University of Toronto – MAT246H1-S – LEC0201/9201 Concepts in Abstract Mathematics

Homework questions - Week 9

Jean-Baptiste Campesato

March 22nd, 2021 to March 26th, 2021

Exercise 1.

- 1. Prove that $\forall x, y \in \mathbb{R}, \lfloor x \rfloor + \lfloor y \rfloor \le \lfloor x + y \rfloor \le \lfloor x \rfloor + \lfloor y \rfloor + 1$.
- 2. Prove that $\forall n \in \mathbb{N} \setminus \{0\}, \forall x \in \mathbb{R}, \left| \frac{\lfloor nx \rfloor}{n} \right| = \lfloor x \rfloor.$

Exercise 2.

- 1. Prove that $\forall n \in \mathbb{N}, (2 + \sqrt{3})^n + (2 \sqrt{3})^n \in 2\mathbb{N}.$
- 2. Prove that for every $n \in \mathbb{N}$, $\left\lfloor \left(2 + \sqrt{3}\right)^n \right\rfloor$ is odd.

Exercise 3.

Let *I* and *J* be two open intervals of \mathbb{R} . Prove that $(I \cap \mathbb{Q}) \cap (J \cap \mathbb{Q}) = \emptyset \implies I \cap J = \emptyset$.

Exercise 4.

- 1. Is the sum of two irrational numbers always an irrational number?
- 2. Is the product of two irrational numbers always an irrational number?
- 3. Prove that $\forall x \in \mathbb{R} \setminus \mathbb{Q}, \forall y \in \mathbb{Q}, x + y \notin \mathbb{Q}$.
- 4. Prove that $\forall x \in \mathbb{R} \setminus \mathbb{Q}, \forall y \in \mathbb{Q} \setminus \{0\}, xy \notin \mathbb{Q}$.

Exercise 5.

Prove that the following numbers are irrational

1.
$$\sqrt{3}$$

2. $\sqrt{6}$
3. $\sqrt{11}$
4. $\sqrt[3]{3 + \sqrt{11}} \notin \mathbb{Q}$
5. $\sqrt{2} + \sqrt{3}$
6. $(\sqrt{2} + \sqrt{3})^2$
7. $\sqrt{2} + \sqrt{3} + \sqrt{6}$
8. $(3\sqrt{2} + 2\sqrt{3} + \sqrt{6})^2$
9. $\sqrt{7} + \sqrt{3}$.

Exercise 6.

Prove that $\forall n \in \mathbb{N}, \sqrt{n} \in \mathbb{Q} \Leftrightarrow \sqrt{n} \in \mathbb{N} \Leftrightarrow \exists m \in \mathbb{N}, n = m^2$.

Exercise 7.

Is $\sum_{n=1}^{+\infty} 10^{-\frac{n(n+1)}{2}} = 0.101001000100001000001 \dots$ a rational number?

Exercise 8.

1. We fix r > 0 and $n \in \mathbb{N}$. We define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = \frac{1}{n!}x^n(1-x)^n$ and we set

$$F(x) = \sum_{k \ge 0} (-1)^k r^{2n-2k} f^{(2k+1)}(x)$$

(note that the sum is finite since f is a polynomial).

- (a) Prove that $\forall k \in \mathbb{N}, f^{(k)}(0) \in \mathbb{Z}$.
- (b) Prove that $\forall k \in \mathbb{N}, f^{(k)}(1) \in \mathbb{Z}$.
- (c) Prove that $F''(x) = -r^2 F(x) + r^{2n+2} f(x)$.
- (d) Compute $\frac{d}{dx} (F'(x)\sin(rx) rF(x)\cos(rx)).$
- (e) Compute $\int_0^1 f(x) \sin(rx) dx$.
- 2. Prove that $\forall r \in (0, \pi], r \in \mathbb{Q} \implies (\sin(r) \notin \mathbb{Q} \text{ or } \cos(r) \notin \mathbb{Q}).$
- 3. Prove that $\pi \notin \mathbb{Q}$.

Sample solutions to Exercise 1.

