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Exercise 1.
1. Prove that ∀𝑥, 𝑦 ∈ ℝ, ⌊𝑥⌋ + ⌊𝑦⌋ ≤ ⌊𝑥 + 𝑦⌋ ≤ ⌊𝑥⌋ + ⌊𝑦⌋ + 1.

2. Prove that ∀𝑛 ∈ ℕ ⧵ {0}, ∀𝑥 ∈ ℝ, ⌊
⌊𝑛𝑥⌋

𝑛 ⌋ = ⌊𝑥⌋.

Exercise 2.
1. Prove that ∀𝑛 ∈ ℕ, (2 + √3)

𝑛
+ (2 − √3)

𝑛
∈ 2ℕ.

2. Prove that for every 𝑛 ∈ ℕ, ⌊(2 + √3)
𝑛
⌋ is odd.

Exercise 3.
Let 𝐼 and 𝐽 be two open intervals of ℝ. Prove that (𝐼 ∩ ℚ) ∩ (𝐽 ∩ ℚ) = ∅ ⟹ 𝐼 ∩ 𝐽 = ∅.

Exercise 4.
1. Is the sum of two irrational numbers always an irrational number?

2. Is the product of two irrational numbers always an irrational number?

3. Prove that ∀𝑥 ∈ ℝ ⧵ ℚ, ∀𝑦 ∈ ℚ, 𝑥 + 𝑦 ∉ ℚ.

4. Prove that ∀𝑥 ∈ ℝ ⧵ ℚ, ∀𝑦 ∈ ℚ ⧵ {0}, 𝑥𝑦 ∉ ℚ.

Exercise 5.
Prove that the following numbers are irrational

1. √3
2. √6
3. √11
4.

3
√3 + √11 ∉ ℚ

5. √2 + √3
6. (√2 + √3)

2

7. √2 + √3 + √6
8. (3√2 + 2√3 + √6)

2

9. √7 + √3.

Exercise 6.
Prove that ∀𝑛 ∈ ℕ, √𝑛 ∈ ℚ ⇔ √𝑛 ∈ ℕ ⇔ ∃𝑚 ∈ ℕ, 𝑛 = 𝑚2.
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Exercise 7.

Is
+∞

∑
𝑛=1

10− 𝑛(𝑛+1)
2 = 0.101001000100001000001 … a rational number?

Exercise 8.
1. We fix 𝑟 > 0 and 𝑛 ∈ ℕ. We define 𝑓 ∶ ℝ → ℝ by 𝑓(𝑥) = 1

𝑛! 𝑥
𝑛(1 − 𝑥)𝑛 and we set

𝐹 (𝑥) = ∑
𝑘≥0

(−1)𝑘𝑟2𝑛−2𝑘𝑓 (2𝑘+1)(𝑥)

(note that the sum is finite since 𝑓 is a polynomial).

(a) Prove that ∀𝑘 ∈ ℕ, 𝑓 (𝑘)(0) ∈ ℤ.
(b) Prove that ∀𝑘 ∈ ℕ, 𝑓 (𝑘)(1) ∈ ℤ.
(c) Prove that 𝐹 ″(𝑥) = −𝑟2𝐹 (𝑥) + 𝑟2𝑛+2𝑓(𝑥).
(d) Compute 𝑑

𝑑𝑥 (𝐹 ′(𝑥) sin(𝑟𝑥) − 𝑟𝐹 (𝑥) cos(𝑟𝑥)).

(e) Compute ∫1
0 𝑓(𝑥) sin(𝑟𝑥)d𝑥.

2. Prove that ∀𝑟 ∈ (0, 𝜋], 𝑟 ∈ ℚ ⟹ (sin(𝑟) ∉ ℚ or cos(𝑟) ∉ ℚ).

3. Prove that 𝜋 ∉ ℚ.
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Sample solutions to Exercise 1.
1. Let 𝑥, 𝑦 ∈ ℝ. By definition of the floor function, we know that ⌊𝑥⌋ ≤ 𝑥 < ⌊𝑥⌋ + 1 and ⌊𝑦⌋ ≤ 𝑦 < ⌊𝑦⌋ + 1.

