Homework questions – Week 10

Jean-Baptiste Campesato

March 29th, 2021 to April 2nd, 2021

Exercise 1.

Let *E* be a set.

1. Prove that $\forall A, B, C \in \mathcal{P}(E), A \cup B = B \cap C \implies A \subset B \subset C$.

2. Prove that $\forall A, B \in \mathcal{P}(E), A \cap B = A \cup B \implies A = B$.

Exercise 2.

Let $f : A \to B$, $g : B \to C$ and $h : C \to D$ be three functions. Prove that $g \circ f$ and $h \circ g$ are bijective if and only if f, g and h are bijective.

Exercise 3.

Let $f : E \to F$.

- 1. Prove that $\forall A \in \mathcal{P}(E), A \subset f^{-1}(f(A))$.
- 2. Prove that $\forall B \in \mathcal{P}(F), f(f^{-1}(B)) \subset B$.
- 3. Can these inclusions be strict?

Exercise 4.

Let $f : E \to F$.

- 1. Prove that $\forall A, B \in \mathcal{P}(F), A \subset B \implies f^{-1}(A) \subset f^{-1}(B)$. Does the converse hold?
- 2. Prove that $\forall A, B \in \mathcal{P}(F)$, $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.
- 3. Prove that $\forall A, B \in \mathcal{P}(F), f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B).$

Exercise 5.

- Let $f : E \to F$.
 - 1. Prove that $\forall A, B \in \mathcal{P}(E), A \subset B \implies f(A) \subset f(B)$. Does the converse hold?
 - 2. Prove that $\forall A, B \in \mathcal{P}(E), f(A \cap B) \subset f(A) \cap f(B)$. Can the inclusion be strict?
 - 3. Prove that $\forall A, B \in \mathcal{P}(E), f(A \cup B) = f(A) \cup f(B).$

Exercise 6.

Let $f : E \to F$. Prove that f is injective if and only if $\forall A, B \in \mathcal{P}(E), f(A \cap B) = f(A) \cap f(B)$.

Exercise 7.

Let *E* be a finite set. For $A, B \in \mathcal{P}(E)$ we define the symmetric difference of *A* and *B* by $A \Delta B = (A \cup B) \setminus (A \cap B)$. Prove that $\forall A, B \in \mathcal{P}(E)$, $|A \Delta B| = |A| + |B| - 2|A \cap B|$.

Exercise 8.

Let *E* and *F* be two finite sets.

- 1. Prove that F^E (the set of functions $E \to F$) is finite and express $|F^E|$ in terms of |E| and |F|.
- 2. Prove that the set { $f \in E^F$: f is injective} is finite and express its cardinal in terms of |E| and |F|. 3. Prove that the set { $f \in E^E$: f is bijective} is finite and express its cardinal in terms of |E|.

The case of surjective functions is more tricky.

Exercise 9.

Let *E* be a finite set and $k \in \{0, 1, ..., |E|\}$. What is the cardinal of $\{A \in \mathcal{P}(E) : |A| = k\}$?

Exercise 10.

Prove that a set *E* is finite if and only if $\mathcal{P}(E)$ is finite. In this case, give an expression of $|\mathcal{P}(E)|$ in terms of |E|.

Exercise 11. *The pigeonhole principle or Dirichlet's drawer principle* I had no enough time to cover this topic in lectures, so here it is :-).

- 1. Let *E* and *F* be two finite sets. Prove that $|E| \leq |F|$ if and only if there exists an injection $f : E \to F$.
- 2. Let *E* and *F* be two finite sets. Prove that if |E| > |F| then there is no injective function $E \rightarrow F$. This statement is pigeonhole principle or Dirichlet's drawer principle: if you have *n* elements put in *k* < *n* boxes, then at least one box contains two elements.
- 3. During a post-covid party with n > 1 participants, we may always find two people who shook hands to the same number of people.
- 4. Let $n \in \mathbb{N} \setminus \{0\}$. Let $a_1, a_2, \dots, a_n \in \mathbb{Z}$. Prove that there exists distinct $i_1, \dots, i_r \in \{1, \dots, n\}, r \ge 1$, so that $n \mid \sum_{k=1}^r a_{i_k}$.
- 5. Prove that among 13 distinct real numbers, there always exist two *x*, *y* satisfying $0 < \frac{x y}{1 + xy} < 2 \sqrt{3}$. *Hint: it looks like a trigonometric formula you know!*

Sample solutions to Exercise 1.

