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Exercise 1.

Prove that √7 + 4√3 + √7 − 4√3 ∈ ℕ.

Exercise 2.

1. Prove that ∀𝑎, 𝑏 ∈ ℝ, 𝑎𝑏 ≤ 𝑎2 + 𝑏2

2 .

2. Prove that ∀𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐 ≤ 𝑎2 + 𝑏2 + 𝑐2.

3. Prove that ∀𝑎, 𝑏, 𝑐 ∈ ℝ, 3𝑎𝑏 + 3𝑏𝑐 + 3𝑎𝑐 ≤ (𝑎 + 𝑏 + 𝑐)2.

Exercise 3.
Prove that ∀𝑥 ∈ ℝ, |𝑥 − 1| ≤ 𝑥2 − 𝑥 + 1.

Exercise 4.
1. Prove that ∀𝑥, 𝑦 ∈ ℝ, |𝑥| + |𝑦| ≤ |𝑥 + 𝑦| + |𝑥 − 𝑦|.

2. Prove that ∀𝑥, 𝑦 ∈ ℝ, |𝑥 + 𝑦|
1 + |𝑥 + 𝑦| ≤ |𝑥|

1 + |𝑥| + |𝑦|
1 + |𝑦| .

Exercise 5.
Let 𝐴 ⊂ ℝ be non-empty and bounded. We set 𝐵 = {|𝑥 − 𝑦| ∶ 𝑥, 𝑦 ∈ 𝐴}.

1. Prove that 𝐵 admits a supremum.

2. Prove that sup𝐵 = sup𝐴 − inf𝐴.

Exercise 6.
Prove that if 𝑓 ∶ [0, 1] → [0, 1] is non-decreasing then 𝑓 admits a fixed point, i.e. ∃𝑎 ∈ [0, 1], 𝑓 (𝑎) = 𝑎.
Hint: study {𝑥 ∈ [0, 1] ∶ 𝑓(𝑥) ≥ 𝑥}.

Exercise 7.
Let 𝐴 ⊂ ℝ be non-empty and bounded from above. Set 𝑀 = sup(𝐴).
Prove that if 𝑀 ∉ 𝐴 then for all 𝜀 > 0 the set (𝑀 − 𝜀, 𝑀) ∩ 𝐴 contains infinitely many elements.

Exercise 8. Conway’s Soldiers, or why geometric series are useful
We consider an infinite checkerboard represented by ℤ×ℤ with pieces on it. The pieces are allowed tomove
using the peg solitaire rules: a move consists of one piece jumping over another piece into an empty cell
(either horizontally or vertically), the piece which was jumped over is then removed.



2 Homework Questions – Week 8

The goal of this exercise is to show that there is no initial configuration with finitely many pieces located on
ℤ × ℤ≤0 allowing to reach cells with 𝑦-coordinate 5.

1. Prove that there exists initial configurations allowing to reach cells with 𝑦-coordinate 1, 2, 3 and 4.

2. We denote by 𝜎 the positive root of 𝑥2 + 𝑥 − 1 = 0 and we fix a target cell on ℤ × ℤ.
We label each cell of ℤ × ℤ with 𝜎𝑛 where 𝑛 is the Manhattan distance from the target to the cell.
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Given a finite configuration 𝐶 (i.e. finitely pieces on the checkerboard), we define 𝐹 (𝐶) = ∑𝑖∈𝐶 𝜎𝑛𝑖

where 𝑛𝑖 is the Manhattan from the target cell to the cell 𝑖.
Prove that if 𝐶′ is a configuration obtained after one move then 𝐹 (𝐶′) − 𝐹 (𝐶) ≤ 0.

3. Compute
+∞

∑
𝑛=2

𝜎𝑛.

4. Assume that the target cell is (0, 5). Compute 𝐹 (𝐶) where 𝐶 contains all the cells with non-positive
𝑦-coordinates (hence 𝐶 contains infinitely many cells).

5. Conclude that there is no finite initial configuration in ℤ × ℤ≤0 allowing to reach (0, 5).



MAT246H1-S – LEC0201/9201 – J.-B. Campesato 3

Sample solutions to Exercise 1.

