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Exercise 1.
Let 𝐸 be a set.

1. Prove that ∀𝐴, 𝐵, 𝐶 ∈ 𝒫(𝐸), 𝐴 ∪ 𝐵 = 𝐵 ∩ 𝐶 ⟹ 𝐴 ⊂ 𝐵 ⊂ 𝐶 .
2. Prove that ∀𝐴, 𝐵 ∈ 𝒫(𝐸), 𝐴 ∩ 𝐵 = 𝐴 ∪ 𝐵 ⟹ 𝐴 = 𝐵.

Exercise 2.
Let 𝑓 ∶ 𝐴 → 𝐵, 𝑔 ∶ 𝐵 → 𝐶 and ℎ ∶ 𝐶 → 𝐷 be three functions.
Prove that 𝑔 ∘ 𝑓 and ℎ ∘ 𝑔 are bijective if and only if 𝑓 , 𝑔 and ℎ are bijective.

Exercise 3.
Let 𝑓 ∶ 𝐸 → 𝐹 .

1. Prove that ∀𝐴 ∈ 𝒫(𝐸), 𝐴 ⊂ 𝑓 −1(𝑓 (𝐴)).
2. Prove that ∀𝐵 ∈ 𝒫(𝐹 ), 𝑓 (𝑓 −1(𝐵)) ⊂ 𝐵.
3. Can these inclusions be strict?

Exercise 4.
Let 𝑓 ∶ 𝐸 → 𝐹 .

1. Prove that ∀𝐴, 𝐵 ∈ 𝒫(𝐹 ), 𝐴 ⊂ 𝐵 ⟹ 𝑓 −1(𝐴) ⊂ 𝑓 −1(𝐵).
Does the converse hold?

2. Prove that ∀𝐴, 𝐵 ∈ 𝒫(𝐹 ), 𝑓 −1(𝐴 ∩ 𝐵) = 𝑓 −1(𝐴) ∩ 𝑓 −1(𝐵).
3. Prove that ∀𝐴, 𝐵 ∈ 𝒫(𝐹 ), 𝑓 −1(𝐴 ∪ 𝐵) = 𝑓 −1(𝐴) ∪ 𝑓 −1(𝐵).

Exercise 5.
Let 𝑓 ∶ 𝐸 → 𝐹 .

1. Prove that ∀𝐴, 𝐵 ∈ 𝒫(𝐸), 𝐴 ⊂ 𝐵 ⟹ 𝑓(𝐴) ⊂ 𝑓(𝐵).
Does the converse hold?

2. Prove that ∀𝐴, 𝐵 ∈ 𝒫(𝐸), 𝑓 (𝐴 ∩ 𝐵) ⊂ 𝑓(𝐴) ∩ 𝑓(𝐵).
Can the inclusion be strict?

3. Prove that ∀𝐴, 𝐵 ∈ 𝒫(𝐸), 𝑓 (𝐴 ∪ 𝐵) = 𝑓(𝐴) ∪ 𝑓(𝐵).

Exercise 6.
Let 𝑓 ∶ 𝐸 → 𝐹 . Prove that 𝑓 is injective if and only if ∀𝐴, 𝐵 ∈ 𝒫(𝐸), 𝑓 (𝐴 ∩ 𝐵) = 𝑓(𝐴) ∩ 𝑓(𝐵).

Exercise 7.
Let𝐸 be a finite set. For𝐴, 𝐵 ∈ 𝒫(𝐸)wedefine the symmetric difference of𝐴 and𝐵 by𝐴Δ𝐵 = (𝐴∪𝐵)⧵(𝐴∩𝐵).
Prove that ∀𝐴, 𝐵 ∈ 𝒫(𝐸), |𝐴Δ𝐵| = |𝐴| + |𝐵| − 2|𝐴 ∩ 𝐵|.

Exercise 8.
Let 𝐸 and 𝐹 be two finite sets.

