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Exercise 1.
Given three sets E, F, G, prove thatif E C F C G and |E| = |G| then |E| = | F|.

Exercise 2.

Given a set .S, prove that |P(S)| = |{O, 1} | where {0, 1} denotes the set of functions .S — {0, 1}.
Remark: this formula generalizes the fact that if S is a finite set with n = |S| then |P(S)| = 2".

Therefore it is common to denote the powerset of a set S by 25 = P(S).

Exercise 3.
1. Whatis |{0, 1}N|? i.e. what is the cardinality of the set of functions N — {0,1}?
2. Whatis |N{0’1 } |? i.e. what is the cardinality of the set of functions {0,1} — N?

Exercise 4.
1. What is the cardinality of S = {A € P(N) : A s finite}.
2. IsT ={A € P(N) : Aisinfinite} countable?

Exercise 5.

Prove that any set X of pairwise disjoint intervals which are non-empty and not reduced to a singleton is
countable,
i.e. if X ¢ P(R) satisfies
(i) VI € X, I is an interval which is non-empty and not reduced to a singleton
() VILJEX,I#J = InJ =0
then X is countable.

Exercise 6.
Prove that a set is infinite if and only if it admits a proper subset of same cardinality.

Exercise 7.
1. Prove that R \ Q is not countable.
2. Prove that |R \ Q| = |R]|.

Exercise 8.
Prove that |(0, 1)| = |R].

Exercise 9.
1. Prove that |R?| = |R|.
2. Prove thatVn € N\ {0}, |R"| = |R]|.
3. Prove that |RN| = |R| where RV is the set of sequences/functions N — R.

Exercise 10.
Set .S? := {(x,y,z) eR’ : X +y+22= 1}. Prove that |S?| = |R|.

Exercise 11.
What is the cardinality of the set .S of all circles in the plane?
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Cheatsheet

Recollection of some results about cardinality

Definition. We say that two sets E and F have same cardinality, denoted by |E| = |F|, if there exists a
bijection f : E — F.

Proposition.
1. If E is a set then |E| = | E|.
2. Given two sets E and F, if |E| = | F| then |F| = | E|.
3. Given three sets E, F and G, if |E| = |F| and |F| = |G| then |E| = |G|.

Theorem. A set E is infinite if and only if for every n € N there exists S C E such that |.S| = n.
Definition. Given two sets E and F, we write | E| < | F| if there exists an injective function f : E — F.

Proposition.
1. If E is a set then |E| < | E|.
2. Given two sets E and F, if |E| < |F| and |F| < |E| then |E| = | F| Cantor-Schroder-Bernstein theorem.
3. Given three sets E, F and G, if |E| < |F| and |F| < |G| then |E| < |G|.

Proposition. If E C F then |E| < |F|.

Proposition. If |E|| = |E,| and |F|| = |F,| then |E; X F|| = |E, X F,|.

Theorem. Given two sets E and F, |E| < |F| if and only if there exists a surjective function g : F — E.
Theorem. Given two sets E and F, if |E| = |F| then |P(E)| = |P(F)|.

Notation. We set N := |N| (pronounced aleph nought).

Definition. A set E is countable if either E is finite or |E| = N,

Proposition. If .S C N is infinite then |.S| = N,

Proposition. A set E is countable if and only if |E| < R (i.e. there exists an injection f : E — N),
otherwise stated E is countable if and only if there exists a bijection between E and a subset of N.

Proposition. [N X N| =,

Theorem. A countable union of countable sets is countable,
i.e. if I is countable and if for every i € I, E; is countable then | J,c, E; is countable.

Theorem. If E is an infinite set then there exists T C E such that |T| = R, i.e. ¥ is the least infinite cardinal.
Theorem. |Z| =N,

Theorem. |Q| =N,

Theorem. R, < |R|

Theorem (Cantor’s theorem). Given a set E, |E| < |P(E)|.

Theorem. |R| = |P(N)|
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Sample solutions to Exercise 1.

Since E C F, we know that |E| < |F]|.

Besides, since F C G, we have |F| < |G| = |E|.

By Cantor-Schroder—Bernstein theorem, we have |E| = | F|.

Sample solutions to Exercise 2.

