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Exercise 1.

Let E be a set.
1. Prove thatVA,B,C € P(E), AUB=BnNnC — AcCBCcCC.
2. ProvethatVA,Be P(E), AhnB=AUB — A= B.

Exercise 2.

Letf: A—> B,g: B— Candh : C - D be three functions.
Prove that g » f and & - g are bijective if and only if f, g and & are bijective.

Exercise 3.

letf: E—F.
1. Prove that VA € P(E), A C f~L(f(A)).
2. Prove that VB € P(F), f(f~'(B)) c B.
3. Can these inclusions be strict?

Exercise 4.
letf: E—F.
1. Prove thatVA,B € P(F), ACc B = f~(A) c f~1(B).
Does the converse hold?
2. Prove thatVA, B € P(F), f"(AnB) = f~Y(A)n f~'(B).
3. Prove that VA, B € P(F), f ' (AU B) = f (A u f~'(B).

Exercise 5.
Letf: E—F.
1. Prove that VA, B € P(E), AC B = f(A) C f(B).
Does the converse hold?
2. Prove that VA, B € P(E), f(An B) C f(A) N f(B).
Can the inclusion be strict?
3. Prove that VA, B € P(E), f(AuU B) = f(A)U f(B).

Exercise 6.

Let f : E — F. Prove that f is injective if and only if VA, B € P(E), f(ANn B) = f(A) N f(B).

Exercise 7.

Let E be a finite set. For A, B € P(E) we define the symmetric difference of Aand Bby AAB = (AUB)\(ANB).

Prove that VA, B € P(E), |AAB| = |A| + |B| —2|AnN Bj.

Exercise 8.
Let E and F be two finite sets.

1. Prove that F¥ (the set of functions E — F ) is finite and express |F E | in terms of |E| and | F|.
2. Prove that theset {f € Ef : fis injective} is finite and express its cardinal in terms of |E| and | F|.
3. Prove that theset {f € Ef : fis bijective} is finite and express its cardinal in terms of | E|.

The case of surjective functions is more tricky.
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Exercise 9.
Let E be a finite setand k € {0, 1, ..., |E|}. What is the cardinal of {A € P(E) : |A| = k}?

Exercise 10.
Prove that a set E is finite if and only if P(E) is finite.
In this case, give an expression of |P(E)| in terms of | E|.

Exercise 11. The pigeonhole principle or Dirichlet’s drawer principle
I'had no enough time to cover this topic in lectures, so here it is :-).

1. Let E and F be two finite sets. Prove that | E| < | F| if and only if there exists an injection f : E — F.

2. Let E and F be two finite sets. Prove that if | E| > | F| then there is no injective function E — F.
This statement is pigeonhole principle or Dirichlet’s drawer principle: if you have n elements put in k < n boxes,
then at least one box contains two elements.

3. During a post-covid party with n > 1 participants, we may always find two people who shook hands
to the same number of people.

4. Letn € N\ {0}. Let a,a,,...,a, € Z. Prove that there exists distinct iy, ...,i, € {1,...,n},r > 1, s0
that n| Y _; a;,.

5. Prove that among 13 distinct real numbers, there always exist two x, y satisfying 0 < 1x+— Y <2-43.
Xy

Hint: it looks like a trigonometric formula you know!
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Sample solutions to Exercise 1.
1. Let A,B,C € P(E). Assume that AUB=BnC.
Letx € Athenx € AUB = BnC. Therefore x € B. So A C B.
Letx e Bthenx € AUB = BnC. Therefore x e C. So Bc C.

2. Using the previous question.
Let A, B € P(E). Assume that AN B= AU B.
From the previous question we get that A ¢ B ¢ A. Hence A = B.

Direct proof.

Let A, B € P(E). Assume that AN B= AU B.

Letx € Athenx € AU B = An B. Thus x € B. Therefore A C B.
Letx € Bthenx € AU B = An B. Thus x € A. Therefore B C A.
Hence A = B.

