Homework questions - Week 10

Jean-Baptiste Campesato

March 29 ${ }^{\text {th }}, 2021$ to April $2^{\text {nd }}, 2021$

Exercise 1.

Let E be a set.

1. Prove that $\forall A, B, C \in \mathcal{P}(E), A \cup B=B \cap C \Longrightarrow A \subset B \subset C$.
2. Prove that $\forall A, B \in \mathcal{P}(E), A \cap B=A \cup B \Longrightarrow A=B$.

Exercise 2.

Let $f: A \rightarrow B, g: B \rightarrow C$ and $h: C \rightarrow D$ be three functions.
Prove that $g \circ f$ and $h \circ g$ are bijective if and only if f, g and h are bijective.

Exercise 3.

Let $f: E \rightarrow F$.

1. Prove that $\forall A \in \mathcal{P}(E), A \subset f^{-1}(f(A))$.
2. Prove that $\forall B \in \mathcal{P}(F), f\left(f^{-1}(B)\right) \subset B$.
3. Can these inclusions be strict?

Exercise 4.

Let $f: E \rightarrow F$.

1. Prove that $\forall A, B \in \mathcal{P}(F), A \subset B \Longrightarrow f^{-1}(A) \subset f^{-1}(B)$.

Does the converse hold?
2. Prove that $\forall A, B \in \mathcal{P}(F), f^{-1}(A \cap B)=f^{-1}(A) \cap f^{-1}(B)$.
3. Prove that $\forall A, B \in \mathcal{P}(F), f^{-1}(A \cup B)=f^{-1}(A) \cup f^{-1}(B)$.

Exercise 5.

Let $f: E \rightarrow F$.

1. Prove that $\forall A, B \in \mathcal{P}(E), A \subset B \Longrightarrow f(A) \subset f(B)$.

Does the converse hold?
2. Prove that $\forall A, B \in \mathcal{P}(E), f(A \cap B) \subset f(A) \cap f(B)$.

Can the inclusion be strict?
3. Prove that $\forall A, B \in \mathcal{P}(E), f(A \cup B)=f(A) \cup f(B)$.

Exercise 6.

Let $f: E \rightarrow F$. Prove that f is injective if and only if $\forall A, B \in \mathcal{P}(E), f(A \cap B)=f(A) \cap f(B)$.

Exercise 7.

Let E be a finite set. For $A, B \in \mathcal{P}(E)$ we define the symmetric difference of A and B by $A \Delta B=(A \cup B) \backslash(A \cap B)$.
Prove that $\forall A, B \in \mathcal{P}(E),|A \Delta B|=|A|+|B|-2|A \cap B|$.

Exercise 8.

Let E and F be two finite sets.

1. Prove that F^{E} (the set of functions $E \rightarrow F$) is finite and express $\left|F^{E}\right|$ in terms of $|E|$ and $|F|$.
2. Prove that the set $\left\{f \in E^{F}: f\right.$ is injective $\}$ is finite and express its cardinal in terms of $|E|$ and $|F|$.
3. Prove that the set $\left\{f \in E^{E}: f\right.$ is bijective $\}$ is finite and express its cardinal in terms of $|E|$.

The case of surjective functions is more tricky.

Exercise 9.

Let E be a finite set and $k \in\{0,1, \ldots,|E|\}$. What is the cardinal of $\{A \in \mathcal{P}(E):|A|=k\}$?

Exercise 10.

Prove that a set E is finite if and only if $\mathcal{P}(E)$ is finite.
In this case, give an expression of $|\mathcal{P}(E)|$ in terms of $|E|$.
Exercise 11. The pigeonhole principle or Dirichlet's drawer principle
I had no enough time to cover this topic in lectures, so here it is :-).

1. Let E and F be two finite sets. Prove that $|E| \leq|F|$ if and only if there exists an injection $f: E \rightarrow F$.
2. Let E and F be two finite sets. Prove that if $|E|>|F|$ then there is no injective function $E \rightarrow F$.

