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I forgot to give the following result in Chapter 2, so let’s prove it now and I will add it in the lecture notes.
Exercise 1.
Let 𝑎, 𝑏, 𝑐 ∈ ℤ. Prove that if 𝑎|𝑐, 𝑏|𝑐 and gcd(𝑎, 𝑏) = 1 then 𝑎𝑏|𝑐.

Exercise 2.
Either prove or find a counter-example to ∀𝑎, 𝑏 ∈ ℕ ⧵ {0}, 𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏).

Exercise 3.
What’s the remainder of the Euclidean division of 1 + 2 + 22 + 23 + ⋯ + 2100 by 125?

Exercise 4.
Find the last 3 digits of 32021 (written in decimal).

Exercise 5.
Prove that ∀𝑛, 𝑘 ∈ ℕ ⧵ {0}, 𝜑 (𝑛𝑘) = 𝑛𝑘−1𝜑(𝑛).

Exercise 6.
Prove that ∀𝑎, 𝑏 ∈ ℕ ⧵ {0}, gcd(𝑎, 𝑏) = 1 ⟹ 𝑎𝜑(𝑏) + 𝑏𝜑(𝑎) ≡ 1 (mod 𝑎𝑏).

Exercise 7.

Let 𝑎 ∈ ℤ and 𝑛 ∈ ℕ ⧵ {0}. Prove that if gcd(𝑎, 𝑛) = gcd(𝑎 − 1, 𝑛) = 1 then
𝜑(𝑛)−1

∑
𝑘=0

𝑎𝑘 ≡ 0 (mod 𝑛).

Exercise 8.
Prove that ∀𝑎 ∈ ℕ ⧵ {0, 1}, ∀𝑘 ∈ ℕ ⧵ {0}, 𝑘|𝜑 (𝑎𝑘 − 1).

Exercise 9.
We define a sequence by 𝑢0 ∈ ℕ ⧵ {0} and 𝑢𝑘+1 = 𝜑(𝑢𝑘) ∈ ℕ ⧵ {0} for 𝑘 ∈ ℕ.
Prove that the sequence (𝑢𝑘)𝑘 is eventually constant equal to 1.

Exercise 10.
Assume that 𝑛 = 𝑝𝑞 where 𝑝, 𝑞 are distinct prime numbers.
Find a way to easily recover 𝑝 and 𝑞 from the knowledge of 𝑛 and 𝜑(𝑛).

Exercise 11.
In order to prove that RSA works, we check that if 𝑝 and 𝑞 are two distinct prime numbers then

(1) ∀𝑙 ∈ ℕ, ∀𝑚 ∈ ℤ, 𝑚1+𝑙𝜑(𝑝𝑞) ≡ 𝑚 (mod 𝑝𝑞)

The proof seen in class relies on Euler’s theorem: 𝑚1+𝑙𝜑(𝑝𝑞) = 𝑚 × (𝑚𝜑(𝑝𝑞))
𝑙 ≡ 𝑚 × 1𝑙 (mod 𝑝𝑞) ≡ 𝑚 (mod 𝑝𝑞).

Therefore it holds only when gcd(𝑚, 𝑝𝑞) = 1, i.e. it doesn’t hold when 𝑝|𝑚 or 𝑞|𝑚.1.
Prove that (1) holds with no restriction on 𝑚.

1That’s already quite good: it works for 𝑚 ∈ {0, 1, … , 𝑝𝑞 − 1} ⧵ ({𝑝, 2𝑝, … , (𝑞 − 1)𝑝} ∪ {𝑞, 2𝑞, … , (𝑝 − 1)𝑞}) but
𝑝𝑞−(𝑝−1)−(𝑞−1)

𝑝𝑞 = 1 + 2
𝑝𝑞 − 1

𝑞 − 1
𝑝 is small when 𝑝 and 𝑞 are large, so this proof works for almost all possible messages.
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Exercise 12.
1. Check that (𝑛, 𝑒) = (5917, 17) and (𝑛, 𝑑) = (5917, 2033) are suitable respectively public and private keys.

Note that 𝑛 = 61 × 97.

2. Bob wants to send the message 𝑚 = 42 to Alice using the above keys. What should he send to Alice?
You don’t have to compute it by hand.
Check that Alice can decrypt this message.

3. Alice just received the ciphered message 𝑐 = 3141 from Bob. What is the original message?

Exercise 13.
Eve intercepted the message 𝑐 = 271 sent to Alice from Bob.
She finds Alice’s public key (𝑛, 𝑒) = (1003, 11) on her website.
What is the original message sent by Bob?