Proof by contrapositive.
Let A, B € P(E). Assume that A # B. Then

e either A\ B # @ and then there exists x € E such that x € A and x ¢ B. Thus x € AU B but
x & AN B. Therefore AN B # AU B.

e or B\ A # @ and then there exists x € E such that x € Band x ¢ A. Thusx € AUBbutx & AN B.
Therefore AN B # AU B.

Sample solutions to Exercise 2.

& Assume that f, g and A are bijective then g - f and & - g are too.

= Assume that g - f and 5 - g are bijective.

Since g o f is surjective, g is too. Since 4 - g is injective, g is too.

Hence g is bijective, so it admits an inverse g™ : C — B.

Then f =g le(go f)and h = (hog)og™ ' are bijective as composition of bijective functions.

Sample solutions to Exercise 3.

1. Let A € P(E). Let x € A. Then f(x) € f(A). Therefore x € f~1(f(A)).
We proved that A C f “L(f(A)).

2. Let B ¢ P(F). Let y € f(f~'(B)). Then there exists x € f~'(B) such that y = f(x). But since

xe f7'(B),y=f(x)€B.
We proved that f(f~YB)) c B.

3. Define

{1,2} - {1,2}
f Z{ 1 - 1
2 - 1

Then f(f7'({1,2}) = f({1,2}) = {1} ¢ {1,2}.
And ) = ) = {1,2) 2 {1).

Sample solutions to Exercise 4.
1. Let A, B € P(F) be such that A ¢ B. Take x € f~'(A). Then f(x) € A c B. Thus x € f~(B).
The converse doesn’t hold. Indeed, define

) = {L2)
f‘{ 1 1

-

then f~'((2hH =@ c f~'({1}). But {2} ¢ {1}.
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2. Let A, B € P(F).
Since AN B C Aand An B C B, we get that f~'(An B) ¢ f~!(A)and f~'(An B) c f~'(B). Thus
fiAnB) c i AWn r(B).
For the other inclusion, let x € f~'(A)n f~1(B). Then f(x) € A and f(x) € B. Thus f(x) € An B so
thatx € f~'(An B). Thus f~'(A) n f~'(B) c f~'(An B).

3. Let A, B € P(F).
Since A, B C AU B, we get f~1(A), f"/(B) c f~' (AU B). Thus f~'(A)u f~(B) c f~'(Au B).
For the other inclusion, let x € f~!(A U B). Then f(x) € AU B. Either f(x) € A and then x € f~1(4)
YA u ' B)or f(x) € Band thenx € f~1(B) c f~'(A)u f~1(B). Thus x € f~'(A) U f~1(B). We
proved that f~'(Au B) c f~1(A)u f71(B).

Sample solutions to Exercise 5.
1. Let A,B € P(E) be such that A ¢ B. Let y € f(A). Then y = f(x) for some x € A. Butx € A C B.
Thus y = f(x) € f(B). We proved that f(A) C f(B).
The converse doesn’t hold. Indeed define

{1,2} - {1}
f: 1 |
2 1

then f({1}) = f({2}) = {1} but {1} ¢ {2}.

2. Let A, B € P(E). Since AN B C A, Bwe get f(An B) C f(A), f(B). Thus f(An B) C f(A)N f(B).
The inclusion can be strict using the same example as above.

3. Let A, B € P(E). Since A, B C AU B, we get f(A), f(A) C f(AU B). Thus f(A)U f(B) C f(AU B).
For the other inclusion, let y € f(A U B). Then y = f(x) for some x € A U B. So either x € A and then
y=f(x) € f(A) C f(A)U f(B),or x € Band theny = f(x) € f(B) C f(A)U f(B). In both cases
y € f(A)U f(B). So we proved that f(AU B) C f(A)U f(B).

Sample solutions to Exercise 6.

= Assume that f is injective. Let A, B € P(E).