- 1. Let $A, B, C \in \mathcal{P}(E)$. Assume that $A \cup B = B \cap C$. Let $x \in A$ then $x \in A \cup B = B \cap C$. Therefore $x \in B$. So $A \subset B$. Let $x \in B$ then $x \in A \cup B = B \cap C$. Therefore $x \in C$. So $B \subset C$.
- 2. Using the previous question.

Let $A, B \in \mathcal{P}(E)$. Assume that $A \cap B = A \cup B$. From the previous question we get that $A \subset B \subset A$. Hence A = B.

Direct proof. Let $A, B \in \mathcal{P}(E)$. Assume that $A \cap B = A \cup B$. Let $x \in A$ then $x \in A \cup B = A \cap B$. Thus $x \in B$. Therefore $A \subset B$. Let $x \in B$ then $x \in A \cup B = A \cap B$. Thus $x \in A$. Therefore $B \subset A$. Hence A = B.

Proof by contrapositive.

Let $A, B \in \mathcal{P}(E)$. Assume that $A \neq B$. Then

- either $A \setminus B \neq \emptyset$ and then there exists $x \in E$ such that $x \in A$ and $x \notin B$. Thus $x \in A \cup B$ but $x \notin A \cap B$. Therefore $A \cap B \neq A \cup B$.
- or $B \setminus A \neq \emptyset$ and then there exists $x \in E$ such that $x \in B$ and $x \notin A$. Thus $x \in A \cup B$ but $x \notin A \cap B$. Therefore $A \cap B \neq A \cup B$.

Sample solutions to Exercise 2.

 \Leftarrow Assume that *f*, *g* and *h* are bijective then $g \circ f$ and $h \circ g$ are too.

 \Rightarrow Assume that $g \circ f$ and $h \circ g$ are bijective.

Since $g \circ f$ is surjective, g is too. Since $h \circ g$ is injective, g is too.

Hence g is bijective, so it admits an inverse g^{-1} : $C \rightarrow B$.

Then $f = g^{-1} \circ (g \circ f)$ and $h = (h \circ g) \circ g^{-1}$ are bijective as composition of bijective functions.

Sample solutions to Exercise 3.

- 1. Let $A \in \mathcal{P}(E)$. Let $x \in A$. Then $f(x) \in f(A)$. Therefore $x \in f^{-1}(f(A))$. We proved that $A \subset f^{-1}(f(A))$.
- 2. Let $B \subset \mathcal{P}(F)$. Let $y \in f(f^{-1}(B))$. Then there exists $x \in f^{-1}(B)$ such that y = f(x). But since $x \in f^{-1}(B), y = f(x) \in B$. We proved that $f(f^{-1}(B)) \subset B$.
- 3. Define

$$f: \left\{ \begin{array}{rrr} \{1,2\} & \rightarrow & \{1,2\} \\ 1 & \mapsto & 1 \\ 2 & \mapsto & 1 \end{array} \right.$$

Then $f(f^{-1}(\{1,2\})) = f(\{1,2\}) = \{1\} \subsetneq \{1,2\}.$ And $f^{-1}(f(\{1\})) = f^{-1}(\{1\}) = \{1,2\} \supsetneq \{1\}.$

Sample solutions to Exercise 4.