Therefore ⌊𝑥⌋ + ⌊𝑦⌋ ≤ 𝑥 + 𝑦.
Since ⌊𝑥 + 𝑦⌋ is the greater integer less than or equal to 𝑥 + 𝑦, we get that ⌊𝑥⌋ + ⌊𝑦⌋ ≤ ⌊𝑥 + 𝑦⌋.
Finally ⌊𝑥⌋ + ⌊𝑦⌋ ≤ ⌊𝑥 + 𝑦⌋ ≤ 𝑥 + 𝑦 ≤ ⌊𝑥⌋ + ⌊𝑦⌋ + 2.
So, either ⌊𝑥 + 𝑦⌋ = ⌊𝑥⌋ + ⌊𝑦⌋ or ⌊𝑥 + 𝑦⌋ = ⌊𝑥⌋ + ⌊𝑦⌋ + 1.
In both cases we have ⌊𝑥⌋ + ⌊𝑦⌋ ≤ ⌊𝑥 + 𝑦⌋ ≤ ⌊𝑥⌋ + ⌊𝑦⌋ + 1.

2. Let 𝑛 ∈ ℕ ⧵ {0} and 𝑥 ∈ ℝ. Since ⌊𝑥⌋ ≤ 𝑥 < ⌊𝑥⌋ + 1, we get 𝑛⌊𝑥⌋ ≤ 𝑛𝑥 < 𝑛⌊𝑥⌋ + 𝑛.
Since ⌊𝑛𝑥⌋ is the greatest integer less than or equal to 𝑛𝑥, we obtain 𝑛⌊𝑥⌋ ≤ ⌊𝑛𝑥⌋ ≤ 𝑛𝑥 < 𝑛⌊𝑥⌋ + 𝑛.
Thus ⌊𝑥⌋ ≤ ⌊𝑛𝑥⌋

𝑛 < ⌊𝑥⌋ + 1 and hence ⌊𝑥⌋ = ⌊
⌊𝑛𝑥⌋

𝑛 ⌋.

Sample solutions to Exercise 2.
1. Let 𝑛 ∈ ℕ. Then

(2 + √3)
𝑛

+ (2 − √3)
𝑛

=
𝑛

∑
𝑘=0

(
𝑛
𝑘)2𝑛−𝑘√3

𝑘
+

𝑛

∑
𝑘=0

(
𝑛
𝑘)2𝑛−𝑘(−1)𝑘√3

𝑘

=
𝑛

∑
𝑘=0

(
𝑛
𝑘) (1 + (−1)𝑘) 2𝑛−𝑘√3

𝑘

Note that if 𝑘 is odd then (1 + (−1)𝑘) = 0 and that if 𝑘 = 2𝑙 is even then

(
𝑛
𝑘) (1 + (−1)𝑘) 2𝑛−𝑘√3

𝑘
= (

𝑛
2𝑙) × 2 × 2𝑛−2𝑙 × 3𝑙 ∈ 2ℕ

Therefore (2 + √3)
𝑛

+ (2 − √3)
𝑛

∈ 2ℕ.

2. Let 𝑛 ∈ ℕ. Since 2 − √3 ∈ (0, 1), we have that 0 < (2 − √3)
𝑛

< 1.

Therefore, if we set 𝑆 = (2 + √3)
𝑛

+ (2 − √3)
𝑛
, then 𝑆 < (2 + √3)

𝑛
< 𝑆 − 1, thus

𝑆 − 1 ≤ (2 + √3)
𝑛

< 𝑆

i.e. ⌊(2 + √3)
𝑛
⌋ = 𝑆 − 1 which is odd according to the previous question.