1. Prove that 𝐹 𝐸 (the set of functions 𝐸 → 𝐹 ) is finite and express |𝐹 𝐸| in terms of |𝐸| and |𝐹 |.
2. Prove that the set {𝑓 ∈ 𝐸𝐹 ∶ 𝑓 is injective} is finite and express its cardinal in terms of |𝐸| and |𝐹 |.
3. Prove that the set {𝑓 ∈ 𝐸𝐸 ∶ 𝑓 is bijective} is finite and express its cardinal in terms of |𝐸|.

The case of surjective functions is more tricky.
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Exercise 9.
Let 𝐸 be a finite set and 𝑘 ∈ {0, 1, … , |𝐸|}. What is the cardinal of {𝐴 ∈ 𝒫(𝐸) ∶ |𝐴| = 𝑘}?

Exercise 10.
Prove that a set 𝐸 is finite if and only if 𝒫(𝐸) is finite.
In this case, give an expression of |𝒫(𝐸)| in terms of |𝐸|.

Exercise 11. The pigeonhole principle or Dirichlet’s drawer principle
I had no enough time to cover this topic in lectures, so here it is :-).

1. Let 𝐸 and 𝐹 be two finite sets. Prove that |𝐸| ≤ |𝐹 | if and only if there exists an injection 𝑓 ∶ 𝐸 → 𝐹 .

2. Let 𝐸 and 𝐹 be two finite sets. Prove that if |𝐸| > |𝐹 | then there is no injective function 𝐸 → 𝐹 .
This statement is pigeonhole principle or Dirichlet’s drawer principle: if you have 𝑛 elements put in 𝑘 < 𝑛 boxes,
then at least one box contains two elements.

3. During a post-covid party with 𝑛 > 1 participants, we may always find two people who shook hands
to the same number of people.

4. Let 𝑛 ∈ ℕ ⧵ {0}. Let 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ ℤ. Prove that there exists distinct 𝑖1, … , 𝑖𝑟 ∈ {1, … , 𝑛}, 𝑟 ≥ 1, so
that 𝑛| ∑𝑟

𝑘=1 𝑎𝑖𝑘 .

5. Prove that among 13 distinct real numbers, there always exist two 𝑥, 𝑦 satisfying 0 < 𝑥 − 𝑦
1 + 𝑥𝑦 < 2 − √3.

Hint: it looks like a trigonometric formula you know!
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Sample solutions to Exercise 1.
1. Let 𝐴, 𝐵, 𝐶 ∈ 𝒫(𝐸). Assume that 𝐴 ∪ 𝐵 = 𝐵 ∩ 𝐶 .

Let 𝑥 ∈ 𝐴 then 𝑥 ∈ 𝐴 ∪ 𝐵 = 𝐵 ∩ 𝐶 . Therefore 𝑥 ∈ 𝐵. So 𝐴 ⊂ 𝐵.
Let 𝑥 ∈ 𝐵 then 𝑥 ∈ 𝐴 ∪ 𝐵 = 𝐵 ∩ 𝐶 . Therefore 𝑥 ∈ 𝐶 . So 𝐵 ⊂ 𝐶 .

2. Using the previous question.
Let 𝐴, 𝐵 ∈ 𝒫(𝐸). Assume that 𝐴 ∩ 𝐵 = 𝐴 ∪ 𝐵.
From the previous question we get that 𝐴 ⊂ 𝐵 ⊂ 𝐴. Hence 𝐴 = 𝐵.

Direct proof.
Let 𝐴, 𝐵 ∈ 𝒫(𝐸). Assume that 𝐴 ∩ 𝐵 = 𝐴 ∪ 𝐵.
Let 𝑥 ∈ 𝐴 then 𝑥 ∈ 𝐴 ∪ 𝐵 = 𝐴 ∩ 𝐵. Thus 𝑥 ∈ 𝐵. Therefore 𝐴 ⊂ 𝐵.
Let 𝑥 ∈ 𝐵 then 𝑥 ∈ 𝐴 ∪ 𝐵 = 𝐴 ∩ 𝐵. Thus 𝑥 ∈ 𝐴. Therefore 𝐵 ⊂ 𝐴.
Hence 𝐴 = 𝐵.