We already know that f(A N B) C f(A) N f(B) holds (see the previous exercise).

Let’s prove that f(A)n f(B) C f(AN B).

Lety € f(A)n f(B). Then y = f(x,) for some x; € A and y = f(x,) for some x, € B.

Since f(x;) = f(x,) and f is injective, we obtain that x; = x, € An B. Therefore y = f(x;) € f(AN B).
We proved that f(A)n f(B) C f(An B). Thus f(A)n f(B) = f(ANn B).

& Assume that YA, B € P(E), f(An B) = f(A)n f(B).

Let x;,x, € E be such that f(x;) = f(x,). Set y := f(x;) = f(x,).
Then f({x;} n{x2}) = fU{x;H N F{xa D) = {y}n{y} = {»}.
Particularly {x;} n {x,} # @, thus x; = x,.

Sample solutions to Exercise 7.

|AAB| = |(AU B)\ (AN B)|
=|AUB| - |AN B
=|A|+|B|-|AnB|-|An B|
= |A| +|B| - 2|A N B|
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Sample solutions to Exercise 8.
1. Letp : {keN : k< |E|} > E.
Then y : FE = FIEl defined by w(f) = (f(9(0)), ..., f(@(|E| — 1))) is a bijection (prove it).
Therefore |FE| = |F|E|| = |F|IEl.

2. According to the last exercise, there exists an injective function E — F if and only if |E| < |F|.
Next, since E is finite, there exists a bijection ¢ : {k €N : k <|E|} - E.
For f(¢(0)) we have | F| possible choices. For f(¢(1)) we have |F \ { f(¢(0))}| = |F| — 1 choices. For
f (@) we have |F \ { f(¢(0)), f(p(1))}| = |F| — 2 choices. And so on.

Therefore, |{f € EF : fis injective}| = |F|(|F| - 1)~ (|F| - |E|+1) = (|F||f||35|)!.
Thus |{f € EF : fisinjective}| = { |g|! ii :g: z :g: .
(IFI-ED! -
3. It a special case of the above question when |E| = |F|: |{f € EE ¢ fis bijective}| = LEL_ — |E|!.

(EI-IED!

Sample solutions to Exercise 9.

The number of subsets with cardinality k included in a set of cardinality » is denoted <Z> read “n choose

7

. . !
We are going to prove that (:) = m

Let E a finite set. Set n = |E|. Fixk € {0,1,...,n}.

An ordered list of k distinct elements is the same as fixing an injection {0, 1,...,k — 1} - E. So, using the

. . ! .
previous question there are —— such ordered lists.

(n=k)!
Two ordered lists of k elements give the same subset if and only if one is obtained from the other one
permuting its elements, which is the same as constructing a bijection {0,1,...,k — 1} = {0,1,...,k = 1}.
From the previous question there are k! such bijections.
n\ _ (r:.k)! _ n!
Therefore <k> = = o

Sample solutions to Exercise 10.

=

Method 1 (by induction):

Let’s prove by induction on n = | E| that P(E) is finite and that |[P(E)| = 21E1

e Base case at n = 0: if E = @ then P(E) = {@} is finite.

o Induction step: assume that the statement holds for some n € N, i.e. if E is a set with | E| = n then P(E)
is finite and |P(E)| = 2".
Let E be a set such that |E| = n + 1. Since |E| > 0, there exists x € E.
By the induction hypothesis, since |E \ {x}| = n, we get that P(E \ {x}) is finite and |P(E \ {x})| = 2".
Note that P(E \ {x}) = {A € P(E) : x ¢ A} and that