1. Let $A, B \in \mathcal{P}(F)$ be such that $A \subset B$. Take $x \in f^{-1}(A)$. Then $f(x) \in A \subset B$. Thus $x \in f^{-1}(B)$. The converse doesn't hold. Indeed, define

$$f: \left\{ \begin{array}{ccc} \{1\} & \rightarrow & \{1,2\} \\ 1 & \mapsto & 1 \end{array} \right.$$

then $f^{-1}(\{2\}) = \emptyset \subset f^{-1}(\{1\})$. But $\{2\} \not\subset \{1\}$.

- 2. Let $A, B \in \mathcal{P}(F)$. Since $A \cap B \subset A$ and $A \cap B \subset B$, we get that $f^{-1}(A \cap B) \subset f^{-1}(A)$ and $f^{-1}(A \cap B) \subset f^{-1}(B)$. Thus $f^{-1}(A \cap B) \subset f^{-1}(A) \cap f^{-1}(B)$. For the other inclusion, let $x \in f^{-1}(A) \cap f^{-1}(B)$. Then $f(x) \in A$ and $f(x) \in B$. Thus $f(x) \in A \cap B$ so that $x \in f^{-1}(A \cap B)$. Thus $f^{-1}(A) \cap f^{-1}(B) \subset f^{-1}(A \cap B)$.
- 3. Let $A, B \in \mathcal{P}(F)$. Since $A, B \subset A \cup B$, we get $f^{-1}(A), f^{-1}(B) \subset f^{-1}(A \cup B)$. Thus $f^{-1}(A) \cup f^{-1}(B) \subset f^{-1}(A \cup B)$. For the other inclusion, let $x \in f^{-1}(A \cup B)$. Then $f(x) \in A \cup B$. Either $f(x) \in A$ and then $x \in f^{-1}(A) \subset f^{-1}(A) \cup f^{-1}(B)$ or $f(x) \in B$ and then $x \in f^{-1}(B) \subset f^{-1}(A) \cup f^{-1}(B)$. Thus $x \in f^{-1}(A) \cup f^{-1}(B)$. We proved that $f^{-1}(A \cup B) \subset f^{-1}(A) \cup f^{-1}(B)$.

Sample solutions to Exercise 5.

1. Let $A, B \in \mathcal{P}(E)$ be such that $A \subset B$. Let $y \in f(A)$. Then y = f(x) for some $x \in A$. But $x \in A \subset B$. Thus $y = f(x) \in f(B)$. We proved that $f(A) \subset f(B)$. The converse doesn't hold. Indeed define

$$f: \left\{ \begin{array}{ccc} \{1,2\} & \rightarrow & \{1\} \\ 1 & \mapsto & 1 \\ 2 & \mapsto & 1 \end{array} \right.$$

then $f(\{1\}) = f(\{2\}) = \{1\}$ but $\{1\} \notin \{2\}$.

- 2. Let $A, B \in \mathcal{P}(E)$. Since $A \cap B \subset A$, B we get $f(A \cap B) \subset f(A)$, f(B). Thus $f(A \cap B) \subset f(A) \cap f(B)$. The inclusion can be strict using the same example as above.
- 3. Let $A, B \in \mathcal{P}(E)$. Since $A, B \subset A \cup B$, we get $f(A), f(A) \subset f(A \cup B)$. Thus $f(A) \cup f(B) \subset f(A \cup B)$. For the other inclusion, let $y \in f(A \cup B)$. Then y = f(x) for some $x \in A \cup B$. So either $x \in A$ and then $y = f(x) \in f(A) \subset f(A) \cup f(B)$, or $x \in B$ and then $y = f(x) \in f(B) \subset f(A) \cup f(B)$. In both cases $y \in f(A) \cup f(B)$. So we proved that $f(A \cup B) \subset f(A) \cup f(B)$.

Sample solutions to Exercise 6.