Proof by contrapositive.
Let 𝐴, 𝐵 ∈ 𝒫(𝐸). Assume that 𝐴 ≠ 𝐵. Then

• either 𝐴 ⧵ 𝐵 ≠ ∅ and then there exists 𝑥 ∈ 𝐸 such that 𝑥 ∈ 𝐴 and 𝑥 ∉ 𝐵. Thus 𝑥 ∈ 𝐴 ∪ 𝐵 but
𝑥 ∉ 𝐴 ∩ 𝐵. Therefore 𝐴 ∩ 𝐵 ≠ 𝐴 ∪ 𝐵.

• or 𝐵 ⧵𝐴 ≠ ∅ and then there exists 𝑥 ∈ 𝐸 such that 𝑥 ∈ 𝐵 and 𝑥 ∉ 𝐴. Thus 𝑥 ∈ 𝐴∪𝐵 but 𝑥 ∉ 𝐴∩𝐵.
Therefore 𝐴 ∩ 𝐵 ≠ 𝐴 ∪ 𝐵.

Sample solutions to Exercise 2.
⇐ Assume that 𝑓 , 𝑔 and ℎ are bijective then 𝑔 ∘ 𝑓 and ℎ ∘ 𝑔 are too.
⇒ Assume that 𝑔 ∘ 𝑓 and ℎ ∘ 𝑔 are bijective.
Since 𝑔 ∘ 𝑓 is surjective, 𝑔 is too. Since ℎ ∘ 𝑔 is injective, 𝑔 is too.
Hence 𝑔 is bijective, so it admits an inverse 𝑔−1 ∶ 𝐶 → 𝐵.
Then 𝑓 = 𝑔−1 ∘ (𝑔 ∘ 𝑓) and ℎ = (ℎ ∘ 𝑔) ∘ 𝑔−1 are bijective as composition of bijective functions.

Sample solutions to Exercise 3.
1. Let 𝐴 ∈ 𝒫(𝐸). Let 𝑥 ∈ 𝐴. Then 𝑓(𝑥) ∈ 𝑓(𝐴). Therefore 𝑥 ∈ 𝑓 −1(𝑓 (𝐴)).

We proved that 𝐴 ⊂ 𝑓 −1(𝑓 (𝐴)).

2. Let 𝐵 ⊂ 𝒫(𝐹 ). Let 𝑦 ∈ 𝑓(𝑓 −1(𝐵)). Then there exists 𝑥 ∈ 𝑓 −1(𝐵) such that 𝑦 = 𝑓(𝑥). But since
𝑥 ∈ 𝑓 −1(𝐵), 𝑦 = 𝑓(𝑥) ∈ 𝐵.
We proved that 𝑓(𝑓 −1(𝐵)) ⊂ 𝐵.

3. Define

𝑓 ∶
⎧⎪
⎨
⎪⎩

{1, 2} → {1, 2}
1 ↦ 1
2 ↦ 1

Then 𝑓(𝑓 −1({1, 2})) = 𝑓({1, 2}) = {1} ⊊ {1, 2}.
And 𝑓 −1(𝑓 ({1})) = 𝑓 −1({1}) = {1, 2} ⊋ {1}.

Sample solutions to Exercise 4.
1. Let 𝐴, 𝐵 ∈ 𝒫(𝐹 ) be such that 𝐴 ⊂ 𝐵. Take 𝑥 ∈ 𝑓 −1(𝐴). Then 𝑓(𝑥) ∈ 𝐴 ⊂ 𝐵. Thus 𝑥 ∈ 𝑓 −1(𝐵).

