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Exercise 1.
Given three sets 𝐸, 𝐹 , 𝐺, prove that if 𝐸 ⊂ 𝐹 ⊂ 𝐺 and |𝐸| = |𝐺| then |𝐸| = |𝐹 |.

Exercise 2.
Given a set 𝑆, prove that |𝒫(𝑆)| = |{0, 1}𝑆 | where {0, 1}𝑆 denotes the set of functions 𝑆 → {0, 1}.
Remark: this formula generalizes the fact that if 𝑆 is a finite set with 𝑛 = |𝑆| then |𝒫(𝑆)| = 2𝑛.
Therefore it is common to denote the powerset of a set 𝑆 by 2𝑆 ≔ 𝒫(𝑆).

Exercise 3.
1. What is |{0, 1}ℕ|? i.e. what is the cardinality of the set of functions ℕ → {0, 1}?
2. What is |ℕ{0,1}|? i.e. what is the cardinality of the set of functions {0, 1} → ℕ?

Exercise 4.
1. What is the cardinality of 𝑆 = {𝐴 ∈ 𝒫(ℕ) ∶ 𝐴 is finite}.
2. Is 𝑇 = {𝐴 ∈ 𝒫(ℕ) ∶ 𝐴 is infinite} countable?

Exercise 5.
Prove that any set 𝑋 of pairwise disjoint intervals which are non-empty and not reduced to a singleton is
countable,
i.e. if 𝑋 ⊂ 𝒫(ℝ) satisfies
(i) ∀𝐼 ∈ 𝑋, 𝐼 is an interval which is non-empty and not reduced to a singleton
(ii) ∀𝐼, 𝐽 ∈ 𝑋, 𝐼 ≠ 𝐽 ⟹ 𝐼 ∩ 𝐽 = ∅

then 𝑋 is countable.

Exercise 6.
Prove that a set is infinite if and only if it admits a proper subset of same cardinality.

Exercise 7.
1. Prove that ℝ ⧵ ℚ is not countable.
2. Prove that |ℝ ⧵ ℚ| = |ℝ|.

Exercise 8.
Prove that |(0, 1)| = |ℝ|.

Exercise 9.
1. Prove that |ℝ2| = |ℝ|.
2. Prove that ∀𝑛 ∈ ℕ ⧵ {0}, |ℝ𝑛| = |ℝ|.
3. Prove that |ℝℕ| = |ℝ| where ℝℕ is the set of sequences/functions ℕ → ℝ.

Exercise 10.
Set 𝑆2 ≔ {(𝑥, 𝑦, 𝑧) ∈ ℝ3 ∶ 𝑥2 + 𝑦2 + 𝑧2 = 1}. Prove that |𝑆2| = |ℝ|.

Exercise 11.
What is the cardinality of the set 𝑆 of all circles in the plane?
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Cheatsheet
Recollection of some results about cardinality

Definition. We say that two sets 𝐸 and 𝐹 have same cardinality, denoted by |𝐸| = |𝐹 |, if there exists a
bijection 𝑓 ∶ 𝐸 → 𝐹 .

Proposition.
1. If 𝐸 is a set then |𝐸| = |𝐸|.
2. Given two sets 𝐸 and 𝐹 , if |𝐸| = |𝐹 | then |𝐹 | = |𝐸|.
3. Given three sets 𝐸, 𝐹 and 𝐺, if |𝐸| = |𝐹 | and |𝐹 | = |𝐺| then |𝐸| = |𝐺|.

Theorem. A set 𝐸 is infinite if and only if for every 𝑛 ∈ ℕ there exists 𝑆 ⊂ 𝐸 such that |𝑆| = 𝑛.

Definition. Given two sets 𝐸 and 𝐹 , we write |𝐸| ≤ |𝐹 | if there exists an injective function 𝑓 ∶ 𝐸 → 𝐹 .