[A€PE) : x¢& A} — [A€PE) : xe A
A > AU {x}

is a bijection.
Therefore P(E)={A € P(E) : x¢& A}U{A € P(E) : x € A} is finite and
|P(E)|=|{A€PE) : xg A}|+|{A€P(E) : x€ A}| =2"+2" =21,
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Method 2 (using the previous exercise):
Let E be a finite set. We know that for k =0, ..., | E|, the number of subsets with k elements is (Z)
Therefore the number of subsets included in F is

|E| |E|

@)1= 3 () = X ()it = a e =2

k=0 k=0

Method 3 (which generalizes to infinite sets):
Let E be a finite set. We define y : P(E) — {0, 1} by y(A)(x) = { I ifxeA

0 otherwise °
Then y is a bijection thus P(E) is finite since {0, 1}F is and moreover |P(E)| = |{0, 1}E| =2IEl,

< Let E be a set. Assume that P(E) is finite.
Note that @ : E — P(E) defined by ®(x) = {x} is injective. Therefore E is finite too.

Sample solutions to Exercise 11.
1. = Assume that |E| < |F]|.
There exist bijections ¢ : {keN : k<|E|} - FEandy : {keN : k<|F|} - F.
Since |E| < |F|, f =wo¢~! : E - F is well-defined and injective.
= Assume that there exists an injection f : E — F.
Then f induces a bijection f : E — f(E), so that |[E| = | f(E)|.
And since f(E) C F, we have |f(E)| < |F|.

2. Itis a consequence of the previous question.

3. A participant shook either 0, 1,... or n — 1 hands. So we have n “boxes”. Not that it is not possible
to have at the same time the boxes 0 and n — 1 non-empty. Therefore we have only n — 1 boxes for n
participants, so two participants must have shaken the same number of boxes.

Formally:

e First case: there is at least one participant who didn’t shake any hand. Then f : {participants} —
{0,1,...,n—2} mapping each participant to the number of hands he shook is well-defined. Since
|[{participants}| = n > n—1 = |[{0,1,...,n — 2}|, f can’t be injective. Therefore at least two
participants shooke the same number of hands.

e Second case: all participants shooke at least one hand. Then f : {participants} — {1,...,n -1}
mapping each participant to the number of hands he shook is well-defined. Since |{ participants}| =
n>n—1=|{1,2,...,n—1}|, f can’t be injective. Therefore at least two participants shooke the
same number of hands.

4. Forr=1,2,....n,sets, = Y,_, a.

e First case: there exists r such that n|s,. Then we are done.

e Second case: otherwise, we have n numbers s, ..., s, whose remainders for the Euclidean divi-
sionby nareamong 1, ...,n—1 (i.e. n—1 possible remainders). Hence at least two have the same
. p . _ N4
remainders, let’s say s, and s, with ¢ > p. Then n|s, — s, = 2k=p+1 ay.

5. First, note that -204=@00 _ 471 (g — b) and that
l+tanatan b

2
tanZ — tan = _ (\/5—1)
tani:tan<£_£>_ 3 4 \/5 1_

12 3 4 1+tan§tan% 1+\/§ 2

=2-1/3
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Let x;, ..., x3 be 13 distinct real numbers. We set @) = arctanx, € (—%, %) Note that the a; are
distinct since arctan is injective.

Note that (—%, %) =1, ul,Ul;U- Ul where

I =<—£,—E i], I =<—£ z _Zz zi], s 1 =(—£+10£,£+11£], I =(—£+11£,f)
! > 2 12 2 RV T 1 2 12°2 12 12 2 12°2
We define f : {ay,...,a;3} = {1,...,12} by f(a;) = r where a; € I,.

Since [{ay,...,a3}| = 13 > 12 = |{1,...,12}|, f is not injective. So there exists alpha, < a; and

r=1,...,12such that a;,a; € I,. Then 0 < a; — & < .

Since tan is increasing on ( —Z, Z ), we get that tan 0 < tan(e; — ;) < tan = =2 — /3.
g 2° 9 g / k 12

tanaI—tanak x1—xk x1—xk _
- = = . Lk «=2 — as requested.
Note that tan(e; — ay) Tttana ana, — Ttax Thus 0 < oy < 2 \/3 s requeste