The converse doesn’t hold. Indeed, define

𝑓 ∶ {
{1} → {1, 2}
1 ↦ 1

then 𝑓 −1({2}) = ∅ ⊂ 𝑓 −1({1}). But {2} ⊄ {1}.
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2. Let 𝐴, 𝐵 ∈ 𝒫(𝐹 ).
Since 𝐴 ∩ 𝐵 ⊂ 𝐴 and 𝐴 ∩ 𝐵 ⊂ 𝐵, we get that 𝑓 −1(𝐴 ∩ 𝐵) ⊂ 𝑓 −1(𝐴) and 𝑓 −1(𝐴 ∩ 𝐵) ⊂ 𝑓 −1(𝐵). Thus
𝑓 −1(𝐴 ∩ 𝐵) ⊂ 𝑓 −1(𝐴) ∩ 𝑓 −1(𝐵).
For the other inclusion, let 𝑥 ∈ 𝑓 −1(𝐴) ∩ 𝑓 −1(𝐵). Then 𝑓(𝑥) ∈ 𝐴 and 𝑓(𝑥) ∈ 𝐵. Thus 𝑓(𝑥) ∈ 𝐴 ∩ 𝐵 so
that 𝑥 ∈ 𝑓 −1(𝐴 ∩ 𝐵). Thus 𝑓 −1(𝐴) ∩ 𝑓 −1(𝐵) ⊂ 𝑓 −1(𝐴 ∩ 𝐵).

3. Let 𝐴, 𝐵 ∈ 𝒫(𝐹 ).
Since 𝐴, 𝐵 ⊂ 𝐴 ∪ 𝐵, we get 𝑓 −1(𝐴), 𝑓 −1(𝐵) ⊂ 𝑓 −1(𝐴 ∪ 𝐵). Thus 𝑓 −1(𝐴) ∪ 𝑓 −1(𝐵) ⊂ 𝑓 −1(𝐴 ∪ 𝐵).
For the other inclusion, let 𝑥 ∈ 𝑓 −1(𝐴 ∪ 𝐵). Then 𝑓(𝑥) ∈ 𝐴 ∪ 𝐵. Either 𝑓(𝑥) ∈ 𝐴 and then 𝑥 ∈ 𝑓 −1(𝐴) ⊂
𝑓 −1(𝐴) ∪ 𝑓 −1(𝐵) or 𝑓(𝑥) ∈ 𝐵 and then 𝑥 ∈ 𝑓 −1(𝐵) ⊂ 𝑓 −1(𝐴) ∪ 𝑓 −1(𝐵). Thus 𝑥 ∈ 𝑓 −1(𝐴) ∪ 𝑓 −1(𝐵). We
proved that 𝑓 −1(𝐴 ∪ 𝐵) ⊂ 𝑓 −1(𝐴) ∪ 𝑓 −1(𝐵).

Sample solutions to Exercise 5.
1. Let 𝐴, 𝐵 ∈ 𝒫(𝐸) be such that 𝐴 ⊂ 𝐵. Let 𝑦 ∈ 𝑓(𝐴). Then 𝑦 = 𝑓(𝑥) for some 𝑥 ∈ 𝐴. But 𝑥 ∈ 𝐴 ⊂ 𝐵.

Thus 𝑦 = 𝑓(𝑥) ∈ 𝑓(𝐵). We proved that 𝑓(𝐴) ⊂ 𝑓(𝐵).
The converse doesn’t hold. Indeed define

𝑓 ∶
⎧⎪
⎨
⎪⎩

{1, 2} → {1}
1 ↦ 1
2 ↦ 1

then 𝑓({1}) = 𝑓({2}) = {1} but {1} ⊄ {2}.

2. Let 𝐴, 𝐵 ∈ 𝒫(𝐸). Since 𝐴 ∩ 𝐵 ⊂ 𝐴, 𝐵 we get 𝑓(𝐴 ∩ 𝐵) ⊂ 𝑓(𝐴), 𝑓 (𝐵). Thus 𝑓(𝐴 ∩ 𝐵) ⊂ 𝑓(𝐴) ∩ 𝑓(𝐵).
The inclusion can be strict using the same example as above.