Proposition.
1. If 𝐸 is a set then |𝐸| ≤ |𝐸|.
2. Given two sets 𝐸 and 𝐹 , if |𝐸| ≤ |𝐹 | and |𝐹 | ≤ |𝐸| then |𝐸| = |𝐹 | Cantor–Schröder–Bernstein theorem.
3. Given three sets 𝐸, 𝐹 and 𝐺, if |𝐸| ≤ |𝐹 | and |𝐹 | ≤ |𝐺| then |𝐸| ≤ |𝐺|.

Proposition. If 𝐸 ⊂ 𝐹 then |𝐸| ≤ |𝐹 |.

Proposition. If |𝐸1| = |𝐸2| and |𝐹1| = |𝐹2| then |𝐸1 × 𝐹1| = |𝐸2 × 𝐹2|.

Theorem. Given two sets 𝐸 and 𝐹 , |𝐸| ≤ |𝐹 | if and only if there exists a surjective function 𝑔 ∶ 𝐹 → 𝐸.

Theorem. Given two sets 𝐸 and 𝐹 , if |𝐸| = |𝐹 | then |𝒫(𝐸)| = |𝒫(𝐹 )|.

Notation. We set ℵ0 ≔ |ℕ| (pronounced aleph nought).

Definition. A set 𝐸 is countable if either 𝐸 is finite or |𝐸| = ℵ0.

Proposition. If 𝑆 ⊂ ℕ is infinite then |𝑆| = ℵ0.

Proposition. A set 𝐸 is countable if and only if |𝐸| ≤ ℵ0 (i.e. there exists an injection 𝑓 ∶ 𝐸 → ℕ),
otherwise stated 𝐸 is countable if and only if there exists a bijection between 𝐸 and a subset of ℕ.

Proposition. |ℕ × ℕ| = ℵ0

Theorem. A countable union of countable sets is countable,
i.e. if 𝐼 is countable and if for every 𝑖 ∈ 𝐼 , 𝐸𝑖 is countable then ⋃𝑖∈𝐼 𝐸𝑖 is countable.

Theorem. If 𝐸 is an infinite set then there exists 𝑇 ⊂ 𝐸 such that |𝑇 | = ℵ0, i.e. ℵ0 is the least infinite cardinal.

Theorem. |ℤ| = ℵ0

Theorem. |ℚ| = ℵ0

Theorem. ℵ0 < |ℝ|

Theorem (Cantor’s theorem). Given a set 𝐸, |𝐸| < |𝒫(𝐸)|.

Theorem. |ℝ| = |𝒫(ℕ)|
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Sample solutions to Exercise 1.
Since 𝐸 ⊂ 𝐹 , we know that |𝐸| ≤ |𝐹 |.
Besides, since 𝐹 ⊂ 𝐺, we have |𝐹 | ≤ |𝐺| = |𝐸|.
By Cantor–Schröder–Bernstein theorem, we have |𝐸| = |𝐹 |.

Sample solutions to Exercise 2.

We define 𝜓 ∶ 𝒫(𝑆) → {0, 1}𝑆 by 𝜓(𝐴)(𝑥) = {
1 if 𝑥 ∈ 𝐴
0 otherwise .

Let’s prove that 𝜓 is a bijection:

• 𝜓 is injective.
Let 𝐴, 𝐵 ⊂ 𝑆 be such that 𝐴 ≠ 𝐵.
WLOG we may assume that there exists 𝑥 ∈ 𝑆 such that 𝑥 ∈ 𝐴 and 𝑥 ∉ 𝐵.
Therefore 𝜓(𝐴)(𝑥) = 1 and 𝜓(𝐵)(𝑥) = 0. Thus 𝜓(𝐴) ≠ 𝜓(𝐵).

• 𝜓 is surjective.
Let 𝑓 ∶ 𝑆 → {0, 1} be a function. Define 𝐴 = {𝑥 ∈ 𝑆 ∶ 𝑓(𝑥) = 1}. Then 𝑓 = 𝜓(𝐴).