. | ifxeA
We define y : P(S) — {0,1}5 by y(A)(x) = { 0 Ltﬁerwise :

Let’s prove that y is a bijection:

e y is injective.
Let A, B C S be such that A # B.
WLOG we may assume that there exists x € S such that x € A and x ¢ B.
Therefore w(A)(x) = 1 and w(B)(x) = 0. Thus w(A) # w(B).

e y is surjective.
Let f : S — {0,1} be a function. Define A = {x € .S : f(x)=1}. Then f = w(A).

Therefore |P(S)| = |{0,1}°].

Sample solutions to Exercise 3.
L [{0, 1}V = [P(N)| = IR

2. The idea here is that a function {0, 1} — N is characterized by the values of 0 and 1.
Define y : NI%N — N x N by w(f) = (£(0), £(1)).

e y is injective: let f,g : N — {0,1} be such that w(f) = y(g). Then (f(0), f(1)) = (g(0), g(1)) so
that f(0) = g(0) and f(1) = g(1). Therefore f = g.

e y is surjective: let (a,b) € N X N. Define f : {0,1} - Nby f(0) = 1 and f(1) = b. Then
y(f) = (a,b).

Therefore |N{O’”| = INX N[ =N,.

Sample solutions to Exercise 4.

1. Define f : S — Nby f(A) = Z 2k,
keA
Then f is bijective by existence and uniqueness of the binary positional representation of a natural

number. Therefore |.S| = [N| = R,

2. Assume that T is countable then P(N) = S U T is countable as the union of countable sets.
Which is a contradiction since |P(N)| = |R| > N,

Sample solutions to Exercise 5.

Let X be as in the statement.

For I € X, we can find g; € I N Q since I is an interval which is non-empty and not reduced to a singleton.
Define f : X - Qby f(I) = q;. Let’s prove that f is injective.

Let I,J € X such that g := f(I) = f(J). Theng =¢q; € I and q = q; € J. Thereforeq € I nJ # @. Thus
I = J (use the contrapositive of (ii)).

Hence | X| < |Q| = X;. So X is countable.
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Sample solutions to Exercise 6.
= Let’s prove that any infinite set admits a proper subset of same cardinality.
Let X be an infinite set. We want to construct .S ¢ X satisfying [.S| = | X]|.
Since X is infinite, X < | X|, i.e. there exists an injective function f : N — X.
X - X
We define g : { x B f(rn+1) ifineN, x=f(@n) .
X - x if x & Im(f)

o gis well-defined: given x € X, if 3n,m € N, x = f(n) = f(m) then n = m since f is injective.

e gisinjective: let x, y € X be such that g(x) = g(y).

— First case: g(x) = g(y) € Im(f) then there exists n,m € N such that x = f(n) and y = f(m).
Since f(n + 1) = g(x) = g(y) = f(m+ 1), we get that n = m by injectiveness of f. Therefore
x=fn)=f(m)=y.

— Second case: g(x) = g(y) € Im(f) then x = g(x) = g(y) = y.

Note that f(0) ¢ Im(g), thus f(0) € X \ Im(g). Besides g : X — Im(g) is a bijection. Hence S = Im(g)
satisfies S C X and | X| = |S].

< We are going to prove the contrapositive: if a set is finite then it doesn’t admit a proper subset of same
cardinality.

Let X be a finite set. Let S C X be a proper subset.

Then there exists x, € X \ § so that S U {x,} C X and hence |S U {xy}| = |S|+ 1< |E|, ie. |S| < |E].

Sample solutions to Exercise 7.
1. Assume by contradiction that R \ Q is countable. Then R = (R \ Q) U Q is countable as the union of
two countable sets. Hence a contradiction.

2. One way to solve this question is to take an injective function R — R whose range is a proper interval
of R and then to move the rational values in the complement of the range after making them irrational.

For instance:
Define f : R - R\ Qby

_ e~ ife*¢Q
f(x)= { —e* —e  otherwise
e f is well-defined: if e* € Q then —¢* —e € R\ Q (since —e* € Qand —e € R\ Q).
e f isinjective: let x, y € R be such that f(x) = f(»).
— First case: f(x) = f(y) > 0 then f(x) = ¢ and f(y) = ¢’ thus e* = f(x) = f(y) = ¢’ and then
X = y since exp is injective.
— Second case: f(x) = f(y) < Othen f(x) = —e* —eand f(y) = —e” —ethus —e* —e = f(x) =
f(y) = —e” — e, so that e* = ¢’ and hence x = y since exp is injective.
Note that f(x) = f(y) # 0since 0 € Q.