Set 𝛼 = √7 + 4√3 + √7 − 4√3 then

𝛼2 = 14 + 2√(7 + 4√3) (7 − 4√3) = 14 + 2√72 − 42 × 3 = 14 + 2√1 = 16

So 𝛼 = ±4, but since 𝛼 > 0, we get 𝛼 = 4.

Sample solutions to Exercise 2.
1. Let 𝑎, 𝑏 ∈ ℝ, then 0 ≤ (𝑎 − 𝑏)2 = 𝑎2 + 𝑏2 − 2𝑎𝑏, so that 𝑎𝑏 ≤ 𝑎2+𝑏2

2 .

2. Let 𝑎, 𝑏, 𝑐 ∈ ℝ. We know from the previous question that 𝑎𝑏 ≤ 𝑎2+𝑏2

2 , 𝑏𝑐 ≤ 𝑏2+𝑐2

2 and 𝑎𝑐 ≤ 𝑎2+𝑐2

2 .
By summing these three inequalities, we get 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐 ≤ 𝑎2+𝑏2+𝑏2+𝑐2+𝑎2+𝑐2

2 = 𝑎2 + 𝑏2 + 𝑐2.

3. Let 𝑎, 𝑏, 𝑐 ∈ ℝ. Then

(𝑎 + 𝑏 + 𝑐)2 = 𝑎2 + 𝑏2 + 𝑐2 + 2𝑎𝑏 + 2𝑏𝑐 + 2𝑎𝑐
≥ 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐 + 2𝑎𝑏 + 2𝑏𝑐 + 2𝑎𝑐 from the previous question.
= 3𝑎𝑐 + 3𝑏𝑐 + 3𝑎𝑐

Sample solutions to Exercise 3.
Let 𝑥 ∈ ℝ.

• First case: 𝑥 ≤ 1 then 𝑥2 − 𝑥 + 1 − |𝑥 − 1| = 𝑥2 − 𝑥 + 1 + (𝑥 − 1) = 𝑥2 ≥ 0, therefore |𝑥 − 1| ≤ 𝑥2 − 𝑥 + 1.

• Second case: 𝑥 > 1 then 𝑥2 − 𝑥 + 1 − |𝑥 − 1| = 𝑥2 − 𝑥 + 1 − (𝑥 − 1) = 𝑥2 − 2𝑥 + 2 = (𝑥 − 1)2 + 1 > 0,
therefore |𝑥 − 1| ≤ 𝑥2 − 𝑥 + 1.

Sample solutions to Exercise 4.
1. Let 𝑥, 𝑦 ∈ ℝ. Then 2|𝑥| = |2𝑥| = |(𝑥 + 𝑦) + (𝑥 − 𝑦)| ≤ |𝑥 + 𝑦| + |𝑥 − 𝑦| and similarly 2|𝑦| ≤ |𝑥 + 𝑦| + |𝑥 − 𝑦|.

Summing these two inequalities, we obtain 2(|𝑥| + |𝑦|) ≤ 2(|𝑥 + 𝑦| + |𝑥 − 𝑦|).

2. Define 𝑓 ∶ [0, +∞) → ℝ by 𝑓(𝑢) = 𝑢
1+𝑢 then 𝑓 is differentiable and 𝑓 ′(𝑢) = 1

(1+𝑢)2 > 0.
Therefore 𝑓 is increasing.
Let 𝑥, 𝑦 ∈ ℝ. Since |𝑥 + 𝑦| ≤ |𝑥| + |𝑦|, we obtain

|𝑥 + 𝑦|
1 + |𝑥 + 𝑦| ≤ |𝑥| + |𝑦|

1 + |𝑥| + |𝑦| = |𝑥|
1 + |𝑥| + |𝑦| + |𝑦|

1 + |𝑥| + |𝑦| ≤ |𝑥|
1 + |𝑥| + |𝑦|

1 + |𝑦|

Sample solutions to Exercise 5.
1. Since 𝐴 is non-empty, there exists 𝑥 ∈ 𝐴 and then 0 = |𝑥 − 𝑥| ∈ 𝐵. Therefore 𝐵 is non-empty.

