Homework questions - Week 9

Jean-Baptiste Campesato

March $22^{\text {nd }}, 2021$ to March $26^{\text {th }}, 2021$

Exercise 1.

1. Prove that $\forall x, y \in \mathbb{R},\lfloor x\rfloor+\lfloor y\rfloor \leq\lfloor x+y\rfloor \leq\lfloor x\rfloor+\lfloor y\rfloor+1$.
2. Prove that $\forall n \in \mathbb{N} \backslash\{0\}, \forall x \in \mathbb{R},\left\lfloor\frac{\lfloor n x\rfloor}{n}\right\rfloor=\lfloor x\rfloor$.

Exercise 2.

1. Prove that $\forall n \in \mathbb{N},(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n} \in 2 \mathbb{N}$.
2. Prove that for every $n \in \mathbb{N},\left\lfloor(2+\sqrt{3})^{n}\right\rfloor$ is odd.

Exercise 3.

Let I and J be two open intervals of \mathbb{R}. Prove that $(I \cap \mathbb{Q}) \cap(J \cap \mathbb{Q})=\varnothing \Longrightarrow I \cap J=\varnothing$.

Exercise 4.

1. Is the sum of two irrational numbers always an irrational number?
2. Is the product of two irrational numbers always an irrational number?
3. Prove that $\forall x \in \mathbb{R} \backslash \mathbb{Q}, \forall y \in \mathbb{Q}, x+y \notin \mathbb{Q}$.
4. Prove that $\forall x \in \mathbb{R} \backslash \mathbb{Q}, \forall y \in \mathbb{Q} \backslash\{0\}, x y \notin \mathbb{Q}$.

Exercise 5.

Prove that the following numbers are irrational

1. $\sqrt{3}$
2. $\sqrt{6}$
3. $\sqrt{11}$
4. $\sqrt[3]{3+\sqrt{11}} \notin \mathbb{Q}$
5. $\sqrt{2}+\sqrt{3}$
6. $(\sqrt{2}+\sqrt{3})^{2}$
7. $\sqrt{2}+\sqrt{3}+\sqrt{6}$
8. $(3 \sqrt{2}+2 \sqrt{3}+\sqrt{6})^{2}$
9. $\sqrt{7}+\sqrt{3}$.

Exercise 6.

Prove that $\forall n \in \mathbb{N}, \sqrt{n} \in \mathbb{Q} \Leftrightarrow \sqrt{n} \in \mathbb{N} \Leftrightarrow \exists m \in \mathbb{N}, n=m^{2}$.

Exercise 7.

Is $\sum_{n=1}^{+\infty} 10^{-\frac{n(n+1)}{2}}=0.101001000100001000001 \ldots$ a rational number?

Exercise 8.

1. We fix $r>0$ and $n \in \mathbb{N}$. We define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=\frac{1}{n!} x^{n}(1-x)^{n}$ and we set

$$
F(x)=\sum_{k \geq 0}(-1)^{k} r^{2 n-2 k} f^{(2 k+1)}(x)
$$

(note that the sum is finite since f is a polynomial).
(a) Prove that $\forall k \in \mathbb{N}, f^{(k)}(0) \in \mathbb{Z}$.
(b) Prove that $\forall k \in \mathbb{N}, f^{(k)}(1) \in \mathbb{Z}$.
(c) Prove that $F^{\prime \prime}(x)=-r^{2} F(x)+r^{2 n+2} f(x)$.
(d) Compute $\frac{d}{d x}\left(F^{\prime}(x) \sin (r x)-r F(x) \cos (r x)\right)$.
(e) Compute $\int_{0}^{1} f(x) \sin (r x) \mathrm{d} x$.
2. Prove that $\forall r \in(0, \pi], r \in \mathbb{Q} \Longrightarrow(\sin (r) \notin \mathbb{Q}$ or $\cos (r) \notin \mathbb{Q})$.
3. Prove that $\pi \notin \mathbb{Q}$.

Sample solutions to Exercise 1.