- 1. Let $x, y \in \mathbb{R}$. By definition of the floor function, we know that $\lfloor x \rfloor \leq x < \lfloor x \rfloor + 1$ and $\lfloor y \rfloor \leq y < \lfloor y \rfloor + 1$. Therefore $\lfloor x \rfloor + \lfloor y \rfloor \leq x + y$. Since $\lfloor x + y \rfloor$ is the greater integer less than or equal to x + y, we get that $\lfloor x \rfloor + \lfloor y \rfloor \leq \lfloor x + y \rfloor$. Finally $\lfloor x \rfloor + \lfloor y \rfloor \leq \lfloor x + y \rfloor \leq x + y \leq \lfloor x \rfloor + \lfloor y \rfloor + 2$. So, either $\lfloor x + y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor$ or $\lfloor x + y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor + 1$. In both cases we have $\lfloor x \rfloor + \lfloor y \rfloor \leq \lfloor x + y \rfloor \leq \lfloor x \rfloor + \lfloor y \rfloor + 1$.
- 2. Let $n \in \mathbb{N} \setminus \{0\}$ and $x \in \mathbb{R}$. Since $\lfloor x \rfloor \le x < \lfloor x \rfloor + 1$, we get $n \lfloor x \rfloor \le nx < n \lfloor x \rfloor + n$. Since $\lfloor nx \rfloor$ is the greatest integer less than or equal to nx, we obtain $n \lfloor x \rfloor \le \lfloor nx \rfloor \le nx < n \lfloor x \rfloor + n$. Thus $\lfloor x \rfloor \le \frac{\lfloor nx \rfloor}{n} < \lfloor x \rfloor + 1$ and hence $\lfloor x \rfloor = \lfloor \frac{\lfloor nx \rfloor}{n} \rfloor$.

Sample solutions to Exercise 2.

1. Let $n \in \mathbb{N}$. Then

$$(2+\sqrt{3})^n + (2-\sqrt{3})^n = \sum_{k=0}^n \binom{n}{k} 2^{n-k} \sqrt{3}^k + \sum_{k=0}^n \binom{n}{k} 2^{n-k} (-1)^k \sqrt{3}^k$$
$$= \sum_{k=0}^n \binom{n}{k} (1+(-1)^k) 2^{n-k} \sqrt{3}^k$$

Note that if *k* is odd then $(1 + (-1)^k) = 0$ and that if k = 2l is even then

$$\binom{n}{k} \left(1 + (-1)^k\right) 2^{n-k} \sqrt{3}^k = \binom{n}{2l} \times 2 \times 2^{n-2l} \times 3^l \in 2\mathbb{N}$$

Therefore $\left(2+\sqrt{3}\right)^n + \left(2-\sqrt{3}\right)^n \in 2\mathbb{N}.$

2. Let
$$n \in \mathbb{N}$$
. Since $2 - \sqrt{3} \in (0, 1)$, we have that $0 < (2 - \sqrt{3})^n < 1$.
Therefore, if we set $S = (2 + \sqrt{3})^n + (2 - \sqrt{3})^n$, then $S < (2 + \sqrt{3})^n < S - 1$, thus
 $S - 1 \le (2 + \sqrt{3})^n < S$

i.e. $\left\lfloor \left(2 + \sqrt{3}\right)^n \right\rfloor = S - 1$ which is odd according to the previous question.

Sample solutions to Exercise 3.

Let's prove the contrapositive, i.e. $I \cap J \neq \emptyset \implies (I \cap \mathbb{Q}) \cap (J \cap \mathbb{Q}) \neq \emptyset$. Assume that $I \cap J \neq \emptyset$, then there exists $a \in I \cap J$. Since *I* is an open interval, there exists $\varepsilon > 0$ such that $(a - \varepsilon, a + \varepsilon) \subset I$. Similarly, there exists $\eta > 0$ such that $(a - \eta, a + \eta) \subset J$. Set $\delta = \min(\varepsilon, \eta)$, then $(a - \delta, a + \delta) \subset I \cap J$. Since between two reals there exists a rational, we know that there exists $q \in \mathbb{Q}$ such that $a - \delta < q < a + \delta$. Therefore $q \in I \cap \mathbb{Q}$ and $q \in J \cap \mathbb{Q}$, so that $(I \cap \mathbb{Q}) \cap (J \cap \mathbb{Q}) \neq \emptyset$.

Sample solutions to Exercise 4.

- 1. No: $\sqrt{2}$ and $-\sqrt{2}$ are both irrational but $(\sqrt{2}) + (-\sqrt{2}) = 0 \in \mathbb{Q}$.
- 2. No: $(\sqrt{2})(\sqrt{2}) = 2 \in \mathbb{Q}$.
- 3. Let $x \in \mathbb{R} \setminus \mathbb{Q}$ and $y \in \mathbb{Q}$. Assume by contradiction that $x + y \in \mathbb{Q}$ then $x = (x + y) y \in \mathbb{Q}$.

4. Let $x \in \mathbb{R} \setminus \mathbb{Q}$ and $y \in \mathbb{Q} \setminus \{0\}$. Assume by contradiction that $xy \in \mathbb{Q}$ then $x = \frac{xy}{y} \in \mathbb{Q}$.

Sample solutions to Exercise 5.

1. Assume by contradiction that $\sqrt{3} \in \mathbb{Q}$ then $\sqrt{3} = \frac{a}{b}$ where $a \in \mathbb{N}$ and $b \in \mathbb{N} \setminus \{0\}$. Hence $a^2 = 3b^2$. The prime factorization of a^2 contains an even number of primes whereas the prime factorization of $3b^2$ contains an odd number of primes. Therefore it contradicts the uniqueness of the prime factorization.