Exercise 14. Digital signature
Another common problem related to communations is the following: how can the recipient be sure that the
sender is not an impostor?
Explain how RSA can be used to solve this issue.
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Sample solutions to Exercise 1.
Let 𝑎, 𝑏, 𝑐 ∈ ℤ be such that 𝑎|𝑐, 𝑏|𝑐 and gcd(𝑎, 𝑏) = 1.
Since 𝑎|𝑐 and 𝑏|𝑐, there exist 𝑘, 𝑙 ∈ ℤ such that 𝑐 = 𝑎𝑘 and 𝑐 = 𝑏𝑙.
Since gcd(𝑎, 𝑏) = 1, by Bézout’s identity, there exists 𝑢, 𝑣 ∈ ℤ such that 𝑎𝑢 + 𝑏𝑣 = 1.
Then 𝑐 = 𝑎𝑢𝑐 + 𝑏𝑣𝑐 = 𝑎𝑢𝑏𝑙 + 𝑏𝑣𝑎𝑘 = 𝑎𝑏(𝑢𝑙 + 𝑣𝑘), so that 𝑎𝑏|𝑐.

Sample solutions to Exercise 2.
This property is false: 𝜑(2 × 2) = 22 − 2 = 2 but 𝜑(2)𝜑(2) = 1 × 1.

Sample solutions to Exercise 3.

1 + 2 + 22 + 23 + ⋯ + 2100 =
100

∑
𝑘=0

2𝑘 = 1 − 2101

1 − 2 = 2101 − 1 (geometric sum, Cherge’s favorite formula).

Note that 𝜑(125) = 𝜑(53) = 53 − 52 = 100.
Therefore, since gcd(2, 101) = 1, Euler’s theorem gives

2101 − 1 = 2 × 2100 − 1 ≡ 2 × 1 − 1 (mod 125) ≡ 1 (mod 125)
Hence the remainder of the Euclidean division of 1 + 2 + 22 + 23 + ⋯ + 2100 by 125 is 1.

Sample solutions to Exercise 4.
Note that 𝜑(1000) = 𝜑(2353) = (23 − 22)(53 − 52) = 400.
Therefore, since gcd(1000, 3) = 1, Euler’s theorem gives

32021 = 35×400+21 = (3400)5321 ≡ 15 × 321 (mod 1000)
≡ 3103103 (mod 1000)
≡ 59049 × 59049 × 3 (mod 1000)
≡ 49 × 49 × 3 (mod 1000)
≡ 7203 (mod 1000)
≡ 203 (mod 1000)

Thus the last 3 digits of 32021 are 203.

Sample solutions to Exercise 5.
Let 𝑛, 𝑘 ∈ ℕ ⧵ {0}.

Write the prime factorization 𝑛 =
𝑟

∏
𝑖=1

𝑝𝛼𝑖
𝑖 where the 𝑝𝑖 are pairwise distinct prime numbers and 𝛼𝑖 ∈ ℕ ⧵ {0}.

Then 𝑛𝑘 =
𝑟

∏
𝑖=1

𝑝𝑘𝛼𝑖 and 𝜑 (𝑛𝑘) =
𝑟

∏
𝑖=1

(𝑝𝑘𝛼𝑖
𝑖 − 𝑝𝑘𝛼𝑖−1

𝑖 ) =
𝑟

∏
𝑖=1

𝑝(𝑘−1)𝛼𝑖
𝑖

𝑟

∏
𝑖=1

(𝑝𝛼𝑖
𝑖 − 𝑝𝛼𝑖−1

𝑖 ) = 𝑛𝑘−1𝜑(𝑛).

Sample solutions to Exercise 6.
Let 𝑎, 𝑏 ∈ ℕ ⧵ {0}. Assume that gcd(𝑎, 𝑏) = 1.
Since gcd(𝑎, 𝑏) = 1, by Euler’s theorem 𝑎𝜑(𝑏) ≡ 1 (mod 𝑏).
Since 𝜑(𝑎) ≥ 1, 𝑏𝜑(𝑎) ≡ 0 (mod 𝑏).
Thus 𝑎𝜑(𝑏) + 𝑏𝜑(𝑎) ≡ 1 (mod 𝑏), i.e. 𝑏|𝑎𝜑(𝑏) + 𝑏𝜑(𝑎) − 1.
Swapping 𝑎 and 𝑏, we get similarly that 𝑎|𝑎𝜑(𝑏) + 𝑏𝜑(𝑎) − 1.
Since gcd(𝑎, 𝑏) = 1, we derive from Exercise 1 that 𝑎𝑏|𝑎𝜑(𝑏) + 𝑏𝜑(𝑎) − 1, i.e. 𝑎𝜑(𝑏) + 𝑏𝜑(𝑎) ≡ 1 (mod 𝑎𝑏).