3. Let 𝐴, 𝐵 ∈ 𝒫(𝐸). Since 𝐴, 𝐵 ⊂ 𝐴 ∪ 𝐵, we get 𝑓(𝐴), 𝑓 (𝐴) ⊂ 𝑓(𝐴 ∪ 𝐵). Thus 𝑓(𝐴) ∪ 𝑓(𝐵) ⊂ 𝑓(𝐴 ∪ 𝐵).
For the other inclusion, let 𝑦 ∈ 𝑓(𝐴 ∪ 𝐵). Then 𝑦 = 𝑓(𝑥) for some 𝑥 ∈ 𝐴 ∪ 𝐵. So either 𝑥 ∈ 𝐴 and then
𝑦 = 𝑓(𝑥) ∈ 𝑓(𝐴) ⊂ 𝑓(𝐴) ∪ 𝑓(𝐵), or 𝑥 ∈ 𝐵 and then 𝑦 = 𝑓(𝑥) ∈ 𝑓(𝐵) ⊂ 𝑓(𝐴) ∪ 𝑓(𝐵). In both cases
𝑦 ∈ 𝑓(𝐴) ∪ 𝑓(𝐵). So we proved that 𝑓(𝐴 ∪ 𝐵) ⊂ 𝑓(𝐴) ∪ 𝑓(𝐵).

Sample solutions to Exercise 6.
⇒ Assume that 𝑓 is injective. Let 𝐴, 𝐵 ∈ 𝒫(𝐸).
We already know that 𝑓(𝐴 ∩ 𝐵) ⊂ 𝑓(𝐴) ∩ 𝑓(𝐵) holds (see the previous exercise).
Let’s prove that 𝑓(𝐴) ∩ 𝑓(𝐵) ⊂ 𝑓(𝐴 ∩ 𝐵).
Let 𝑦 ∈ 𝑓(𝐴) ∩ 𝑓(𝐵). Then 𝑦 = 𝑓(𝑥1) for some 𝑥1 ∈ 𝐴 and 𝑦 = 𝑓(𝑥2) for some 𝑥2 ∈ 𝐵.
Since 𝑓(𝑥1) = 𝑓(𝑥2) and 𝑓 is injective, we obtain that 𝑥1 = 𝑥2 ∈ 𝐴 ∩ 𝐵. Therefore 𝑦 = 𝑓(𝑥1) ∈ 𝑓(𝐴 ∩ 𝐵).
We proved that 𝑓(𝐴) ∩ 𝑓(𝐵) ⊂ 𝑓(𝐴 ∩ 𝐵). Thus 𝑓(𝐴) ∩ 𝑓(𝐵) = 𝑓(𝐴 ∩ 𝐵).

⇐ Assume that ∀𝐴, 𝐵 ∈ 𝒫(𝐸), 𝑓 (𝐴 ∩ 𝐵) = 𝑓(𝐴) ∩ 𝑓(𝐵).
Let 𝑥1, 𝑥2 ∈ 𝐸 be such that 𝑓(𝑥1) = 𝑓(𝑥2). Set 𝑦 ≔ 𝑓(𝑥1) = 𝑓(𝑥2).
Then 𝑓({𝑥1} ∩ {𝑥2}) = 𝑓({𝑥1}) ∩ 𝑓({𝑥2}) = {𝑦} ∩ {𝑦} = {𝑦}.
Particularly {𝑥1} ∩ {𝑥2} ≠ ∅, thus 𝑥1 = 𝑥2.

Sample solutions to Exercise 7.

|𝐴Δ𝐵| = |(𝐴 ∪ 𝐵) ⧵ (𝐴 ∩ 𝐵)|
= |𝐴 ∪ 𝐵| − |𝐴 ∩ 𝐵|
= |𝐴| + |𝐵| − |𝐴 ∩ 𝐵| − |𝐴 ∩ 𝐵|
= |𝐴| + |𝐵| − 2|𝐴 ∩ 𝐵|
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Sample solutions to Exercise 8.
1. Let 𝜑 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < |𝐸|} → 𝐸.