2. Assume by contradiction that $\sqrt{6} \in \mathbb{Q}$ then $\sqrt{6} = \frac{a}{b}$ where $a \in \mathbb{N}, b \in \mathbb{N} \setminus \{0\}$ and gcd(a, b) = 1. Therefore $6b^2 = a^2$. So $2|a^2$. By Euclid's lemma, 2|a, so there exists $k \in \mathbb{N}$ such that a = 2k. Hence we may rewrite $6b^2 = 4k^2$, which implies $3b^2 = 2k^2$. So $2|3b^2$.

Since gcd(2, 3) = 1, by Gauss' lemma we get $2|b^2$ and then by Euclid's lemma, we get 2|b. Therefore 2|gcd(a, b) = 1. Hence a contradiction.

3. Same as for $\sqrt{3}$.

4. Assume by contradiction that $x = \sqrt[3]{3 + \sqrt{11}} \in \mathbb{Q}$. Then $x^3 = 3 + \sqrt{11}$. So $\sqrt{11} = x^3 - 3 \in \mathbb{Q}$.

- 5. Assume by contradiction that $\sqrt{2} + \sqrt{3} \in \mathbb{Q}$. Then $(\sqrt{2} + \sqrt{3})^2 = 2 + 3 + 2\sqrt{6} \in \mathbb{Q}$. Therefore $\sqrt{6} = \frac{(\sqrt{2} + \sqrt{3})^2 - 5}{2} \in \mathbb{Q}$.
- 6. Assume by contradiction that $\left(\sqrt{2} + \sqrt{3}\right)^2 \in \mathbb{Q}$. Since $\left(\sqrt{2} + \sqrt{3}\right)^2 = 2 + 3 + 2\sqrt{6}$, we get $\sqrt{6} = \frac{\left(\sqrt{2} + \sqrt{3}\right)^2 - 5}{2} \in \mathbb{Q}$.
- 7. Assume by contradiction that $x = \sqrt{2} + \sqrt{3} + \sqrt{6} \in \mathbb{Q}$. Then $\sqrt{2} + \sqrt{3} = x - \sqrt{6}$. Squaring both sides, we get $5 + 2\sqrt{6} = x^2 + 6 - 2x\sqrt{6}$. Therefore $\sqrt{6} = \frac{x^2 + 1}{2 + 2x} \in \mathbb{Q}$.
- 8. Assume by contradiction that $(3\sqrt{2} + 2\sqrt{3} + \sqrt{6})^2 \in \mathbb{Q}$.

Since
$$(3\sqrt{2} + 2\sqrt{3} + \sqrt{6})^2 = 36 + 12(\sqrt{2} + \sqrt{3} + \sqrt{6})$$
, we get $\sqrt{2} + \sqrt{3} + \sqrt{6} = \frac{(3\sqrt{2} + 2\sqrt{3} + \sqrt{6})^2 - 36}{12} \in \mathbb{Q}$.

9. There is an elegant method using the complex conjugate. Assume by contradiction that $\sqrt{7} + \sqrt{3} \in \mathbb{Q}$. Then $(\sqrt{7} + \sqrt{3})(\sqrt{7} - \sqrt{3}) = 7 - 3 = 4$. Thus $\sqrt{7} - \sqrt{3} = \frac{4}{\sqrt{7} + \sqrt{3}} \in \mathbb{Q}$.

Hence
$$\sqrt{3} = \frac{(\sqrt{7}+\sqrt{3})-(\sqrt{7}-\sqrt{3})}{2} \in \mathbb{Q}.$$

Sample solutions to Exercise 6.

Let $n \in \mathbb{N}$.

- $\sqrt{n} \in \mathbb{Q} \Rightarrow \sqrt{n} \in \mathbb{N}$: Assume that $\sqrt{n} \in \mathbb{Q}$, then there exists $(a, b) \in \mathbb{N} \setminus \{0\}$ such that $\sqrt{n} = \frac{a}{b}$ and gcd(a, b) = 1. Then $a^2 = nb^2$, thus $b|a^2$. By Gauss' lemma applied twice b|a and then b|1. Thus b = 1 and $\sqrt{n} = a \in \mathbb{N}$.
- $\sqrt{n} \in \mathbb{N} \Rightarrow \exists m \in \mathbb{N}, n = m^2$: assume that $\sqrt{n} \in \mathbb{N}$. Then $n = (\sqrt{n})^2$. So we can take $m = \sqrt{n}$.
- $\exists m \in \mathbb{N}, n = m^2 \Rightarrow \sqrt{n} \in \mathbb{Q}$: assume that there exists $m \in \mathbb{N}$ such that $n = m^2$. Then $\sqrt{n} = m \in \mathbb{N} \subset \mathbb{Q}$.