Therefore |𝒫(𝑆)| = |{0, 1}𝑆 |.

Sample solutions to Exercise 3.
1. |{0, 1}ℕ| = |𝒫(ℕ)| = |ℝ|

2. The idea here is that a function {0, 1} → ℕ is characterized by the values of 0 and 1.
Define 𝜓 ∶ ℕ{0,1} → ℕ × ℕ by 𝜓(𝑓) = (𝑓(0), 𝑓 (1)).

• 𝜓 is injective: let 𝑓, 𝑔 ∶ ℕ → {0, 1} be such that 𝜓(𝑓) = 𝜓(𝑔). Then (𝑓 (0), 𝑓 (1)) = (𝑔(0), 𝑔(1)) so
that 𝑓(0) = 𝑔(0) and 𝑓(1) = 𝑔(1). Therefore 𝑓 = 𝑔.

• 𝜓 is surjective: let (𝑎, 𝑏) ∈ ℕ × ℕ. Define 𝑓 ∶ {0, 1} → ℕ by 𝑓(0) = 1 and 𝑓(1) = 𝑏. Then
𝜓(𝑓) = (𝑎, 𝑏).

Therefore |ℕ{0,1}| = |ℕ × ℕ| = ℵ0.

Sample solutions to Exercise 4.
1. Define 𝑓 ∶ 𝑆 → ℕ by 𝑓(𝐴) = ∑

𝑘∈𝐴
2𝑘.

Then 𝑓 is bijective by existence and uniqueness of the binary positional representation of a natural
number. Therefore |𝑆| = |ℕ| = ℵ0.

2. Assume that 𝑇 is countable then 𝒫(ℕ) = 𝑆 ⊔ 𝑇 is countable as the union of countable sets.
Which is a contradiction since |𝒫(ℕ)| = |ℝ| > ℵ0.

Sample solutions to Exercise 5.
Let 𝑋 be as in the statement.
For 𝐼 ∈ 𝑋, we can find 𝑞𝐼 ∈ 𝐼 ∩ ℚ since 𝐼 is an interval which is non-empty and not reduced to a singleton.
Define 𝑓 ∶ 𝑋 → ℚ by 𝑓(𝐼) = 𝑞𝐼 . Let’s prove that 𝑓 is injective.
Let 𝐼, 𝐽 ∈ 𝑋 such that 𝑞 ≔ 𝑓(𝐼) = 𝑓(𝐽). Then 𝑞 = 𝑞𝐼 ∈ 𝐼 and 𝑞 = 𝑞𝐽 ∈ 𝐽 . Therefore 𝑞 ∈ 𝐼 ∩ 𝐽 ≠ ∅. Thus
𝐼 = 𝐽 (use the contrapositive of (ii)).
Hence |𝑋| ≤ |ℚ| = ℵ0. So 𝑋 is countable.
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Sample solutions to Exercise 6.
⇒ Let’s prove that any infinite set admits a proper subset of same cardinality.
Let 𝑋 be an infinite set. We want to construct 𝑆 ⊊ 𝑋 satisfying |𝑆| = |𝑋|.
Since 𝑋 is infinite, ℵ0 ≤ |𝑋|, i.e. there exists an injective function 𝑓 ∶ ℕ → 𝑋.

We define 𝑔 ∶
⎧⎪
⎨
⎪⎩

𝑋 → 𝑋
𝑥 ↦ 𝑓(𝑛 + 1) if ∃𝑛 ∈ ℕ, 𝑥 = 𝑓(𝑛)
𝑥 ↦ 𝑥 if 𝑥 ∉ Im(𝑓 )

.

• 𝑔 is well-defined: given 𝑥 ∈ 𝑋, if ∃𝑛, 𝑚 ∈ ℕ, 𝑥 = 𝑓(𝑛) = 𝑓(𝑚) then 𝑛 = 𝑚 since 𝑓 is injective.