Then 𝜓 ∶ 𝐹 𝐸 → 𝐹 |𝐸| defined by 𝜓(𝑓) = (𝑓(𝜑(0)), … , 𝑓(𝜑(|𝐸| − 1))) is a bijection (prove it).
Therefore |𝐹 𝐸| = |𝐹 |𝐸|| = |𝐹 ||𝐸|.

2. According to the last exercise, there exists an injective function 𝐸 → 𝐹 if and only if |𝐸| ≤ |𝐹 |.
Next, since 𝐸 is finite, there exists a bijection 𝜑 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < |𝐸|} → 𝐸.
For 𝑓(𝜑(0)) we have |𝐹 | possible choices. For 𝑓(𝜑(1)) we have |𝐹 ⧵ {𝑓(𝜑(0))}| = |𝐹 | − 1 choices. For
𝑓(𝜑(2)) we have |𝐹 ⧵ {𝑓(𝜑(0)), 𝑓 (𝜑(1))}| = |𝐹 | − 2 choices. And so on.
Therefore, |{𝑓 ∈ 𝐸𝐹 ∶ 𝑓 is injective}| = |𝐹 |(|𝐹 | − 1) ⋯ (|𝐹 | − |𝐸| + 1) = |𝐹 |!

(|𝐹 |−|𝐸|)! .

Thus |{𝑓 ∈ 𝐸𝐹 ∶ 𝑓 is injective}| =
{

0 if |𝐸| > |𝐹 |
|𝐹 |!

(|𝐹 |−|𝐸|)! if |𝐸| ≤ |𝐹 | .

3. It a special case of the above question when |𝐸| = |𝐹 |: |{𝑓 ∈ 𝐸𝐸 ∶ 𝑓 is bijective}| = |𝐸|!
(|𝐸|−|𝐸|)! = |𝐸|!.

Sample solutions to Exercise 9.
The number of subsets with cardinality 𝑘 included in a set of cardinality 𝑛 is denoted (

𝑛
𝑘) read ”𝑛 choose

𝑘”.
We are going to prove that (

𝑛
𝑘) = 𝑛!

(𝑛−𝑘)!𝑘! .
Let 𝐸 a finite set. Set 𝑛 = |𝐸|. Fix 𝑘 ∈ {0, 1, … , 𝑛}.
An ordered list of 𝑘 distinct elements is the same as fixing an injection {0, 1, … , 𝑘 − 1} → 𝐸. So, using the
previous question there are 𝑛!

(𝑛−𝑘)! such ordered lists.
Two ordered lists of 𝑘 elements give the same subset if and only if one is obtained from the other one
permuting its elements, which is the same as constructing a bijection {0, 1, … , 𝑘 − 1} → {0, 1, … , 𝑘 − 1}.
From the previous question there are 𝑘! such bijections.

Therefore (
𝑛
𝑘) =

𝑛!
(𝑛−𝑘)!

𝑘! = 𝑛!
(𝑛−𝑘)!𝑘! .

Sample solutions to Exercise 10.
⇒
Method 1 (by induction):
Let’s prove by induction on 𝑛 = |𝐸| that 𝒫(𝐸) is finite and that |𝒫(𝐸)| = 2|𝐸|.

• Base case at 𝑛 = 0: if 𝐸 = ∅ then 𝒫(𝐸) = {∅} is finite.