This statement is pigeonhole principle or Dirichlet's drawer principle: if you have n elements put in $k<n$ boxes, then at least one box contains two elements.
3. During a post-covid party with $n>1$ participants, we may always find two people who shook hands to the same number of people.
4. Let $n \in \mathbb{N} \backslash\{0\}$. Let $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}$. Prove that there exists distinct $i_{1}, \ldots, i_{r} \in\{1, \ldots, n\}, r \geq 1$, so that $n \mid \sum_{k=1}^{r} a_{i_{k}}$.
5. Prove that among 13 distinct real numbers, there always exist two x, y satisfying $0<\frac{x-y}{1+x y}<2-\sqrt{3}$. Hint: it looks like a trigonometric formula you know!

Sample solutions to Exercise 1.

1. Let $A, B, C \in \mathcal{P}(E)$. Assume that $A \cup B=B \cap C$.

Let $x \in A$ then $x \in A \cup B=B \cap C$. Therefore $x \in B$. So $A \subset B$.
Let $x \in B$ then $x \in A \cup B=B \cap C$. Therefore $x \in C$. So $B \subset C$.
2. Using the previous question.

Let $A, B \in \mathcal{P}(E)$. Assume that $A \cap B=A \cup B$.
From the previous question we get that $A \subset B \subset A$. Hence $A=B$.
Direct proof.
Let $A, B \in \mathcal{P}(E)$. Assume that $A \cap B=A \cup B$.
Let $x \in A$ then $x \in A \cup B=A \cap B$. Thus $x \in B$. Therefore $A \subset B$.
Let $x \in B$ then $x \in A \cup B=A \cap B$. Thus $x \in A$. Therefore $B \subset A$.
Hence $A=B$.

Proof by contrapositive.
Let $A, B \in \mathcal{P}(E)$. Assume that $A \neq B$. Then

- either $A \backslash B \neq \varnothing$ and then there exists $x \in E$ such that $x \in A$ and $x \notin B$. Thus $x \in A \cup B$ but $x \notin A \cap B$. Therefore $A \cap B \neq A \cup B$.
- or $B \backslash A \neq \varnothing$ and then there exists $x \in E$ such that $x \in B$ and $x \notin A$. Thus $x \in A \cup B$ but $x \notin A \cap B$. Therefore $A \cap B \neq A \cup B$.

Sample solutions to Exercise 2.

\Leftarrow Assume that f, g and h are bijective then $g \circ f$ and $h \circ g$ are too.
\Rightarrow Assume that $g \circ f$ and $h \circ g$ are bijective.
Since $g \circ f$ is surjective, g is too. Since $h \circ g$ is injective, g is too.
Hence g is bijective, so it admits an inverse $g^{-1}: C \rightarrow B$.
Then $f=g^{-1} \circ(g \circ f)$ and $h=(h \circ g) \circ g^{-1}$ are bijective as composition of bijective functions.

Sample solutions to Exercise 3.

1. Let $A \in \mathcal{P}(E)$. Let $x \in A$. Then $f(x) \in f(A)$. Therefore $x \in f^{-1}(f(A))$. We proved that $A \subset f^{-1}(f(A))$.
2. Let $B \subset \mathcal{P}(F)$. Let $y \in f\left(f^{-1}(B)\right)$. Then there exists $x \in f^{-1}(B)$ such that $y=f(x)$. But since $x \in f^{-1}(B), y=f(x) \in B$.
We proved that $f\left(f^{-1}(B)\right) \subset B$.
3. Define

$$
f:\left\{\begin{array}{ccc}
\{1,2\} & \rightarrow & \{1,2\} \\
1 & \mapsto & 1 \\
2 & \mapsto & 1
\end{array}\right.
$$

Then $f\left(f^{-1}(\{1,2\})\right)=f(\{1,2\})=\{1\} \subsetneq\{1,2\}$.
And $f^{-1}(f(\{1\}))=f^{-1}(\{1\})=\{1,2\} \supsetneq\{1\}$.

Sample solutions to Exercise 4.