⇒ Assume that *f* is injective. Let *A*, *B* ∈ *P*(*E*). We already know that $f(A \cap B) \subset f(A) \cap f(B)$ holds (see the previous exercise). Let's prove that $f(A) \cap f(B) \subset f(A \cap B)$. Let $y \in f(A) \cap f(B)$. Then $y = f(x_1)$ for some $x_1 \in A$ and $y = f(x_2)$ for some $x_2 \in B$. Since $f(x_1) = f(x_2)$ and *f* is injective, we obtain that $x_1 = x_2 \in A \cap B$. Therefore $y = f(x_1) \in f(A \cap B)$. We proved that $f(A) \cap f(B) \subset f(A \cap B)$. Thus $f(A) \cap f(B) = f(A \cap B)$.

 $\Leftarrow \text{Assume that } \forall A, B \in \mathcal{P}(E), \ f(A \cap B) = f(A) \cap f(B).$ Let $x_1, x_2 \in E$ be such that $f(x_1) = f(x_2)$. Set $y \coloneqq f(x_1) = f(x_2)$. Then $f(\{x_1\} \cap \{x_2\}) = f(\{x_1\}) \cap f(\{x_2\}) = \{y\} \cap \{y\} = \{y\}.$ Particularly $\{x_1\} \cap \{x_2\} \neq \emptyset$, thus $x_1 = x_2$.

Sample solutions to Exercise 7.

$$|A\Delta B| = |(A \cup B) \setminus (A \cap B)|$$
$$= |A \cup B| - |A \cap B|$$
$$= |A| + |B| - |A \cap B| - |A \cap B|$$
$$= |A| + |B| - 2|A \cap B|$$

Sample solutions to Exercise 8.

1. Let $\varphi : \{k \in \mathbb{N} : k < |E|\} \to E$. Then $\psi : F^E \to F^{|E|}$ defined by $\psi(f) = (f(\varphi(0)), \dots, f(\varphi(|E| - 1)))$ is a bijection (prove it). Therefore $|F^E| = |F^{|E|}| = |F|^{|E|}$.

2. According to the last exercise, there exists an injective function $E \to F$ if and only if $|E| \le |F|$. Next, since *E* is finite, there exists a bijection $\varphi : \{k \in \mathbb{N} : k < |E|\} \to E$. For $f(\varphi(0))$ we have |F| possible choices. For $f(\varphi(1))$ we have $|F \setminus \{f(\varphi(0))\}| = |F| - 1$ choices. For $f(\varphi(2))$ we have $|F \setminus \{f(\varphi(0)), f(\varphi(1))\}| = |F| - 2$ choices. And so on. Therefore, $|\{f \in E^F : f \text{ is injective}\}| = |F|(|F| - 1) \cdots (|F| - |E| + 1) = \frac{|F|!}{(|F| - |E|)!}$. Thus $|\{f \in E^F : f \text{ is injective}\}| = \begin{cases} 0 & \text{if } |E| > |F| \\ \frac{|F|!}{(|F| - |E|)!} & \text{if } |E| \le |F| \end{cases}$.

3. It a special case of the above question when |E| = |F|: $|\{f \in E^E : f \text{ is bijective}\}| = \frac{|E|!}{(|E|-|E|)!} = |E|!$.

Sample solutions to Exercise 9.

The number of subsets with cardinality *k* included in a set of cardinality *n* is denoted $\binom{n}{k}$ read "*n* choose *k*".

We are going to prove that $\binom{n}{k} = \frac{n!}{(n-k)!k!}$. Let *E* a finite set. Set n = |E|. Fix $k \in \{0, 1, ..., n\}$.

An ordered list of *k* distinct elements is the same as fixing an injection $\{0, 1, ..., k - 1\} \rightarrow E$. So, using the previous question there are $\frac{n!}{(n-k)!}$ such ordered lists.

Two ordered lists of *k* elements give the same subset if and only if one is obtained from the other one permuting its elements, which is the same as constructing a bijection $\{0, 1, ..., k - 1\} \rightarrow \{0, 1, ..., k - 1\}$. From the previous question there are *k*! such bijections.