Sample solutions to Exercise 7.

No, $\sum_{n=1}^{\infty} 10^{-\frac{n(n+1)}{2}} = 0.101001000100001000001 \dots$ is not rational since its decimal expansion is not eventually

periodic.

We denote the decimals by $(a_k)_{k\geq 1}$: $a_k = 1$ if $\exists n \in \mathbb{N}$, $k = \frac{n(n+1)}{2}$ and $a_k = 0$ otherwise. Let $r \in \mathbb{N}$ and $s \in \mathbb{N} \setminus \{0\}$. Then there exists $k \in \mathbb{N}$ such that $r + k > \frac{s(s+1)}{2}$ and $a_{r+k} = 1$, so that $0 = a_{r+k+s} \neq a_{r+k} = 1$.

Sample solutions to Exercise 8.

1. (a) Note that
$$f(x) = \frac{1}{n!} \sum_{k=0}^{n} {n \choose k} (-1)^{k} x^{n+k} = \frac{1}{n!} \sum_{k=n}^{2n} {n \choose k-n} (-1)^{k-n} x^{k}$$
.
Let $k \in \mathbb{N}$. If $k < n$ or $k > 2n$ then $f^{(k)}(0) = 0$.
Otherwise, if $n \le k \le 2n$ then $f^{(k)}(0) = (-1)^{k-n} \frac{k!}{n!} {n \choose k-n} \in \mathbb{Z}$.
(b) Let $k \in \mathbb{N}$. Since $f(x) = f(1-x)$, we get $f^{(k)}(1) = (-1)^{k} f^{(k)}(0) \in \mathbb{Z}$.
(c) $F''(x) = \sum_{k \ge 0} (-1)^{k} r^{2n-2k} f^{(2(k+1)+1)}(x)$
 $= -r^{2} \sum_{k \ge 0} (-1)^{k+1} r^{2n-2(k+1)} f^{(2(k+1)+1)}(x)$
 $= -r^{2} \sum_{k \ge 0} (-1)^{k} r^{2n-2k} f^{(2k+1)}(x)$
 $= -r^{2} \left(F(x) - r^{2n} f(x)\right)$
 $= -r^{2} F(x) + r^{2n+2} f^{(2k+1)}(x)$
 $= -r^{2} F(x) + r^{2n+2} f(x)$
(d) $\frac{d}{dx} \left(F'(x) \sin(rx) - rF(x) \cos(rx)\right) = F''(x) \sin(rx) + rF'(x) \cos(rx) - rF'(x) \cos(rx) + rF(x) \sin(rx)$
 $= \left(F''(x) + rF(x)\right) \sin(rx)$
 $= (F''(x) + rF(x)) \sin(rx)$
 $= r^{2n+2} f(x) \sin(rx)$
(e) $\int_{0}^{1} f(x) \sin(rx) dx = \frac{1}{r^{2n+2}} \int_{0}^{1} r^{2n+2} f(x) \sin(rx) dx$
 $= \frac{1}{r^{2n+2}} \left[F'(x) \sin(rx) - rF(x) \cos(rx)\right]_{0}^{1}$

2. Let $r \in (0, \pi] \cap \mathbb{Q}$. Assume by contradiction that $\sin(r), \cos(r) \in \mathbb{Q}$. Then, we may write $\frac{1}{r} = \frac{a}{d}$, $\sin(r) = \frac{b}{d}$ and $\cos(r) = \frac{c}{d}$ where $a, b, c \in \mathbb{Z}$ and $d \in \mathbb{N} \setminus \{0\}$. Let $n \in \mathbb{N}$, then using 1.(e), 1.(a) and 1.(b) we get that $I_n = \frac{A_n}{d^{2n+3}}$ for some $A_n \in \mathbb{Z}$. Since $I_n > 0$, we get that $A_n \ge 1$, and thus that $I_n \ge \frac{1}{d^{2n+3}}$. But we also have that

$$I_n = \int_0^1 f(x) \sin(rx) dx$$

$$\leq \int_0^1 f(x) dx \quad since \sin > 0 \text{ on } (0, \pi)$$

$$\leq \frac{1}{n!} \quad since \ f(x) \leq \frac{1}{n!} \text{ on } [0, 1]$$

Therefore $\frac{1}{d^{2n+3}} \leq I_n \leq \frac{1}{n!}$ and thus $n! \leq d^{2n+3}$. Which leads to a contradiction for *n* large enough.

3. We use the contrapositive of the previous question: since $\pi \in (0, \pi]$ and since $\sin(\pi) = 0 \in \mathbb{Q}$ and $\cos(\pi) = -1 \in \mathbb{Q}$, we get that $\pi \notin \mathbb{Q}$.