1. Let $A, B \in \mathcal{P}(F)$ be such that $A \subset B$. Take $x \in f^{-1}(A)$. Then $f(x) \in A \subset B$. Thus $x \in f^{-1}(B)$. The converse doesn't hold. Indeed, define

$$
f:\left\{\begin{array}{ccc}
\{1\} & \rightarrow & \{1,2\} \\
1 & \mapsto & 1
\end{array}\right.
$$

then $f^{-1}(\{2\})=\varnothing \subset f^{-1}(\{1\})$. But $\{2\} \not \subset\{1\}$.
2. Let $A, B \in \mathcal{P}(F)$.

Since $A \cap B \subset A$ and $A \cap B \subset B$, we get that $f^{-1}(A \cap B) \subset f^{-1}(A)$ and $f^{-1}(A \cap B) \subset f^{-1}(B)$. Thus $f^{-1}(A \cap B) \subset f^{-1}(A) \cap f^{-1}(B)$.
For the other inclusion, let $x \in f^{-1}(A) \cap f^{-1}(B)$. Then $f(x) \in A$ and $f(x) \in B$. Thus $f(x) \in A \cap B$ so that $x \in f^{-1}(A \cap B)$. Thus $f^{-1}(A) \cap f^{-1}(B) \subset f^{-1}(A \cap B)$.
3. Let $A, B \in \mathcal{P}(F)$.

Since $A, B \subset A \cup B$, we get $f^{-1}(A), f^{-1}(B) \subset f^{-1}(A \cup B)$. Thus $f^{-1}(A) \cup f^{-1}(B) \subset f^{-1}(A \cup B)$.
For the other inclusion, let $x \in f^{-1}(A \cup B)$. Then $f(x) \in A \cup B$. Either $f(x) \in A$ and then $x \in f^{-1}(A) \subset$ $f^{-1}(A) \cup f^{-1}(B)$ or $f(x) \in B$ and then $x \in f^{-1}(B) \subset f^{-1}(A) \cup f^{-1}(B)$. Thus $x \in f^{-1}(A) \cup f^{-1}(B)$. We proved that $f^{-1}(A \cup B) \subset f^{-1}(A) \cup f^{-1}(B)$.

Sample solutions to Exercise 5.

1. Let $A, B \in \mathcal{P}(E)$ be such that $A \subset B$. Let $y \in f(A)$. Then $y=f(x)$ for some $x \in A$. But $x \in A \subset B$. Thus $y=f(x) \in f(B)$. We proved that $f(A) \subset f(B)$.
The converse doesn't hold. Indeed define

$$
f:\left\{\begin{array}{ccc}
\{1,2\} & \rightarrow & \{1\} \\
1 & \mapsto & 1 \\
2 & \mapsto & 1
\end{array}\right.
$$

then $f(\{1\})=f(\{2\})=\{1\}$ but $\{1\} \not \subset\{2\}$.
2. Let $A, B \in \mathcal{P}(E)$. Since $A \cap B \subset A, B$ we get $f(A \cap B) \subset f(A), f(B)$. Thus $f(A \cap B) \subset f(A) \cap f(B)$. The inclusion can be strict using the same example as above.
3. Let $A, B \in \mathcal{P}(E)$. Since $A, B \subset A \cup B$, we get $f(A), f(A) \subset f(A \cup B)$. Thus $f(A) \cup f(B) \subset f(A \cup B)$.

For the other inclusion, let $y \in f(A \cup B)$. Then $y=f(x)$ for some $x \in A \cup B$. So either $x \in A$ and then $y=f(x) \in f(A) \subset f(A) \cup f(B)$, or $x \in B$ and then $y=f(x) \in f(B) \subset f(A) \cup f(B)$. In both cases $y \in f(A) \cup f(B)$. So we proved that $f(A \cup B) \subset f(A) \cup f(B)$.

Sample solutions to Exercise 6.