Therefore $\binom{n}{k} = \frac{\frac{n!}{(n-k)!}}{k!} = \frac{n!}{(n-k)!k!}$.

Sample solutions to Exercise 10.

⇒

Method 1 (by induction):

Let's prove by induction on n = |E| that $\mathcal{P}(E)$ is finite and that $|\mathcal{P}(E)| = 2^{|E|}$.

- *Base case at* n = 0: if $E = \emptyset$ then $\mathcal{P}(E) = \{\emptyset\}$ is finite.
- *Induction step:* assume that the statement holds for some $n \in \mathbb{N}$, i.e. if *E* is a set with |E| = n then $\mathcal{P}(E)$ is finite and $|\mathcal{P}(E)| = 2^n$.

Let *E* be a set such that |E| = n + 1. Since |E| > 0, there exists $x \in E$. By the induction hypothesis, since $|E \setminus \{x\}| = n$, we get that $\mathcal{P}(E \setminus \{x\})$ is finite and $|\mathcal{P}(E \setminus \{x\})| = 2^n$.

Note that $\mathcal{P}(E \setminus \{x\}) = \{A \in \mathcal{P}(E) : x \notin A\}$ and that

$$\begin{array}{rcl} \{A \in \mathcal{P}(E) \ : \ x \notin A\} & \rightarrow & \{A \in \mathcal{P}(E) \ : \ x \in A\} \\ & A & \mapsto & A \cup \{x\} \end{array}$$

is a bijection.

Therefore $\mathcal{P}(E) = \{A \in \mathcal{P}(E) : x \notin A\} \sqcup \{A \in \mathcal{P}(E) : x \in A\}$ is finite and $|\mathcal{P}(E)| = |\{A \in \mathcal{P}(E) : x \notin A\}| + |\{A \in \mathcal{P}(E) : x \in A\}| = 2^n + 2^n = 2^{n+1}.$

Method 2 (*using the previous exercise*):

Let *E* be a finite set. We know that for k = 0, ..., |E|, the number of subsets with *k* elements is $\binom{n}{k}$. Therefore the number of subsets included in *E* is

$$|\mathcal{P}(E)| = \sum_{k=0}^{|E|} \binom{n}{k} = \sum_{k=0}^{|E|} \binom{n}{k} 1^k 1^{|E|-k} = (1+1)^{|E|} = 2^{|E|}$$

Method 3 (which generalizes to infinite sets):

Let *E* be a finite set. We define $\psi : \mathcal{P}(E) \to \{0,1\}^E$ by $\psi(A)(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}$ Then ψ is a bijection thus $\mathcal{P}(E)$ is finite since $\{0,1\}^E$ is and moreover $|\mathcal{P}(E)| = |\{0,1\}^E| = 2^{|E|}$.

 \Leftarrow Let *E* be a set. Assume that *P*(*E*) is finite. Note that Φ : *E* → *P*(*E*) defined by Φ(*x*) = {*x*} is injective. Therefore *E* is finite too.

Sample solutions to Exercise 11.