Sample solutions to Exercise 7.
Let 𝑎 ∈ ℤ and 𝑛 ∈ ℕ ⧵ {0}. Assume that gcd(𝑎, 𝑛) = gcd(𝑎 − 1, 𝑛) = 1.
Since gcd(𝑎, 𝑏) = 1, by Euler’s theorem we get

(𝑎 − 1)
𝜑(𝑛)−1

∑
𝑘=0

𝑎𝑘 = 𝑎𝜑(𝑛) − 1 ≡ 0 (mod 𝑛)
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So 𝑛|(𝑎 − 1)
𝜑(𝑛)−1

∑
𝑘=0

𝑎𝑘.

By Gauss’ lemma, since gcd(𝑛, 𝑎 − 1) = 1, we get that 𝑛|
𝜑(𝑛)−1

∑
𝑘=0

𝑎𝑘, i.e.
𝜑(𝑛)−1

∑
𝑘=0

𝑎𝑘 ≡ 0 (mod 𝑛).

Sample solutions to Exercise 8.
Let 𝑎 ∈ ℕ ⧵ {0, 1} and 𝑘 ∈ ℕ ⧵ {0}.
By Euclidean division, there exist 𝑞, 𝑟 ∈ ℤ such that 𝜑 (𝑎𝑘 − 1) = 𝑘𝑞 + 𝑟 and 0 ≤ 𝑟 < 𝑘.
Since gcd(𝑎𝑘 − 1, 𝑎) = gcd(−1, 𝑎) = 1, we deduce from Euler’s theorem that 𝑎𝜑(𝑎𝑘−1) ≡ 1 (mod 𝑎𝑘 − 1).
But 𝑎𝜑(𝑎𝑘−1) = 𝑎𝑘𝑞+𝑟 = (𝑎𝑘)𝑞𝑎𝑟 ≡ 1𝑞𝑎𝑟 (mod 𝑎𝑘 − 1) ≡ 𝑎𝑟 (mod 𝑎𝑘 − 1).
Therefore 𝑎𝑟 ≡ 1 (mod 𝑎𝑘 − 1), i.e. 𝑎𝑘 − 1|𝑎𝑟 − 1.
But since 0 ≤ 𝑟 < 𝑘, we get that 0 ≤ 𝑎𝑟 − 1 < 𝑎𝑘 − 1.
Thence, 𝑎𝑟 − 1 = 0, i.e. 𝑟 = 0.
So 𝜑 (𝑎𝑘 − 1) = 𝑘𝑞, i.e. 𝑘|𝜑 (𝑎𝑘 − 1).

Sample solutions to Exercise 9.

First note that if 𝑛 ∈ ℕ ⧵ {0} then {
𝜑(𝑛) ≤ 𝑛 − 1 if 𝑛 ≥ 2

𝜑(𝑛) = 1 if 𝑛 = 1 .
Therefore 𝑢𝑘+1 = 𝜑(𝑢𝑘) ≤ 𝑢𝑘, so that the sequence is decreasing.
Since it is bounded from below then it is eventually constant.
Assume by contradiction that ∀𝑘 ≥ 𝑁, 𝑢𝑘+1 = 𝑢𝑘 > 1, then 𝑢𝑘+1 = 𝜑(𝑢𝑘) ≤ 𝑢𝑘 − 1 < 𝑢𝑘. Which is a
contradiction.
Therefore the sequence (𝑢𝑘)𝑘 is eventually constant equal to 1.

Sample solutions to Exercise 10.

𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1)
⇔ 𝜑(𝑛) = 𝑝𝑞 − 𝑝 − 𝑞 + 1
⇔ 𝜑(𝑛) = 𝑛 − 𝑝 − 𝑛

𝑝 + 1

⇔ 𝑝𝜑(𝑛) = 𝑝𝑛 − 𝑝2 − 𝑛 + 𝑝
⇔ 𝑝2 − (𝑛 − 𝜑(𝑛) + 1)𝑝 + 𝑛 = 0

Therefore 𝑝 (and similarly for 𝑞) is a root of the equation 𝑋2 − (𝑛 − 𝜑(𝑛) + 1)𝑋 + 𝑛 = 0.

Sample solutions to Exercise 11.
Let 𝑙 ∈ ℕ and 𝑚 ∈ ℤ.