1. Let $x, y \in \mathbb{R}$. By definition of the floor function, we know that $\lfloor x\rfloor \leq x<\lfloor x\rfloor+1$ and $\lfloor y\rfloor \leq y<\lfloor y\rfloor+1$.

Therefore $\lfloor x\rfloor+\lfloor y\rfloor \leq x+y$.
Since $\lfloor x+y\rfloor$ is the greater integer less than or equal to $x+y$, we get that $\lfloor x\rfloor+\lfloor y\rfloor \leq\lfloor x+y\rfloor$.
Finally $\lfloor x\rfloor+\lfloor y\rfloor \leq\lfloor x+y\rfloor \leq x+y \leq\lfloor x\rfloor+\lfloor y\rfloor+2$.
So, either $\lfloor x+y\rfloor=\lfloor x\rfloor+\lfloor y\rfloor$ or $\lfloor x+y\rfloor=\lfloor x\rfloor+\lfloor y\rfloor+1$.
In both cases we have $\lfloor x\rfloor+\lfloor y\rfloor \leq\lfloor x+y\rfloor \leq\lfloor x\rfloor+\lfloor y\rfloor+1$.
2. Let $n \in \mathbb{N} \backslash\{0\}$ and $x \in \mathbb{R}$. Since $\lfloor x\rfloor \leq x<\lfloor x\rfloor+1$, we get $n\lfloor x\rfloor \leq n x<n\lfloor x\rfloor+n$.

Since $\lfloor n x\rfloor$ is the greatest integer less than or equal to $n x$, we obtain $n\lfloor x\rfloor \leq\lfloor n x\rfloor \leq n x<n\lfloor x\rfloor+n$.
Thus $\lfloor x\rfloor \leq \frac{\lfloor n x\rfloor}{n}<\lfloor x\rfloor+1$ and hence $\lfloor x\rfloor=\left\lfloor\frac{\lfloor n x\rfloor}{n}\right\rfloor$.

Sample solutions to Exercise 2.

1. Let $n \in \mathbb{N}$. Then

$$
\begin{aligned}
(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n} & =\sum_{k=0}^{n}\binom{n}{k} 2^{n-k} \sqrt{3}^{k}+\sum_{k=0}^{n}\binom{n}{k} 2^{n-k}(-1)^{k} \sqrt{3}^{k} \\
& =\sum_{k=0}^{n}\binom{n}{k}\left(1+(-1)^{k}\right) 2^{n-k} \sqrt{3}^{k}
\end{aligned}
$$

Note that if k is odd then $\left(1+(-1)^{k}\right)=0$ and that if $k=2 l$ is even then

$$
\binom{n}{k}\left(1+(-1)^{k}\right) 2^{n-k} \sqrt{3}^{k}=\binom{n}{2 l} \times 2 \times 2^{n-2 l} \times 3^{l} \in 2 \mathbb{N}
$$

Therefore $(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n} \in 2 \mathbb{N}$.
2. Let $n \in \mathbb{N}$. Since $2-\sqrt{3} \in(0,1)$, we have that $0<(2-\sqrt{3})^{n}<1$.

Therefore, if we set $S=(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}$, then $S<(2+\sqrt{3})^{n}<S-1$, thus

$$
S-1 \leq(2+\sqrt{3})^{n}<S
$$

i.e. $\left\lfloor(2+\sqrt{3})^{n}\right\rfloor=S-1$ which is odd according to the previous question.

Sample solutions to Exercise 3.

Let's prove the contrapositive, i.e. $I \cap J \neq \varnothing \Longrightarrow(I \cap \mathbb{Q}) \cap(J \cap \mathbb{Q}) \neq \varnothing$.
Assume that $I \cap J \neq \varnothing$, then there exists $a \in I \cap J$.
Since I is an open interval, there exists $\varepsilon>0$ such that $(a-\varepsilon, a+\varepsilon) \subset I$.
Similarly, there exists $\eta>0$ such that $(a-\eta, a+\eta) \subset J$.
Set $\delta=\min (\varepsilon, \eta)$, then $(a-\delta, a+\delta) \subset I \cap J$.
Since between two reals there exists a rational, we know that there exists $q \in \mathbb{Q}$ such that $a-\delta<q<a+\delta$.
Therefore $q \in I \cap \mathbb{Q}$ and $q \in J \cap \mathbb{Q}$, so that $(I \cap \mathbb{Q}) \cap(J \cap \mathbb{Q}) \neq \varnothing$.

