mathbb{R}|$.

Second method:

Define $f: \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ by $f(A, B)=\{2 k: k \in A\} \cup\{2 l+1: l \in B\}$.
Then f is bijective (prove it).
Thus $|\mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})|=|\mathcal{P}(\mathbb{N})|$.
Since $|\mathbb{R}|=|\mathcal{P}(\mathbb{N})|$, we get $|\mathbb{R} \times \mathbb{R}|=|\mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})|=|\mathcal{P}(\mathbb{N})|=|\mathbb{R}|$.
2. Let's prove by induction on $n \in \mathbb{N} \backslash\{0\}$ that $\left|\mathbb{R}^{n}\right|=|\mathbb{R}|$.

- Base case at $n=1$: then $\mathbb{R}^{1}=\mathbb{R}$ thus $\left|\mathbb{R}^{1}\right|=|\mathbb{R}|$.
- Inductive step: assume that $\left|\mathbb{R}^{n}\right|=|\mathbb{R}|$ for some $n \in \mathbb{N} \backslash\{0\}$. Then

$$
\begin{aligned}
\left|\mathbb{R}^{n+1}\right| & =\left|\mathbb{R}^{n} \times \mathbb{R}\right| \\
& =|\mathbb{R} \times \mathbb{R}| \quad \text { since }\left|\mathbb{R}^{n}\right|=|\mathbb{R}| \text { and }|\mathbb{R}|=|\mathbb{R}| \\
& =|\mathbb{R}| \quad \text { by the previous question }
\end{aligned}
$$

3. One idea here is to notice that $\left|\mathbb{R}^{\mathbb{N}}\right|=\left|\left(\{0,1\}^{\mathbb{N}}\right)^{\mathbb{N}}\right|=\left|\{0,1\}^{\mathbb{N} \times \mathbb{N}}\right|=\left|\{0,1\}^{\mathbb{N}}\right|=|\mathbb{R}|$. Since we have not covered arithmetic of cardinals, we need to prove each equality.

- Since $|\mathbb{R}|=|\mathcal{P}(\mathbb{N})|=\left|\{0,1\}^{\mathbb{N}}\right|$, there exists a bijection $\psi: \mathbb{R} \rightarrow\{0,1\}^{\mathbb{N}}$.

We define $\varphi: \mathbb{R}^{\mathbb{N}} \rightarrow\left(\{0,1\}^{\mathbb{N}}\right)^{\mathbb{N}}$ by $\varphi(f)=\psi \circ f: \mathbb{N} \rightarrow\{0,1\}^{\mathbb{N}}$.
Then φ is a bijection (check it), and thus $\left|\mathbb{R}^{\mathbb{N}}\right|=\left|\left(\{0,1\}^{\mathbb{N}}\right)^{\mathbb{N}}\right|$.

- We define $\xi:\{0,1\}^{\mathbb{N} \times \mathbb{N}} \rightarrow\left(\{0,1\}^{\mathbb{N}}\right)^{\mathbb{N}}$ by $\xi(f):\left\{\begin{array}{ccc}\mathbb{N} & \rightarrow & \{0,1\}^{\mathbb{N}} \\ n & \mapsto & (m \mapsto f(n, m))\end{array}\right.$

Check that ξ is a bijection. Therefore $\left|\left(\{0,1\}^{\mathbb{N}}\right)^{\mathbb{N}}\right|=\left|\{0,1\}^{\mathbb{N} \times \mathbb{N}}\right|$.

- Since $|\mathbb{N} \times \mathbb{N}|=|\mathbb{N}|$, there exists a bijection $\zeta: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$.

We define $\gamma:\{0,1\}^{\mathbb{N}} \rightarrow\{0,1\}^{\mathbb{N} \times \mathbb{N}}$ by $\gamma(f)=f \circ \zeta$.
Check that γ is a bijection. Therefore $\left|\{0,1\}^{\mathbb{N} \times \mathbb{N}}\right|=\left|\{0,1\}^{\mathbb{N}}\right|$.

Sample solutions to Exercise 10.

Define $f:(0,1) \rightarrow S^{2}$ by $f(t)=(\cos t, \sin t, 0)$. Then f is well-defined and injective.
Thus $|\mathbb{R}|=|(0,1)| \leq\left|S^{2}\right|$.
Besides, since $S^{2} \subset \mathbb{R}^{3}$, we have that $\left|S^{2}\right| \leq\left|\mathbb{R}^{3}\right|=|\mathbb{R}|$.
By Cantor-Schröder-Bernstein theorem, we get that $\left|S^{2}\right|=|\mathbb{R}|$.

Sample solutions to Exercise 11.

A circle is characterized by its center and its radius. Therefore there is a bijection $\mathbb{R}^{2} \times(0,+\infty) \rightarrow S$ mapping (x, y, r) to the circle centered at (x, y) of radius r.
Thus $|S|=\left|\mathbb{R}^{2} \times(0,+\infty)\right|$.
Since exp : $\mathbb{R} \rightarrow(0,+\infty)$ is a bijection, we have $|(0,+\infty)|=|\mathbb{R}|$. Hence $\left|\mathbb{R}^{2} \times(0,+\infty)\right|=\left|\mathbb{R}^{3}\right|=|\mathbb{R}|$.
Therefore $|S|=|\mathbb{R}|$.