• Induction step: assume that the statement holds for some 𝑛 ∈ ℕ, i.e. if 𝐸 is a set with |𝐸| = 𝑛 then 𝒫(𝐸)
is finite and |𝒫(𝐸)| = 2𝑛.
Let 𝐸 be a set such that |𝐸| = 𝑛 + 1. Since |𝐸| > 0, there exists 𝑥 ∈ 𝐸.
By the induction hypothesis, since |𝐸 ⧵ {𝑥}| = 𝑛, we get that 𝒫(𝐸 ⧵ {𝑥}) is finite and |𝒫(𝐸 ⧵ {𝑥})| = 2𝑛.
Note that 𝒫(𝐸 ⧵ {𝑥}) = {𝐴 ∈ 𝒫(𝐸) ∶ 𝑥 ∉ 𝐴} and that

{𝐴 ∈ 𝒫(𝐸) ∶ 𝑥 ∉ 𝐴} → {𝐴 ∈ 𝒫(𝐸) ∶ 𝑥 ∈ 𝐴}
𝐴 ↦ 𝐴 ∪ {𝑥}

is a bijection.
Therefore 𝒫(𝐸) = {𝐴 ∈ 𝒫(𝐸) ∶ 𝑥 ∉ 𝐴} ⊔ {𝐴 ∈ 𝒫(𝐸) ∶ 𝑥 ∈ 𝐴} is finite and
|𝒫(𝐸)| = |{𝐴 ∈ 𝒫(𝐸) ∶ 𝑥 ∉ 𝐴}| + |{𝐴 ∈ 𝒫(𝐸) ∶ 𝑥 ∈ 𝐴}| = 2𝑛 + 2𝑛 = 2𝑛+1.



6 Homework Questions – Week 10

Method 2 (using the previous exercise):
Let 𝐸 be a finite set. We know that for 𝑘 = 0, … , |𝐸|, the number of subsets with 𝑘 elements is (

𝑛
𝑘).

Therefore the number of subsets included in 𝐸 is

|𝒫(𝐸)| =
|𝐸|

∑
𝑘=0

(
𝑛
𝑘) =

|𝐸|

∑
𝑘=0

(
𝑛
𝑘)1𝑘1|𝐸|−𝑘 = (1 + 1)|𝐸| = 2|𝐸|

Method 3 (which generalizes to infinite sets):

Let 𝐸 be a finite set. We define 𝜓 ∶ 𝒫(𝐸) → {0, 1}𝐸 by 𝜓(𝐴)(𝑥) = {
1 if 𝑥 ∈ 𝐴
0 otherwise .

Then 𝜓 is a bijection thus 𝒫(𝐸) is finite since {0, 1}𝐸 is and moreover |𝒫(𝐸)| = |{0, 1}𝐸| = 2|𝐸|.

⇐ Let 𝐸 be a set. Assume that 𝒫(𝐸) is finite.
Note that Φ ∶ 𝐸 → 𝒫(𝐸) defined by Φ(𝑥) = {𝑥} is injective. Therefore 𝐸 is finite too.

Sample solutions to Exercise 11.
1. ⇒ Assume that |𝐸| ≤ |𝐹 |.

There exist bijections 𝜑 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < |𝐸|} → 𝐸 and 𝜓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < |𝐹 |} → 𝐹 .
Since |𝐸| ≤ |𝐹 |, 𝑓 = 𝜓 ∘ 𝜑−1 ∶ 𝐸 → 𝐹 is well-defined and injective.
⇒ Assume that there exists an injection 𝑓 ∶ 𝐸 → 𝐹 .
Then 𝑓 induces a bijection 𝑓 ∶ 𝐸 → 𝑓(𝐸), so that |𝐸| = |𝑓(𝐸)|.
And since 𝑓(𝐸) ⊂ 𝐹 , we have |𝑓 (𝐸)| ≤ |𝐹 |.

2. It is a consequence of the previous question.

3. A participant shook either 0, 1,… or 𝑛 − 1 hands. So we have 𝑛 ”boxes”. Not that it is not possible
to have at the same time the boxes 0 and 𝑛 − 1 non-empty. Therefore we have only 𝑛 − 1 boxes for 𝑛
participants, so two participants must have shaken the same number of boxes.
Formally:

• First case: there is at least one participant who didn’t shake any hand. Then 𝑓 ∶ {participants} →
{0, 1, … , 𝑛 − 2} mapping each participant to the number of hands he shook is well-defined. Since
|{participants}| = 𝑛 > 𝑛 − 1 = |{0, 1, … , 𝑛 − 2}|, 𝑓 can’t be injective. Therefore at least two
participants shooke the same number of hands.