Sample solutions to Exercise 3.
Let’s prove the contrapositive, i.e. 𝐼 ∩ 𝐽 ≠ ∅ ⟹ (𝐼 ∩ ℚ) ∩ (𝐽 ∩ ℚ) ≠ ∅.
Assume that 𝐼 ∩ 𝐽 ≠ ∅, then there exists 𝑎 ∈ 𝐼 ∩ 𝐽 .
Since 𝐼 is an open interval, there exists 𝜀 > 0 such that (𝑎 − 𝜀, 𝑎 + 𝜀) ⊂ 𝐼 .
Similarly, there exists 𝜂 > 0 such that (𝑎 − 𝜂, 𝑎 + 𝜂) ⊂ 𝐽 .
Set 𝛿 = min(𝜀, 𝜂), then (𝑎 − 𝛿, 𝑎 + 𝛿) ⊂ 𝐼 ∩ 𝐽 .
Since between two reals there exists a rational, we know that there exists 𝑞 ∈ ℚ such that 𝑎 − 𝛿 < 𝑞 < 𝑎 + 𝛿.
Therefore 𝑞 ∈ 𝐼 ∩ ℚ and 𝑞 ∈ 𝐽 ∩ ℚ, so that (𝐼 ∩ ℚ) ∩ (𝐽 ∩ ℚ) ≠ ∅.

Sample solutions to Exercise 4.
1. No: √2 and −√2 are both irrational but (√2) + (−√2) = 0 ∈ ℚ.

2. No: (√2)(√2) = 2 ∈ ℚ.

3. Let 𝑥 ∈ ℝ ⧵ ℚ and 𝑦 ∈ ℚ. Assume by contradiction that 𝑥 + 𝑦 ∈ ℚ then 𝑥 = (𝑥 + 𝑦) − 𝑦 ∈ ℚ.
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4. Let 𝑥 ∈ ℝ ⧵ ℚ and 𝑦 ∈ ℚ ⧵ {0}. Assume by contradiction that 𝑥𝑦 ∈ ℚ then 𝑥 = 𝑥𝑦
𝑦 ∈ ℚ.

Sample solutions to Exercise 5.
1. Assume by contradiction that √3 ∈ ℚ then √3 = 𝑎

𝑏 where 𝑎 ∈ ℕ and 𝑏 ∈ ℕ ⧵ {0}. Hence 𝑎2 = 3𝑏2.
The prime factorization of 𝑎2 contains an even number of primes whereas the prime factorization of
3𝑏2 contains an odd number of primes.
Therefore it contradicts the uniqueness of the prime factorization.

2. Assume by contradiction that √6 ∈ ℚ then √6 = 𝑎
𝑏 where 𝑎 ∈ ℕ, 𝑏 ∈ ℕ ⧵ {0} and gcd(𝑎, 𝑏) = 1.

Therefore 6𝑏2 = 𝑎2. So 2|𝑎2. By Euclid’s lemma, 2|𝑎, so there exists 𝑘 ∈ ℕ such that 𝑎 = 2𝑘.
Hence we may rewrite 6𝑏2 = 4𝑘2, which implies 3𝑏2 = 2𝑘2. So 2|3𝑏2.
Since gcd(2, 3) = 1, by Gauss’ lemma we get 2|𝑏2 and then by Euclid’s lemma, we get 2|𝑏.
Therefore 2|gcd(𝑎, 𝑏) = 1. Hence a contradiction.

3. Same as for √3..

4. Assume by contradiction that 𝑥 =
3

√3 + √11 ∈ ℚ. Then 𝑥3 = 3 + √11. So √11 = 𝑥3 − 3 ∈ ℚ.

5. Assume by contradiction that √2 + √3 ∈ ℚ.
Then (√2 + √3)2 = 2 + 3 + 2√6 ∈ ℚ. Therefore √6 = (√2+√3)2−5

2 ∈ ℚ.

6. Assume by contradiction that (√2 + √3)
2

∈ ℚ.

Since (√2 + √3)
2

= 2 + 3 + 2√6, we get √6 = (√2+√3)
2
−5

2 ∈ ℚ.