Sample solutions to Exercise 4.

1. No: $\sqrt{2}$ and $-\sqrt{2}$ are both irrational but $(\sqrt{2})+(-\sqrt{2})=0 \in \mathbb{Q}$.
2. No: $(\sqrt{2})(\sqrt{2})=2 \in \mathbb{Q}$.
3. Let $x \in \mathbb{R} \backslash \mathbb{Q}$ and $y \in \mathbb{Q}$. Assume by contradiction that $x+y \in \mathbb{Q}$ then $x=(x+y)-y \in \mathbb{Q}$.
4. Let $x \in \mathbb{R} \backslash \mathbb{Q}$ and $y \in \mathbb{Q} \backslash\{0\}$. Assume by contradiction that $x y \in \mathbb{Q}$ then $x=\frac{x y}{y} \in \mathbb{Q}$.

Sample solutions to Exercise 5.

1. Assume by contradiction that $\sqrt{3} \in \mathbb{Q}$ then $\sqrt{3}=\frac{a}{b}$ where $a \in \mathbb{N}$ and $b \in \mathbb{N} \backslash\{0\}$. Hence $a^{2}=3 b^{2}$.

The prime factorization of a^{2} contains an even number of primes whereas the prime factorization of $3 b^{2}$ contains an odd number of primes.
Therefore it contradicts the uniqueness of the prime factorization.
2. Assume by contradiction that $\sqrt{6} \in \mathbb{Q}$ then $\sqrt{6}=\frac{a}{b}$ where $a \in \mathbb{N}, b \in \mathbb{N} \backslash\{0\}$ and $\operatorname{gcd}(a, b)=1$.

Therefore $6 b^{2}=a^{2}$. So $2 \mid a^{2}$. By Euclid's lemma, 2|a, so there exists $k \in \mathbb{N}$ such that $a=2 k$.
Hence we may rewrite $6 b^{2}=4 k^{2}$, which implies $3 b^{2}=2 k^{2}$. So $2 \mid 3 b^{2}$.
Since $\operatorname{gcd}(2,3)=1$, by Gauss' lemma we get $2 \mid b^{2}$ and then by Euclid's lemma, we get $2 \mid b$.
Therefore $2 \mid \operatorname{gcd}(a, b)=1$. Hence a contradiction.
3. Same as for $\sqrt{3}$..
4. Assume by contradiction that $x=\sqrt[3]{3+\sqrt{11}} \in \mathbb{Q}$. Then $x^{3}=3+\sqrt{11}$. So $\sqrt{11}=x^{3}-3 \in \mathbb{Q}$.
5. Assume by contradiction that $\sqrt{2}+\sqrt{3} \in \mathbb{Q}$.

Then $(\sqrt{2}+\sqrt{3})^{2}=2+3+2 \sqrt{6} \in \mathbb{Q}$. Therefore $\sqrt{6}=\frac{(\sqrt{2}+\sqrt{3})^{2}-5}{2} \in \mathbb{Q}$.
6. Assume by contradiction that $(\sqrt{2}+\sqrt{3})^{2} \in \mathbb{Q}$.

Since $(\sqrt{2}+\sqrt{3})^{2}=2+3+2 \sqrt{6}$, we get $\sqrt{6}=\frac{(\sqrt{2}+\sqrt{3})^{2}-5}{2} \in \mathbb{Q}$.
7. Assume by contradiction that $x=\sqrt{2}+\sqrt{3}+\sqrt{6} \in \mathbb{Q}$.