Since 𝐴 is bounded, there exists 𝑀 ∈ ℝ such that ∀𝑥 ∈ 𝐴, |𝑥| ≤ 𝑀 .
Therefore, if 𝑥, 𝑦 ∈ 𝐴, then |𝑥 − 𝑦| ≤ |𝑥| + |𝑦| ≤ 2𝑀 . Thus 2𝑀 is an upper bound of 𝐵.
Since 𝐵 is a non-empty subset of ℝ which is bounded from above, it admits a supremum.

2. Since 𝐴 is non-empty and bounded from below, there exists 𝑚 = inf(𝐴).
Similarly, since 𝐴 is non-empty and bounded from above, there exists 𝑀 = sup(𝐴).
Let 𝑥, 𝑦 ∈ 𝐴, then 𝑚 ≤ 𝑥 ≤ 𝑀 and −𝑀 ≤ −𝑦 ≤ −𝑚, thus −(𝑀 −𝑚) ≤ 𝑥−𝑦 ≤ 𝑀 −𝑚, i.e. |𝑥−𝑦| ≤ 𝑀 −𝑚.
Thus 𝑀 − 𝑚 is an upper bound of 𝐵. Let’s check it is the least one.
Let 𝜀 > 0. Since 𝑚 = inf(𝐴), there exists 𝑦 ∈ 𝐴 such that 𝑦 ≤ 𝑚 + 𝜀

2 . Since 𝑀 = sup(𝐴), there exists
𝑥 ∈ 𝐴 such that 𝑀 − 𝜀

2 ≤ 𝑥. Therefore |𝑥 − 𝑦| ≥ 𝑥 − 𝑦 ≥ 𝑀 − 𝑚 + 𝜀.
We proved that for every 𝜀 > 0, there exists |𝑥 − 𝑦| ∈ 𝐵 such that |𝑥 − 𝑦| ≥ 𝑀 − 𝑚 + 𝜀.
Therefore sup(𝐵) = 𝑀 − 𝑚.
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Sample solutions to Exercise 6.
Set 𝐸 = {𝑥 ∈ [0, 1] ∶ 𝑓(𝑥) ≥ 𝑥}. Since 𝑓(0) ∈ [0, 1], we have that 𝑓(0) ≥ 0, so 0 ∈ 𝐸.
Besides 𝐸 is bounded from above by 1.
Thence, by the least upper bound principle, 𝐸 admits a supremum 𝑎 = sup(𝐸).
Assume by contradiction that 𝑓(𝑎) ≠ 𝑎, then

• Either 𝑓(𝑎) < 𝑎. Since 𝑎 is the least upper bound of 𝐸, 𝑓(𝑎) is not an upper bound, so there exists 𝑏 ∈ 𝐸
such that 𝑓(𝑎) < 𝑏 ≤ 𝑎.
But then 𝑏 ≤ 𝑎 and 𝑓(𝑎) < 𝑏 ≤ 𝑓(𝑏) (since 𝑏 ∈ 𝐸), which is impossible since 𝑓 is non-decreasing.

• Or 𝑓(𝑎) > 𝑎. Then, since 𝑓 is non-decreasing, we get 𝑓(𝑓(𝑎)) ≥ 𝑓(𝑎). So 𝑓(𝑎) ∈ 𝐸. Which is impossible
since for every 𝑥 ∈ [0, 1], 𝑥 ≤ 𝑎 < 𝑓(𝑎) (since 𝑎 is an upper bound).

Sample solutions to Exercise 7.
Let 𝜀 > 0. Assume by contradiction that (𝑀 − 𝜀, 𝑀) ∩ 𝐴 contains finitely many elements, i.e.

(𝑀 − 𝜀, 𝑀) ∩ 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑝}.

Note that 𝑎 ≔ max(𝑎1, … , 𝑎𝑝) < 𝑀 .
Set 𝛿 = 𝑀 − 𝑎. Since 𝛿 > 0, there exists 𝑏 ∈ 𝐴 such that 𝑀 − 𝛿 < 𝑏 ≤ 𝑀 .
Since 𝑀 ∉ 𝐴, we have 𝑏 < 𝑀 . Besides 𝑏 > 𝑀 − 𝛿 = 𝑎 ≥ 𝑀 − 𝜀.
Therefore 𝑏 ∈ (𝑀 − 𝜀, 𝑀) ∩ 𝐴.
But, ∀𝑖 = 1, … , 𝑝, 𝑏 > 𝑎 > 𝑎𝑖.
Hence a contradiction

Sample solutions to Exercise 8.
1. To reach the first row:

To reach the second row:

I let you continue for the third and fourth rows!