7. Assume by contradiction that 𝑥 = √2 + √3 + √6 ∈ ℚ.
Then √2 + √3 = 𝑥 − √6. Squaring both sides, we get 5 + 2√6 = 𝑥2 + 6 − 2𝑥√6.
Therefore √6 = 𝑥2+1

2+2𝑥 ∈ ℚ.

8. Assume by contradiction that (3√2 + 2√3 + √6)
2

∈ ℚ.

Since (3√2 + 2√3 + √6)
2

= 36+12 (√2 + √3 + √6), we get √2+√3+√6 = (3√2+2√3+√6)
2
−36

12 ∈ ℚ.

9. There is an elegant method using the complex conjugate.
Assume by contradiction that √7 + √3 ∈ ℚ. Then (√7 + √3) (√7 − √3) = 7 − 3 = 4. Thus
√7 − √3 = 4

√7+√3
∈ ℚ.

Hence √3 = (√7+√3)−(√7−√3)
2 ∈ ℚ.

Sample solutions to Exercise 6.
Let 𝑛 ∈ ℕ.

• √𝑛 ∈ ℚ ⇒ √𝑛 ∈ ℕ:
Assume that √𝑛 ∈ ℚ, then there exists (𝑎, 𝑏) ∈ ℕ ⧵ {0} such that √𝑛 = 𝑎

𝑏 and gcd(𝑎, 𝑏) = 1.
Then 𝑎2 = 𝑛𝑏2, thus 𝑏|𝑎2. By Gauss’ lemma applied twice 𝑏|𝑎 and then 𝑏|1. Thus 𝑏 = 1 and √𝑛 = 𝑎 ∈ ℕ.

• √𝑛 ∈ ℕ ⇒ ∃𝑚 ∈ ℕ, 𝑛 = 𝑚2: assume that √𝑛 ∈ ℕ. Then 𝑛 = (√𝑛)
2
. So we can take 𝑚 = √𝑛.

• ∃𝑚 ∈ ℕ, 𝑛 = 𝑚2 ⇒ √𝑛 ∈ ℚ: assume that there exists 𝑚 ∈ ℕ such that 𝑛 = 𝑚2. Then √𝑛 = 𝑚 ∈ ℕ ⊂ ℚ.
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Sample solutions to Exercise 7.

No,
+∞

∑
𝑛=1

10− 𝑛(𝑛+1)
2 = 0.101001000100001000001 … is not rational since its decimal expansion is not eventually

periodic.
We denote the decimals by (𝑎𝑘)𝑘≥1: 𝑎𝑘 = 1 if ∃𝑛 ∈ ℕ, 𝑘 = 𝑛(𝑛+1)

2 and 𝑎𝑘 = 0 otherwise.
Let 𝑟 ∈ ℕ and 𝑠 ∈ ℕ ⧵ {0}.
Then there exists 𝑘 ∈ ℕ such that 𝑟 + 𝑘 > 𝑠(𝑠+1)

2 and 𝑎𝑟+𝑘 = 1, so that 0 = 𝑎𝑟+𝑘+𝑠 ≠ 𝑎𝑟+𝑘 = 1.

Sample solutions to Exercise 8.

1. (a) Note that 𝑓(𝑥) = 1
𝑛!

𝑛

∑
𝑘=0

(
𝑛
𝑘)(−1)𝑘𝑥𝑛+𝑘 = 1

𝑛!

2𝑛

∑
𝑘=𝑛

(
𝑛

𝑘 − 𝑛)(−1)𝑘−𝑛𝑥𝑘.

Let 𝑘 ∈ ℕ. If 𝑘 < 𝑛 or 𝑘 > 2𝑛 then 𝑓 (𝑘)(0) = 0.
Otherwise, if 𝑛 ≤ 𝑘 ≤ 2𝑛 then 𝑓 (𝑘)(0) = (−1)𝑘−𝑛 𝑘!

𝑛! (
𝑛

𝑘 − 𝑛) ∈ ℤ.