Then $\sqrt{2}+\sqrt{3}=x-\sqrt{6}$. Squaring both sides, we get $5+2 \sqrt{6}=x^{2}+6-2 x \sqrt{6}$.
Therefore $\sqrt{6}=\frac{x^{2}+1}{2+2 x} \in \mathbb{Q}$.
8. Assume by contradiction that $(3 \sqrt{2}+2 \sqrt{3}+\sqrt{6})^{2} \in \mathbb{Q}$.

Since $(3 \sqrt{2}+2 \sqrt{3}+\sqrt{6})^{2}=36+12(\sqrt{2}+\sqrt{3}+\sqrt{6})$, we get $\sqrt{2}+\sqrt{3}+\sqrt{6}=\frac{(3 \sqrt{2}+2 \sqrt{3}+\sqrt{6})^{2}-36}{12} \in \mathbb{Q}$.
9. There is an elegant method using the complex conjugate.

Assume by contradiction that $\sqrt{7}+\sqrt{3} \in \mathbb{Q}$. Then $(\sqrt{7}+\sqrt{3})(\sqrt{7}-\sqrt{3})=7-3=4$. Thus $\sqrt{7}-\sqrt{3}=\frac{4}{\sqrt{7}+\sqrt{3}} \in \mathbb{Q}$.
Hence $\sqrt{3}=\frac{(\sqrt{7}+\sqrt{3})-(\sqrt{7}-\sqrt{3})}{2} \in \mathbb{Q}$.

Sample solutions to Exercise 6.

Let $n \in \mathbb{N}$.

- $\sqrt{n} \in \mathbb{Q} \Rightarrow \sqrt{n} \in \mathbb{N}$:

Assume that $\sqrt{n} \in \mathbb{Q}$, then there exists $(a, b) \in \mathbb{N} \backslash\{0\}$ such that $\sqrt{n}=\frac{a}{b}$ and $\operatorname{gcd}(a, b)=1$.
Then $a^{2}=n b^{2}$, thus $b \mid a^{2}$. By Gauss' lemma applied twice $b \mid a$ and then $b \mid 1$. Thus $b=1$ and $\sqrt{n}=a \in \mathbb{N}$.

- $\sqrt{n} \in \mathbb{N} \Rightarrow \exists m \in \mathbb{N}, n=m^{2}$: assume that $\sqrt{n} \in \mathbb{N}$. Then $n=(\sqrt{n})^{2}$. So we can take $m=\sqrt{n}$.
- $\exists m \in \mathbb{N}, n=m^{2} \Rightarrow \sqrt{n} \in \mathbb{Q}$: assume that there exists $m \in \mathbb{N}$ such that $n=m^{2}$. Then $\sqrt{n}=m \in \mathbb{N} \subset \mathbb{Q}$.

Sample solutions to Exercise 7.

No, $\sum_{n=1}^{+\infty} 10^{-\frac{n(n+1)}{2}}=0.101001000100001000001 \ldots$ is not rational since its decimal expansion is not eventually periodic.
We denote the decimals by $\left(a_{k}\right)_{k \geq 1}: a_{k}=1$ if $\exists n \in \mathbb{N}, k=\frac{n(n+1)}{2}$ and $a_{k}=0$ otherwise.
Let $r \in \mathbb{N}$ and $s \in \mathbb{N} \backslash\{0\}$.
Then there exists $k \in \mathbb{N}$ such that $r+k>\frac{s(s+1)}{2}$ and $a_{r+k}=1$, so that $0=a_{r+k+s} \neq a_{r+k}=1$.

Sample solutions to Exercise 8.

1. (a) Note that $f(x)=\frac{1}{n!} \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} x^{n+k}=\frac{1}{n!} \sum_{k=n}^{2 n}\binom{n}{k-n}(-1)^{k-n} x^{k}$.