2. There are three cases to handle:

• The piece moves towards the target cell: then if the piece is initially located at a cell labeled 𝜎𝑛,
then it jumps over piece in a cell labeled 𝜎𝑛−1 to reach a cell labeled 𝜎𝑛−2.
Therefore 𝐹 (𝐶′) − 𝐹 (𝐶) = −𝜎𝑛 − 𝜎𝑛−1 + 𝜎𝑛−2 = 𝜎𝑛−2(−𝜎2 − 𝜎 + 1) = 0.

• The piece remains at the same distance to the target cell: then if the piece is initially located at a
cell labeled 𝜎𝑛, then it jumps over piece in a cell labeled 𝜎𝑛−1 to reach a cell labeled 𝜎𝑛.
Therefore 𝐹 (𝐶′) − 𝐹 (𝐶) = −𝜎𝑛 − 𝜎𝑛−1 + 𝜎𝑛 = −𝜎𝑛−1.
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• The piece moves away from the target cell: then if the piece is initially located at a cell labeled 𝜎𝑛,
then it jumps over piece in a cell labeled 𝜎𝑛+1 to reach a cell labeled 𝜎𝑛+2.
Therefore 𝐹 (𝐶′) − 𝐹 (𝐶) = −𝜎𝑛 − 𝜎𝑛+1 + 𝜎𝑛+2 = 𝜎𝑛(−1 − 𝜎 + 𝜎2) = −2𝜎𝑛+1.

3. For those who like geometric series, like Cherge: since 0 < 𝜎 < 1, we have

+∞

∑
𝑛=2

𝜎𝑛 = 𝜎2

1 − 𝜎 = 1

Otherwise, if you don’t like geometric series: since ∀𝑛 ∈ ℕ, 𝜎𝑛+2 = 𝜎𝑛 − 𝜎𝑛+1, we have a telescoping
series:

𝐾

∑
𝑛=2

𝜎𝑛 =
𝐾−2

∑
𝑛=0

𝜎𝑛+2 =
𝐾−2

∑
𝑛=0

(𝜎𝑛 − 𝜎𝑛+1) = 𝜎0 − 𝜎𝐾−1 −−−−−→
𝐾→+∞

1 − 0 = 1

4.
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𝜎7
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𝜎6

𝜎7

𝜎6

𝜎7

𝜎8

𝜎7

𝜎8

𝜎9

𝜎8

𝜎9

𝜎10

𝜎9

𝜎10

𝜎11

𝜎10

𝜎11

𝜎12 ⋯
⋯
⋯

⋯
⋯
⋯

The cells on 𝑦 = 0 give

𝜎5 + 2𝜎6
+∞

∑
𝑘=0

𝜎𝑘 = 𝜎5 + 2𝜎6

1 − 𝜎 = 𝜎5 + 2𝜎4 = 𝜎3 (𝜎2 + 2𝜎) = 𝜎3(1 + 𝜎) = 𝜎2(𝜎 + 𝜎2) = 𝜎2

Therefore, the cells on 𝑦 = 𝑛 give 𝜎2+𝑛 and

𝐹 (𝐶) =
+∞

∑
𝑛=2

𝜎𝑛 = 1

5. Assume that we have a finite initial configuration 𝐶0, then 𝐹 (𝐶0) < 𝐹 (𝐶) = 1 from the previous
question.
If 𝐶𝑛 is a configuration obtained after 𝑛 moves then (𝐹 (𝐶𝑛))𝑛 is decreasing by Question 2.
Assume that we reach 5 after 𝑛 moves then 𝐹 (𝐶𝑛) ≥ 𝜎0 = 1 (since it contains at least a piece located at
(5, 0)). But 𝐹 (𝐶𝑛) ≤ 𝐹 (𝐶0) < 1. Hence a contradiction.