\Rightarrow Assume that f is injective. Let $A, B \in \mathcal{P}(E)$.
We already know that $f(A \cap B) \subset f(A) \cap f(B)$ holds (see the previous exercise).
Let's prove that $f(A) \cap f(B) \subset f(A \cap B)$.
Let $y \in f(A) \cap f(B)$. Then $y=f\left(x_{1}\right)$ for some $x_{1} \in A$ and $y=f\left(x_{2}\right)$ for some $x_{2} \in B$.
Since $f\left(x_{1}\right)=f\left(x_{2}\right)$ and f is injective, we obtain that $x_{1}=x_{2} \in A \cap B$. Therefore $y=f\left(x_{1}\right) \in f(A \cap B)$.
We proved that $f(A) \cap f(B) \subset f(A \cap B)$. Thus $f(A) \cap f(B)=f(A \cap B)$.
\Leftarrow Assume that $\forall A, B \in \mathcal{P}(E), f(A \cap B)=f(A) \cap f(B)$.
Let $x_{1}, x_{2} \in E$ be such that $f\left(x_{1}\right)=f\left(x_{2}\right)$. Set $y:=f\left(x_{1}\right)=f\left(x_{2}\right)$.
Then $f\left(\left\{x_{1}\right\} \cap\left\{x_{2}\right\}\right)=f\left(\left\{x_{1}\right\}\right) \cap f\left(\left\{x_{2}\right\}\right)=\{y\} \cap\{y\}=\{y\}$.
Particularly $\left\{x_{1}\right\} \cap\left\{x_{2}\right\} \neq \varnothing$, thus $x_{1}=x_{2}$.

Sample solutions to Exercise 7.

$$
\begin{aligned}
|A \Delta B| & =|(A \cup B) \backslash(A \cap B)| \\
& =|A \cup B|-|A \cap B| \\
& =|A|+|B|-|A \cap B|-|A \cap B| \\
& =|A|+|B|-2|A \cap B|
\end{aligned}
$$

Sample solutions to Exercise 8.

1. Let $\varphi:\{k \in \mathbb{N}: k<|E|\} \rightarrow E$.

Then $\psi: F^{E} \rightarrow F^{|E|}$ defined by $\psi(f)=(f(\varphi(0)), \ldots, f(\varphi(|E|-1)))$ is a bijection (prove it).
Therefore $\left|F^{E}\right|=\left|F^{|E|}\right|=|F|^{|E|}$.
2. According to the last exercise, there exists an injective function $E \rightarrow F$ if and only if $|E| \leq|F|$.

Next, since E is finite, there exists a bijection $\varphi:\{k \in \mathbb{N}: k<|E|\} \rightarrow E$.
For $f(\varphi(0))$ we have $|F|$ possible choices. For $f(\varphi(1))$ we have $|F \backslash\{f(\varphi(0))\}|=|F|-1$ choices. For $f(\varphi(2))$ we have $|F \backslash\{f(\varphi(0)), f(\varphi(1))\}|=|F|-2$ choices. And so on.
Therefore, $\left\lvert\,\left\{f \in E^{F}: f\right.$ is injective $\}\left|=|F|(|F|-1) \cdots(|F|-|E|+1)=\frac{|F|!}{(|F|-|E|)!}\right.$. \right.
Thus $\mid\left\{f \in E^{F}: f\right.$ is injective $\} \left\lvert\,=\left\{\begin{array}{cl}0 & \text { if }|E|>|F| \\ \frac{|F|!}{(|F|-|E|)!} & \text { if }|E| \leq|F|\end{array}\right.\right.$.
3. It a special case of the above question when $|E|=|F|: \left\lvert\,\left\{f \in E^{E}: f\right.$ is bijective $\}\left|=\frac{|E|!}{(|E|-|E|)!}=|E|\right.$!. \right.

Sample solutions to Exercise 9.

The number of subsets with cardinality k included in a set of cardinality n is denoted $\binom{n}{k}$ read " n choose $k^{\prime \prime}$.
We are going to prove that $\binom{n}{k}=\frac{n!}{(n-k)!k!}$.
Let E a finite set. Set $n=|E|$. Fix $k \in\{0,1, \ldots, n\}$.
An ordered list of k distinct elements is the same as fixing an injection $\{0,1, \ldots, k-1\} \rightarrow E$. So, using the previous question there are $\frac{n!}{(n-k)!}$ such ordered lists.
Two ordered lists of k elements give the same subset if and only if one is obtained from the other one permuting its elements, which is the same as constructing a bijection $\{0,1, \ldots, k-1\} \rightarrow\{0,1, \ldots, k-1\}$. From the previous question there are k ! such bijections.
Therefore $\binom{n}{k}=\frac{n!}{(n-k)!}=\frac{n!}{(n-k)!k!}$.