• 𝑔 is injective: let 𝑥, 𝑦 ∈ 𝑋 be such that 𝑔(𝑥) = 𝑔(𝑦).
– First case: 𝑔(𝑥) = 𝑔(𝑦) ∈ Im(𝑓 ) then there exists 𝑛, 𝑚 ∈ ℕ such that 𝑥 = 𝑓(𝑛) and 𝑦 = 𝑓(𝑚).

Since 𝑓(𝑛 + 1) = 𝑔(𝑥) = 𝑔(𝑦) = 𝑓(𝑚 + 1), we get that 𝑛 = 𝑚 by injectiveness of 𝑓 . Therefore
𝑥 = 𝑓(𝑛) = 𝑓(𝑚) = 𝑦.

– Second case: 𝑔(𝑥) = 𝑔(𝑦) ∉ Im(𝑓 ) then 𝑥 = 𝑔(𝑥) = 𝑔(𝑦) = 𝑦.
Note that 𝑓(0) ∉ Im(𝑔), thus 𝑓(0) ∈ 𝑋 ⧵ Im(𝑔). Besides 𝑔 ∶ 𝑋 → Im(𝑔) is a bijection. Hence 𝑆 = Im(𝑔)
satisfies 𝑆 ⊊ 𝑋 and |𝑋| = |𝑆|.

⇐ We are going to prove the contrapositive: if a set is finite then it doesn’t admit a proper subset of same
cardinality.
Let 𝑋 be a finite set. Let 𝑆 ⊊ 𝑋 be a proper subset.
Then there exists 𝑥0 ∈ 𝑋 ⧵ 𝑆 so that 𝑆 ⊔ {𝑥0} ⊂ 𝑋 and hence |𝑆 ⊔ {𝑥0}| = |𝑆| + 1 ≤ |𝐸|, i.e. |𝑆| < |𝐸|.

Sample solutions to Exercise 7.
1. Assume by contradiction that ℝ ⧵ ℚ is countable. Then ℝ = (ℝ ⧵ ℚ) ∪ ℚ is countable as the union of

two countable sets. Hence a contradiction.

2. One way to solve this question is to take an injective function ℝ → ℝ whose range is a proper interval
of ℝ and then tomove the rational values in the complement of the range aftermaking them irrational.
For instance:
Define 𝑓 ∶ ℝ → ℝ ⧵ ℚ by

𝑓(𝑥) = {
𝑒𝑥 if 𝑒𝑥 ∉ ℚ

−𝑒𝑥 − 𝑒 otherwise

• 𝑓 is well-defined: if 𝑒𝑥 ∈ ℚ then −𝑒𝑥 − 𝑒 ∈ ℝ ⧵ ℚ (since −𝑒𝑥 ∈ ℚ and −𝑒 ∈ ℝ ⧵ ℚ).
• 𝑓 is injective: let 𝑥, 𝑦 ∈ ℝ be such that 𝑓(𝑥) = 𝑓(𝑦).

– First case: 𝑓(𝑥) = 𝑓(𝑦) > 0 then 𝑓(𝑥) = 𝑒𝑥 and 𝑓(𝑦) = 𝑒𝑦 thus 𝑒𝑥 = 𝑓(𝑥) = 𝑓(𝑦) = 𝑒𝑦 and then
𝑥 = 𝑦 since exp is injective.

– Second case: 𝑓(𝑥) = 𝑓(𝑦) < 0 then 𝑓(𝑥) = −𝑒𝑥 − 𝑒 and 𝑓(𝑦) = −𝑒𝑦 − 𝑒 thus −𝑒𝑥 − 𝑒 = 𝑓(𝑥) =
𝑓(𝑦) = −𝑒𝑦 − 𝑒, so that 𝑒𝑥 = 𝑒𝑦 and hence 𝑥 = 𝑦 since exp is injective.