• Let’s prove that 𝑚1+𝑙𝜑(𝑝𝑞) ≡ 𝑚 (mod 𝑝).

– If 𝑝|𝑚 then both sides are congruent to 0 (mod 𝑝), therefore 𝑚1+𝑙𝜑(𝑝𝑞) ≡ 𝑚 (mod 𝑝).
– If 𝑝 ∤ 𝑚 then gcd(𝑚𝑞−1, 𝑝) = 1 (check it), therefore, using Fermat’s little theorem, we get that

(𝑚𝑞−1)
𝑝−1 ≡ 1 (mod 𝑝)

Thus 𝑚1+𝑙𝜑(𝑝𝑞) = 𝑚 × 𝑚𝑙(𝑝−1)(𝑞−1) = 𝑚 × ((𝑚𝑞−1)
𝑝−1

)
𝑙

≡ 𝑚 × 1𝑙 (mod 𝑝) ≡ 𝑚 (mod 𝑝).

• We prove similarly that 𝑚1+𝑙𝜑(𝑝𝑞) ≡ 𝑚 (mod 𝑞).
Therefore 𝑝|𝑚1+𝑙𝜑(𝑝𝑞) − 𝑚 and 𝑞|𝑚1+𝑙𝜑(𝑝𝑞) − 𝑚.
Since gcd(𝑝, 𝑞) = 1, we deduce from Exercise 1 that 𝑝𝑞|𝑚1+𝑙𝜑(𝑝𝑞) − 𝑚, i.e. 𝑚1+𝑙𝜑(𝑝𝑞) ≡ 𝑚 (mod 𝑝𝑞)
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Sample solutions to Exercise 12.
1. Here 𝜑(𝑛) = (61 − 1)(97 − 1) = 60 × 96 = 5760.

Note that 5760 = 338 × 17 + 14, so gcd(𝜑(𝑛), 𝑒) = gcd(5760, 17) = gcd(14, 17) = 1.
Therefore 𝑒 = 17 is a suitable choice for 𝑛 = 5917.
Furthermore 𝑒𝑑 = 17 × 2033 = 34561 = 6 × 5760 + 1 ≡ 1 (mod 𝜑(𝑛)).
Therefore 𝑑 is a suitable choice for 𝑒 = 17 and 𝑛 = 5917.

2. 𝑚𝑒 = 4217 ≡ 3838 (mod 5917), so Bob should send 𝑐 = 3838 to Alice.
Then Alice will perform the computation 𝑐𝑑 = 38382033 ≡ 42 (mod 5917).

3. 𝑐𝑑 = 31412033 ≡ 4630 (mod 5917), therefore the original message is 4630.

Sample solutions to Exercise 13.
Using a computer, it is easy to see that 1003 = 17 × 59.
Therefore 𝜑(𝑛) = 16 × 58 = 928. Let’s look for a multiplicative inverse of 𝑒 = 11 modulo 𝜑(𝑛) = 928.
We apply Euclid’s algorithm:

928 = 11 × 84 + 4
11 = 4 × 2 + 3
4 = 3 × 1 + 1

Therefore

1 = 4 − 3
= 4 − (11 − 4 × 2)
= 4 × 3 − 11
= (928 − 11 × 84) × 3 − 11
= 928 × 3 − 11 × (84 × 3 + 1)

1 = 928 × 3 + 11 × (−253)

Note that we want 𝑑 > 0, so we take 𝑑 = −253 + 𝜑(𝑛) = 928 − 253 = 675.
Therefore we may decipher the message with the private key (𝑛, 𝑑) = (1003, 675).
Finally 𝑐𝑑 = 271675 ≡ 951 (mod 1003). So the original message sent by Bob to Alice is 951.

Sample solutions to Exercise 14.
Alice keys are (𝑛, 𝑒) and (𝑛, 𝑑).
She wants to send the message 𝑚 ∈ {0, 1, … , 𝑛 − 1} to Bob in a way that Bob can authenticate her as the
sender.
For this purpose she finds the unique 𝑠 ∈ {0, … , 𝑛 − 1} such that 𝑠 ≡ 𝑚𝑑 (mod 𝑛) (using her private key), i.e.
𝑠 is the remainder of 𝑚𝑑 by 𝑛.
She sends to Bob both the message 𝑚 and the signature 𝑠.
Then Bob checks that 𝑚 ≡ 𝑠𝑒 (mod 𝑛). If so, then Alice was the sender (or at least someone knowing Alice’s
private key).