Sample solutions to Exercise 10.

\Rightarrow
Method 1 (by induction):
Let's prove by induction on $n=|E|$ that $\mathcal{P}(E)$ is finite and that $|\mathcal{P}(E)|=2^{|E|}$.

- Base case at $n=0$: if $E=\varnothing$ then $\mathcal{P}(E)=\{\varnothing\}$ is finite.
- Induction step: assume that the statement holds for some $n \in \mathbb{N}$, i.e. if E is a set with $|E|=n$ then $\mathcal{P}(E)$ is finite and $|\mathcal{P}(E)|=2^{n}$.
Let E be a set such that $|E|=n+1$. Since $|E|>0$, there exists $x \in E$.
By the induction hypothesis, since $|E \backslash\{x\}|=n$, we get that $\mathcal{P}(E \backslash\{x\})$ is finite and $|\mathcal{P}(E \backslash\{x\})|=2^{n}$. Note that $\mathcal{P}(E \backslash\{x\})=\{A \in \mathcal{P}(E): x \notin A\}$ and that

$$
\begin{array}{cccc}
\{A \in \mathcal{P}(E): x \notin A\} & \rightarrow & \{A \in \mathcal{P}(E): x \in A\} \\
A & \mapsto & A \cup\{x\}
\end{array}
$$

is a bijection.
Therefore $\mathcal{P}(E)=\{A \in \mathcal{P}(E): x \notin A\} \sqcup\{A \in \mathcal{P}(E): x \in A\}$ is finite and $|\mathcal{P}(E)|=|\{A \in \mathcal{P}(E): x \notin A\}|+|\{A \in \mathcal{P}(E): x \in A\}|=2^{n}+2^{n}=2^{n+1}$.

Method 2 (using the previous exercise):

Let E be a finite set. We know that for $k=0, \ldots,|E|$, the number of subsets with k elements is $\binom{n}{k}$. Therefore the number of subsets included in E is

$$
|\mathcal{P}(E)|=\sum_{k=0}^{|E|}\binom{n}{k}=\sum_{k=0}^{|E|}\binom{n}{k} 1^{k} 1^{|E|-k}=(1+1)^{|E|}=2^{|E|}
$$

Method 3 (which generalizes to infinite sets):
Let E be a finite set. We define $\psi: \mathcal{P}(E) \rightarrow\{0,1\}^{E}$ by $\psi(A)(x)=\left\{\begin{array}{ll}1 & \text { if } x \in A \\ 0 & \text { otherwise }\end{array}\right.$.
Then ψ is a bijection thus $\mathcal{P}(E)$ is finite since $\{0,1\}^{E}$ is and moreover $|\mathcal{P}(E)|=\left|\{0,1\}^{E}\right|=2^{|E|}$.
\Leftarrow Let E be a set. Assume that $\mathcal{P}(E)$ is finite.
Note that $\Phi: E \rightarrow \mathcal{P}(E)$ defined by $\Phi(x)=\{x\}$ is injective. Therefore E is finite too.

Sample solutions to Exercise 11.

1. \Rightarrow Assume that $|E| \leq|F|$.

There exist bijections $\varphi:\{k \in \mathbb{N}: k<|E|\} \rightarrow E$ and $\psi:\{k \in \mathbb{N}: k<|F|\} \rightarrow F$.
Since $|E| \leq|F|, f=\psi \circ \varphi^{-1}: E \rightarrow F$ is well-defined and injective.
\Rightarrow Assume that there exists an injection $f: E \rightarrow F$.
Then f induces a bijection $f: E \rightarrow f(E)$, so that $|E|=|f(E)|$.
And since $f(E) \subset F$, we have $|f(E)| \leq|F|$.
2. It is a consequence of the previous question.
3. A participant shook either $0,1, \ldots$ or $n-1$ hands. So we have n "boxes". Not that it is not possible to have at the same time the boxes 0 and $n-1$ non-empty. Therefore we have only $n-1$ boxes for n participants, so two participants must have shaken the same number of boxes.
Formally:

- First case: there is at least one participant who didn't shake any hand. Then $f:\{$ participants $\} \rightarrow$ $\{0,1, \ldots, n-2\}$ mapping each participant to the number of hands he shook is well-defined. Since $\mid\{$ participants $\}|=n>n-1=|\{0,1, \ldots, n-2\}|, f$ can't be injective. Therefore at least two participants shooke the same number of hands.
- Second case: all participants shooke at least one hand. Then $f:\{$ participants $\} \rightarrow\{1, \ldots, n-1\}$ mapping each participant to the number of hands he shook is well-defined. Since $\mid\{$ participants $\} \mid=$ $n>n-1=|\{1,2, \ldots, n-1\}|, f$ can't be injective. Therefore at least two participants shooke the same number of hands.

4. For $r=1,2, \ldots, n$, set $s_{r}=\sum_{k=1}^{r} a_{k}$.

- First case: there exists r such that $n \mid s_{r}$. Then we are done.
- Second case: otherwise, we have n numbers s_{1}, \ldots, s_{n} whose remainders for the Euclidean division by n are among $1, \ldots, n-1$ (i.e. $n-1$ possible remainders). Hence at least two have the same remainders, let's say s_{p} and s_{q} with $q>p$. Then $n \mid s_{q}-s_{p}=\sum_{k=p+1}^{q} a_{k}$.

5. First, note that $\frac{\tan a-\tan b}{1+\tan a \tan b}=\tan (a-b)$ and that

$$
\tan \frac{\pi}{12}=\tan \left(\frac{\pi}{3}-\frac{\pi}{4}\right)=\frac{\tan \frac{\pi}{3}-\tan \frac{\pi}{4}}{1+\tan \frac{\pi}{3} \tan \frac{\pi}{4}}=\frac{\sqrt{3}-1}{1+\sqrt{3}}=\frac{(\sqrt{3}-1)^{2}}{2}=2-\sqrt{3}
$$

Let x_{1}, \ldots, x_{13} be 13 distinct real numbers. We set $\alpha_{k}=\arctan x_{k} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Note that the α_{k} are distinct since arctan is injective.
Note that $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)=I_{1} \sqcup I_{2} \sqcup I_{3} \sqcup \cdots \sqcup I_{12}$ where
$I_{1}=\left(-\frac{\pi}{2},-\frac{\pi}{2}+\frac{\pi}{12}\right], \quad I_{2}=\left(-\frac{\pi}{2}+\frac{\pi}{12},-\frac{\pi}{2}+2 \frac{\pi}{12}\right], \quad \ldots, \quad I_{11}=\left(-\frac{\pi}{2}+10 \frac{\pi}{12}, \frac{\pi}{2}+11 \frac{\pi}{12}\right], \quad I_{12}=\left(-\frac{\pi}{2}+11 \frac{\pi}{12}, \frac{\pi}{2}\right)$
We define $f:\left\{\alpha_{1}, \ldots, \alpha_{13}\right\} \rightarrow\{1, \ldots, 12\}$ by $f\left(\alpha_{k}\right)=r$ where $\alpha_{k} \in I_{r}$.
Since $\left|\left\{\alpha_{1}, \ldots, \alpha_{13}\right\}\right|=13>12=|\{1, \ldots, 12\}|, f$ is not injective. So there exists alpha ${ }_{k}<\alpha_{l}$ and $r=1, \ldots, 12$ such that $\alpha_{k}, \alpha_{l} \in I_{r}$. Then $0<\alpha_{l}-\alpha_{k}<\frac{\pi}{12}$.
Since tan is increasing on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, we get that $\tan 0<\tan \left(\alpha_{l}-\alpha_{k}\right)<\tan \frac{\pi}{12}=2-\sqrt{3}$.
Note that $\tan \left(\alpha_{l}-\alpha_{k}\right)=\frac{\tan \alpha_{l}-\tan \alpha_{k}}{1+\tan \alpha_{l} \tan \alpha_{k}}=\frac{x_{l}-x_{k}}{1+x_{l} x_{k}}$. Thus $0<\frac{x_{l}-x_{k}}{1+x_{l} x_{k}}<=2-\sqrt{3}$ as requested.