- 1. ⇒ Assume that $|E| \le |F|$. There exist bijections φ : { $k \in \mathbb{N}$: k < |E|} → E and ψ : { $k \in \mathbb{N}$: k < |F|} → F. Since $|E| \le |F|$, $f = \psi \circ \varphi^{-1}$: $E \to F$ is well-defined and injective. ⇒ Assume that there exists an injection f : $E \to F$. Then f induces a bijection f : $E \to f(E)$, so that |E| = |f(E)|. And since $f(E) \subset F$, we have $|f(E)| \le |F|$.
- 2. It is a consequence of the previous question.
- 3. A participant shook either 0, 1,... or n 1 hands. So we have n "boxes". Not that it is not possible to have at the same time the boxes 0 and n 1 non-empty. Therefore we have only n 1 boxes for n participants, so two participants must have shaken the same number of boxes. Formally:
 - First case: there is at least one participant who didn't shake any hand. Then $f : \{\text{participants}\} \rightarrow \{0, 1, \dots, n-2\}$ mapping each participant to the number of hands he shook is well-defined. Since $|\{\text{participants}\}| = n > n 1 = |\{0, 1, \dots, n-2\}|, f \text{ can't be injective. Therefore at least two participants shooke the same number of hands.}$
 - Second case: all participants shooke at least one hand. Then $f : \{\text{participants}\} \rightarrow \{1, \dots, n-1\}$ mapping each participant to the number of hands he shook is well-defined. Since $|\{\text{participants}\}| = n > n - 1 = |\{1, 2, \dots, n-1\}|, f \text{ can't be injective. Therefore at least two participants shooke the same number of hands.}$
- 4. For r = 1, 2, ..., n, set $s_r = \sum_{k=1}^r a_k$.
 - First case: there exists *r* such that $n|s_r$. Then we are done.
 - Second case: otherwise, we have *n* numbers s_1, \ldots, s_n whose remainders for the Euclidean division by *n* are among $1, \ldots, n-1$ (i.e. n-1 possible remainders). Hence at least two have the same remainders, let's say s_p and s_q with q > p. Then $n|s_q s_p = \sum_{k=p+1}^{q} a_k$.
- 5. First, note that $\frac{\tan a \tan b}{1 + \tan a \tan b} = \tan(a b)$ and that

$$\tan\frac{\pi}{12} = \tan\left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \frac{\tan\frac{\pi}{3} - \tan\frac{\pi}{4}}{1 + \tan\frac{\pi}{3}\tan\frac{\pi}{4}} = \frac{\sqrt{3} - 1}{1 + \sqrt{3}} = \frac{\left(\sqrt{3} - 1\right)^2}{2} = 2 - \sqrt{3}$$

Let $x_1, ..., x_{13}$ be 13 distinct real numbers. We set $\alpha_k = \arctan x_k \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Note that the α_k are distinct since arctan is injective.

Note that $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) = I_1 \sqcup I_2 \sqcup I_3 \sqcup \cdots \sqcup I_{12}$ where

$$I_1 = \left(-\frac{\pi}{2}, -\frac{\pi}{2} + \frac{\pi}{12}\right], \quad I_2 = \left(-\frac{\pi}{2} + \frac{\pi}{12}, -\frac{\pi}{2} + 2\frac{\pi}{12}\right], \quad \dots, \quad I_{11} = \left(-\frac{\pi}{2} + 10\frac{\pi}{12}, \frac{\pi}{2} + 11\frac{\pi}{12}\right], \quad I_{12} = \left(-\frac{\pi}{2} + 11\frac{\pi}{12}, \frac{\pi}{2}\right)$$

We define $f : \{\alpha_1, \dots, \alpha_{13}\} \rightarrow \{1, \dots, 12\}$ by $f(\alpha_k) = r$ where $\alpha_k \in I_r$. Since $|\{\alpha_1, \dots, \alpha_{13}\}| = 13 > 12 = |\{1, \dots, 12\}|$, f is not injective. So there exists $alpha_k < \alpha_l$ and $r = 1, \dots, 12$ such that $\alpha_k, \alpha_l \in I_r$. Then $0 < \alpha_l - \alpha_k < \frac{\pi}{12}$. Since tan is increasing on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, we get that $\tan 0 < \tan(\alpha_l - \alpha_k) < \tan\frac{\pi}{12} = 2 - \sqrt{3}$.

Since tan is increasing on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, we get that $\tan 0 < \tan(\alpha_l - \alpha_k) < \tan\frac{\pi}{12} = 2 - \sqrt{3}$. Note that $\tan(\alpha_l - \alpha_k) = \frac{\tan \alpha_l - \tan \alpha_k}{1 + \tan \alpha_l \tan \alpha_k} = \frac{x_l - x_k}{1 + x_l x_k}$. Thus $0 < \frac{x_l - x_k}{1 + x_l x_k} <= 2 - \sqrt{3}$ as requested.