Let $k \in \mathbb{N}$. If $k<n$ or $k>2 n$ then $f^{(k)}(0)=0$.
Otherwise, if $n \leq k \leq 2 n$ then $f^{(k)}(0)=(-1)^{k-n} \frac{k!}{n!}\binom{n}{k-n} \in \mathbb{Z}$.
(b) Let $k \in \mathbb{N}$. Since $f(x)=f(1-x)$, we get $f^{(k)}(1)=(-1)^{k} f^{(k)}(0) \in \mathbb{Z}$.
(c) $F^{\prime \prime}(x)=\sum_{k \geq 0}(-1)^{k} r^{2 n-2 k} f^{(2(k+1)+1)}(x)$

$$
\begin{aligned}
& =-r^{2} \sum_{k \geq 0}(-1)^{k+1} r^{2 n-2(k+1)} f^{(2(k+1)+1)}(x) \\
& =-r^{2} \sum_{k \geq 1}(-1)^{k} r^{2 n-2 k} f^{(2 k+1)}(x) \\
& =-r^{2}\left(F(x)-r^{2 n} f(x)\right) \\
& =-r^{2} F(x)+r^{2 n+2} f(x)
\end{aligned}
$$

(d) $\frac{d}{d x}\left(F^{\prime}(x) \sin (r x)-r F(x) \cos (r x)\right)=F^{\prime \prime}(x) \sin (r x)+r F^{\prime}(x) \cos (r x)-r F^{\prime}(x) \cos (r x)+r F(x) \sin (r x)$

$$
\begin{aligned}
& =F^{\prime \prime}(x) \sin (r x)+r F(x) \sin (r x) \\
& =\left(F^{\prime \prime}(x)+r F(x)\right) \sin (r x) \\
& =r^{2 n+2} f(x) \sin (r x)
\end{aligned}
$$

(e) $\int_{0}^{1} f(x) \sin (r x) \mathrm{d} x=\frac{1}{r^{2 n+2}} \int_{0}^{1} r^{2 n+2} f(x) \sin (r x) \mathrm{d} x$

$$
\begin{aligned}
& =\frac{1}{r^{2 n+2}}\left[F^{\prime}(x) \sin (r x)-r F(x) \cos (r x)\right]_{0}^{1} \\
& =\frac{1}{r^{2 n+2}}\left(F^{\prime}(1) \sin (r)-r F(1) \cos (r)+r F(0)\right)
\end{aligned}
$$

2. Let $r \in(0, \pi] \cap \mathbb{Q}$. Assume by contradiction that $\sin (r), \cos (r) \in \mathbb{Q}$. Then, we may write $\frac{1}{r}=\frac{a}{d}, \sin (r)=\frac{b}{d}$ and $\cos (r)=\frac{c}{d}$ where $a, b, c \in \mathbb{Z}$ and $d \in \mathbb{N} \backslash\{0\}$.
Let $n \in \mathbb{N}$, then using 1.(e), 1.(a) and 1.(b) we get that $I_{n}=\frac{A_{n}}{d^{2 n+3}}$ for some $A_{n} \in \mathbb{Z}$.
Since $I_{n}>0$, we get that $A_{n} \geq 1$, and thus that $I_{n} \geq \frac{1}{d^{2 n+3}}$.
But we also have that

$$
\begin{aligned}
I_{n} & =\int_{0}^{1} f(x) \sin (r x) \mathrm{d} x \\
& \leq \int_{0}^{1} f(x) \mathrm{d} x \quad \text { since } \sin >0 \text { on }(0, \pi) \\
& \leq \frac{1}{n!} \text { since } f(x) \leq \frac{1}{n!} \text { on }[0,1]
\end{aligned}
$$

Therefore $\frac{1}{d^{2 n+3}} \leq I_{n} \leq \frac{1}{n!}$ and thus $n!\leq d^{2 n+3}$. Which leads to a contradiction for n large enough.
3. We use the contrapositive of the previous question: since $\pi \in(0, \pi]$ and $\operatorname{since} \sin (\pi)=0 \in \mathbb{Q}$ and $\cos (\pi)=-1 \in \mathbb{Q}$, we get that $\pi \notin \mathbb{Q}$.