Thus |R| < |R\ Q]. Besides |R \ Q] < |R| since R\ Q C R.
Hence |R| = |R \ Q| by Cantor-Schréder—Bernstein theorem.

Comment: (using the axiom of choice) it is true that if A and B are infinite sets then |A U B| = max(|A|, | B])
(but this statement was not proved in class, so you can’t use it).
Therefore, since |Q| < |[R\ Q|, |R| = |[(R\ Q) U Q| = max(|R \ Q[, Q) = [R\ Q|.
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Sample solutions to Exercise 8.

Define f : R — (0,1) by £(x) = "7 Then
e [ is well-defined:
forx € R, —Z < arctan(x) < £ thus 0 < arctan(x)+Z < 7 and hence 0 < aretnory o 1,ie. f(x) €(0,1).
2 2 2 7
e f is bijective: prove it using that arctan : R — <—§, %) is bijective.
Therefore |(0, 1)| = |R].
There are lots of such bijections, for instance:
©0.H) - R ©0.H - R R - (0D
1 2x-1 o
N x - X B e
I+eX x—x2

Sample solutions to Exercise 9.

1. First method:
We define f : (0,1) x (0,1) — (0, 1) as follows. Let (x,y) € (0,1) x (0, 1).

+00

Denote the proper decimal expansions of x and y by x = Z a,107* = 0.a,a, ... where q; € {0, 1, ...,9}
k=1

+0o0
arenot allequal to0 and y = z b 107F = 0.b,b, ... similarly.
k=1

+00 +o0 too
Then we set f(x,y) = Y @107+ 4+ 3" 5,107 = 0.a,b,a,b; ... = )" ¢, 107" where
k=0 k=1 k=1

N if In e N\ {0}, k =2n
K=Y b, ifdneN, k=2n+1

n

Then f a bijection by existence and uniqueness of the proper decimal expansion.
Since [0, D] = |R, we get [R X R| = [(0,1) x (0, D| = [(0, D| = |R].

Second method:

Define f : P(N) X P(N) - P(N) by f(A,B)={2k : ke A}u{2l+1 : |l € B}.
Then f is bijective (prove it).

Thus |P(N) X P(N)| = |P(N)]|.

Since |R| = |P(N)|, we get IR X R| = |[P(N) X P(N)| = |P(N)| = |R].

2. Let’s prove by induction on n € N'\ {0} that |[R"| = |R].
e Base case at n = 1: then R! = R thus |R!| = |R].
o Inductive step: assume that |R"| = |R| for some n € N\ {0}. Then
|R”+1| — |[Rn XR'
=|RxR| since |R"| =|R|and |[R| = |R]

= |R| by the previous question

3. One idea here is to notice that |R"| = ‘({O,I}N)N‘ = {0, VN = |{0, }N| = IR
Since we have not covered arithmetic of cardinals, we need to prove each equality.
e Since |R| = |P(N)| = |{O, 1}V, there exists a bijectiony : R — {0, 13N,
We define ¢ : RN ({0, 3NV by o(f) = wo £ 1 N = {0, 1}V,
Then ¢ is a bijection (check it), and thus |IRN| = ‘({0, I}N)N‘.
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- {0, 1}N
= (me fn,m)

e We define & : {0,1}VN - ({O,I}N)be &) - { Ej

Check that ¢ is a bijection. Therefore ‘({0, I}N)N‘ = [{0, 1}™N].

e Since [N x N| = |NJ|, there exists a bijection { : NxXN — N.
We define y : {0, 1}N — {0, 1}VNby y(f) = fo¢.
Check that y is a bijection. Therefore |{0, I}NXN| = |{0, 1}N|.

Sample solutions to Exercise 10.

Define f : (0,1) —» S? by f(t) = (cost,sint,0). Then f is well-defined and injective.
Thus [R| = (0, )] < |S?].

Besides, since S? c R?, we have that [$?| < |R?| = |R|.

By Cantor-Schréder—Bernstein theorem, we get that 152 = |R].

Sample solutions to Exercise 11.

A circle is characterized by its center and its radius. Therefore there is a bijection R? x (0, +c0) — S mapping
(x, y, r) to the circle centered at (x, y) of radius r.

Thus |S| = |R? X (0, +0)].

Since exp : R — (0, 4+0) is a bijection, we have |(0, +)| = |R|. Hence IR? % (0, +00)| = |R?| = |R|.
Therefore | S| = |R]|.