(b) Let 𝑘 ∈ ℕ. Since 𝑓(𝑥) = 𝑓(1 − 𝑥), we get 𝑓 (𝑘)(1) = (−1)𝑘𝑓 (𝑘)(0) ∈ ℤ.
(c) 𝐹 ″(𝑥) = ∑

𝑘≥0
(−1)𝑘𝑟2𝑛−2𝑘𝑓 (2(𝑘+1)+1)(𝑥)

= −𝑟2
∑
𝑘≥0

(−1)𝑘+1𝑟2𝑛−2(𝑘+1)𝑓 (2(𝑘+1)+1)(𝑥)

= −𝑟2
∑
𝑘≥1

(−1)𝑘𝑟2𝑛−2𝑘𝑓 (2𝑘+1)(𝑥)

= −𝑟2 (𝐹 (𝑥) − 𝑟2𝑛𝑓(𝑥))
= −𝑟2𝐹 (𝑥) + 𝑟2𝑛+2𝑓(𝑥)

(d) 𝑑
𝑑𝑥 (𝐹 ′(𝑥) sin(𝑟𝑥) − 𝑟𝐹 (𝑥) cos(𝑟𝑥)) = 𝐹 ″(𝑥) sin(𝑟𝑥) + 𝑟𝐹 ′(𝑥) cos(𝑟𝑥) − 𝑟𝐹 ′(𝑥) cos(𝑟𝑥) + 𝑟𝐹 (𝑥) sin(𝑟𝑥)

= 𝐹 ″(𝑥) sin(𝑟𝑥) + 𝑟𝐹 (𝑥) sin(𝑟𝑥)
= (𝐹 ″(𝑥) + 𝑟𝐹 (𝑥)) sin(𝑟𝑥)
= 𝑟2𝑛+2𝑓(𝑥) sin(𝑟𝑥)

(e) ∫
1

0
𝑓(𝑥) sin(𝑟𝑥)d𝑥 = 1

𝑟2𝑛+2 ∫
1

0
𝑟2𝑛+2𝑓(𝑥) sin(𝑟𝑥)d𝑥

= 1
𝑟2𝑛+2 [𝐹 ′(𝑥) sin(𝑟𝑥) − 𝑟𝐹 (𝑥) cos(𝑟𝑥)]

1
0

= 1
𝑟2𝑛+2 (𝐹 ′(1) sin(𝑟) − 𝑟𝐹 (1) cos(𝑟) + 𝑟𝐹 (0))

2. Let 𝑟 ∈ (0, 𝜋]∩ℚ. Assume by contradiction that sin(𝑟), cos(𝑟) ∈ ℚ. Then, wemaywrite 1
𝑟 = 𝑎

𝑑 , sin(𝑟) = 𝑏
𝑑

and cos(𝑟) = 𝑐
𝑑 where 𝑎, 𝑏, 𝑐 ∈ ℤ and 𝑑 ∈ ℕ ⧵ {0}.

Let 𝑛 ∈ ℕ, then using 1.(e), 1.(a) and 1.(b) we get that 𝐼𝑛 = 𝐴𝑛
𝑑2𝑛+3 for some 𝐴𝑛 ∈ ℤ.

Since 𝐼𝑛 > 0, we get that 𝐴𝑛 ≥ 1, and thus that 𝐼𝑛 ≥ 1
𝑑2𝑛+3 .

But we also have that

𝐼𝑛 = ∫
1

0
𝑓(𝑥) sin(𝑟𝑥)d𝑥

≤ ∫
1

0
𝑓(𝑥)d𝑥 since sin > 0 on (0, 𝜋)

≤ 1
𝑛! since 𝑓(𝑥) ≤ 1

𝑛! on [0, 1]

Therefore 1
𝑑2𝑛+3 ≤ 𝐼𝑛 ≤ 1

𝑛! and thus 𝑛! ≤ 𝑑2𝑛+3. Which leads to a contradiction for 𝑛 large enough.
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3. We use the contrapositive of the previous question: since 𝜋 ∈ (0, 𝜋] and since sin(𝜋) = 0 ∈ ℚ and
cos(𝜋) = −1 ∈ ℚ, we get that 𝜋 ∉ ℚ.