Note that 𝑓(𝑥) = 𝑓(𝑦) ≠ 0 since 0 ∈ ℚ.

Thus |ℝ| ≤ |ℝ ⧵ ℚ|. Besides |ℝ ⧵ ℚ| ≤ |ℝ| since ℝ ⧵ ℚ ⊂ ℝ.
Hence |ℝ| = |ℝ ⧵ ℚ| by Cantor–Schröder–Bernstein theorem.

Comment: (using the axiom of choice) it is true that if 𝐴 and 𝐵 are infinite sets then |𝐴 ∪ 𝐵| = max(|𝐴|, |𝐵|)
(but this statement was not proved in class, so you can’t use it).
Therefore, since |ℚ| < |ℝ ⧵ ℚ|, |ℝ| = |(ℝ ⧵ ℚ) ∪ ℚ| = max(|ℝ ⧵ ℚ|, |ℚ|) = |ℝ ⧵ ℚ|.
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Sample solutions to Exercise 8.

Define 𝑓 ∶ ℝ → (0, 1) by 𝑓(𝑥) = arctan(𝑥)+ 𝜋
2

𝜋 . Then
• 𝑓 is well-defined:

for 𝑥 ∈ ℝ, − 𝜋
2 < arctan(𝑥) < 𝜋

2 thus 0 < arctan(𝑥)+ 𝜋
2 < 𝜋 and hence 0 < arctan(𝑥)+ 𝜋

2
𝜋 < 1, i.e. 𝑓(𝑥) ∈ (0, 1).

• 𝑓 is bijective: prove it using that arctan ∶ ℝ → (− 𝜋
2 , 𝜋

2 ) is bijective.
Therefore |(0, 1)| = |ℝ|.

There are lots of such bijections, for instance:

(0, 1) → ℝ
𝑥 ↦ 1

1+𝑒𝑥

(0, 1) → ℝ
𝑥 ↦ 2𝑥−1

𝑥−𝑥2

ℝ → (0, 1)
𝑥 ↦ 𝑒−𝑒𝑥

Sample solutions to Exercise 9.
1. First method:

We define 𝑓 ∶ (0, 1) × (0, 1) → (0, 1) as follows. Let (𝑥, 𝑦) ∈ (0, 1) × (0, 1).

Denote the proper decimal expansions of 𝑥 and 𝑦 by 𝑥 =
+∞

∑
𝑘=1

𝑎𝑘10−𝑘 = 0.𝑎1𝑎2 … where 𝑎𝑘 ∈ {0, 1, … , 9}

are not all equal to 0 and 𝑦 =
+∞

∑
𝑘=1

𝑏𝑘10−𝑘 = 0.𝑏1𝑏2 … similarly.

Then we set 𝑓(𝑥, 𝑦) =
+∞

∑
𝑘=0

𝑎𝑘10−(2𝑘+1) +
+∞

∑
𝑘=1

𝑏𝑘10−2𝑘 = 0.𝑎1𝑏1𝑎2𝑏2 … =
+∞

∑
𝑘=1

𝑐𝑘10−𝑘 where

𝑐𝑘 = {
𝑎𝑛 if ∃𝑛 ∈ ℕ ⧵ {0}, 𝑘 = 2𝑛
𝑏𝑛 if ∃𝑛 ∈ ℕ, 𝑘 = 2𝑛 + 1

Then 𝑓 a bijection by existence and uniqueness of the proper decimal expansion.
Hence |(0, 1) × (0, 1)| = |(0, 1)|.
Since |(0, 1)| = |ℝ, we get |ℝ × ℝ| = |(0, 1) × (0, 1)| = |(0, 1)| = |ℝ|.