• Second case: all participants shooke at least one hand. Then 𝑓 ∶ {participants} → {1, … , 𝑛 − 1}
mapping eachparticipant to the number of hands he shook iswell-defined. Since |{participants}| =
𝑛 > 𝑛 − 1 = |{1, 2, … , 𝑛 − 1}|, 𝑓 can’t be injective. Therefore at least two participants shooke the
same number of hands.

4. For 𝑟 = 1, 2, … , 𝑛, set 𝑠𝑟 = ∑𝑟
𝑘=1 𝑎𝑘.

• First case: there exists 𝑟 such that 𝑛|𝑠𝑟. Then we are done.
• Second case: otherwise, we have 𝑛 numbers 𝑠1, … , 𝑠𝑛 whose remainders for the Euclidean divi-

sion by 𝑛 are among 1, … , 𝑛 − 1 (i.e. 𝑛 − 1 possible remainders). Hence at least two have the same
remainders, let’s say 𝑠𝑝 and 𝑠𝑞 with 𝑞 > 𝑝. Then 𝑛|𝑠𝑞 − 𝑠𝑝 = ∑𝑞

𝑘=𝑝+1 𝑎𝑘.

5. First, note that tan 𝑎−tan 𝑏
1+tan 𝑎 tan 𝑏 = tan(𝑎 − 𝑏) and that

tan 𝜋
12 = tan(

𝜋
3 − 𝜋

4 ) =
tan 𝜋

3 − tan 𝜋
4

1 + tan 𝜋
3 tan 𝜋

4
= √3 − 1

1 + √3
=

(√3 − 1)
2

2 = 2 − √3
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Let 𝑥1, … , 𝑥13 be 13 distinct real numbers. We set 𝛼𝑘 = arctan 𝑥𝑘 ∈ (− 𝜋
2 , 𝜋

2 ). Note that the 𝛼𝑘 are
distinct since arctan is injective.
Note that (− 𝜋

2 , 𝜋
2 ) = 𝐼1 ⊔ 𝐼2 ⊔ 𝐼3 ⊔ ⋯ ⊔ 𝐼12 where

𝐼1 = (−𝜋
2 , −𝜋

2 + 𝜋
12] , 𝐼2 = (−𝜋

2 + 𝜋
12, −𝜋

2 + 2 𝜋
12] , … , 𝐼11 = (−𝜋

2 + 10 𝜋
12, 𝜋

2 + 11 𝜋
12] , 𝐼12 = (−𝜋

2 + 11 𝜋
12, 𝜋

2 )

We define 𝑓 ∶ {𝛼1, … , 𝛼13} → {1, … , 12} by 𝑓(𝛼𝑘) = 𝑟 where 𝛼𝑘 ∈ 𝐼𝑟.
Since |{𝛼1, … , 𝛼13}| = 13 > 12 = |{1, … , 12}|, 𝑓 is not injective. So there exists 𝑎𝑙𝑝ℎ𝑎𝑘 < 𝛼𝑙 and
𝑟 = 1, … , 12 such that 𝛼𝑘, 𝛼𝑙 ∈ 𝐼𝑟. Then 0 < 𝛼𝑙 − 𝛼𝑘 < 𝜋

12 .
Since tan is increasing on (− 𝜋

2 , 𝜋
2 ), we get that tan 0 < tan(𝛼𝑙 − 𝛼𝑘) < tan 𝜋

12 = 2 − √3.
Note that tan(𝛼𝑙 − 𝛼𝑘) = tan 𝛼𝑙−tan 𝛼𝑘

1+tan 𝛼𝑙 tan 𝛼𝑘
= 𝑥𝑙−𝑥𝑘

1+𝑥𝑙𝑥𝑘
. Thus 0 < 𝑥𝑙−𝑥𝑘

1+𝑥𝑙𝑥𝑘
<= 2 − √3 as requested.