Second method:
Define 𝑓 ∶ 𝒫(ℕ) × 𝒫(ℕ) → 𝒫(ℕ) by 𝑓(𝐴, 𝐵) = {2𝑘 ∶ 𝑘 ∈ 𝐴} ∪ {2𝑙 + 1 ∶ 𝑙 ∈ 𝐵}.
Then 𝑓 is bijective (prove it).
Thus |𝒫(ℕ) × 𝒫(ℕ)| = |𝒫(ℕ)|.
Since |ℝ| = |𝒫(ℕ)|, we get |ℝ × ℝ| = |𝒫(ℕ) × 𝒫(ℕ)| = |𝒫(ℕ)| = |ℝ|.

2. Let’s prove by induction on 𝑛 ∈ ℕ ⧵ {0} that |ℝ𝑛| = |ℝ|.

• Base case at 𝑛 = 1: then ℝ1 = ℝ thus |ℝ1| = |ℝ|.
• Inductive step: assume that |ℝ𝑛| = |ℝ| for some 𝑛 ∈ ℕ ⧵ {0}. Then

|ℝ𝑛+1| = |ℝ𝑛 × ℝ|
= |ℝ × ℝ| since |ℝ𝑛| = |ℝ| and |ℝ| = |ℝ|
= |ℝ| by the previous question

3. One idea here is to notice that |ℝℕ| = |({0, 1}ℕ)
ℕ

| = |{0, 1}ℕ×ℕ| = |{0, 1}ℕ| = |ℝ|.
Since we have not covered arithmetic of cardinals, we need to prove each equality.

• Since |ℝ| = |𝒫(ℕ)| = |{0, 1}ℕ|, there exists a bijection 𝜓 ∶ ℝ → {0, 1}ℕ.
We define 𝜑 ∶ ℝℕ → ({0, 1}ℕ)

ℕ by 𝜑(𝑓) = 𝜓 ∘ 𝑓 ∶ ℕ → {0, 1}ℕ.
Then 𝜑 is a bijection (check it), and thus |ℝℕ| = |({0, 1}ℕ)

ℕ
|.
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• We define 𝜉 ∶ {0, 1}ℕ×ℕ → ({0, 1}ℕ)
ℕ by 𝜉(𝑓) ∶ {

ℕ → {0, 1}ℕ

𝑛 ↦ (𝑚 ↦ 𝑓(𝑛, 𝑚)) .

Check that 𝜉 is a bijection. Therefore |({0, 1}ℕ)
ℕ

| = |{0, 1}ℕ×ℕ|.
• Since |ℕ × ℕ| = |ℕ|, there exists a bijection 𝜁 ∶ ℕ × ℕ → ℕ.

We define 𝛾 ∶ {0, 1}ℕ → {0, 1}ℕ×ℕ by 𝛾(𝑓) = 𝑓 ∘ 𝜁 .
Check that 𝛾 is a bijection. Therefore |{0, 1}ℕ×ℕ| = |{0, 1}ℕ|.

Sample solutions to Exercise 10.
Define 𝑓 ∶ (0, 1) → 𝑆2 by 𝑓(𝑡) = (cos 𝑡, sin 𝑡, 0). Then 𝑓 is well-defined and injective.
Thus |ℝ| = |(0, 1)| ≤ |𝑆2|.
Besides, since 𝑆2 ⊂ ℝ3, we have that |𝑆2| ≤ |ℝ3| = |ℝ|.
By Cantor–Schröder–Bernstein theorem, we get that |𝑆2| = |ℝ|.

Sample solutions to Exercise 11.
A circle is characterized by its center and its radius. Therefore there is a bijection ℝ2 ×(0, +∞) → 𝑆 mapping
(𝑥, 𝑦, 𝑟) to the circle centered at (𝑥, 𝑦) of radius 𝑟.
Thus |𝑆| = |ℝ2 × (0, +∞)|.
Since exp ∶ ℝ → (0, +∞) is a bijection, we have |(0, +∞)| = |ℝ|. Hence |ℝ2 × (0, +∞)| = |ℝ3| = |ℝ|.
Therefore |𝑆| = |ℝ|.


