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Hint: all these exercises can be solved using Fermat’s little theorem and/or Wilson’s theorem.

Exercise 1.
Find the remainder of the Euclidean division of 24103 by 103.

Exercise 2.

Prove that ∀𝑛 ∈ ℤ, 𝑛7

7 + 𝑛5

5 + 23𝑛
35 ∈ ℤ.

You may already use ℚ for this question.
Hint: introduce 𝐴𝑛 = 35 (

𝑛7

7 + 𝑛5

5 + 23𝑛
35 ).

Exercise 3.
Let 𝑝 be an odd prime number. Prove that ∀𝑛 ∈ ℤ, (𝑛 + 1)𝑝 − (𝑛𝑝 + 1) ≡ 0 (mod 2𝑝).

Exercise 4.

Let 𝑝 be a prime number. Prove that ∀𝑘 ∈ ℕ, ∀𝑛 ∈ ℤ ⧵ {0}, gcd(𝑛, 𝑝) = 1 ⟹ (𝑛𝑝−1)
𝑝𝑘

≡ 1 (mod 𝑝𝑘+1).

Exercise 5.
Let 𝑝 and 𝑞 be two distinct prime numbers. Prove that 𝑝𝑞−1 + 𝑞𝑝−1 ≡ 1 (mod 𝑝𝑞).

Exercise 6.
Prove that 𝑥4 + 781 = 3𝑦4 has no integer solution.

Exercise 7.
Let 𝑛 ∈ ℕ be such that 𝑛 ≥ 5. Prove that if 𝑛 + 2 is prime then 𝑛! − 1 is composite.

Exercise 8.
Let 𝑝 be an odd prime number. Prove that 2(𝑝 − 3)! ≡ −1 (mod 𝑝).

Exercise 9. A characterization of twin prime numbers.
Let 𝑛 ∈ ℕ ⧵ {0, 1}. Prove that if 𝑛 and 𝑛 + 2 are both prime numbers then

4 ((𝑛 − 1)! + 1) + 𝑛 ≡ 0 (mod 𝑛(𝑛 + 2))

(Actually the converse holds too, but it’s a little bit more difficult to prove)

Exercise 10.
Let 𝑝 be a prime number. Prove that ∀𝑛 ∈ ℤ, 𝑝|𝑛𝑝 + (𝑝 − 1)!𝑛.



2 Homework Questions – Week 6

Sample solutions to Exercise 1.
By Fermat’s little theorem, we know that 24103 ≡ 24 (mod 103).
Therefore the remainder of the Euclidean division of 24103 by 103 is 24.

Sample solutions to Exercise 2.
Let 𝑛 ∈ ℤ. Set 𝐴𝑛 = 5𝑛7 + 7𝑛5 + 23𝑛.
By Fermat’s little theorem, 𝑛5 ≡ 𝑛 (mod 5) so 𝐴𝑛 ≡ 30𝑛 (mod 5) ≡ 0 (mod 5), i.e. 5|𝐴𝑛.
Similarly 𝑛7 ≡ 𝑛 (mod 7), so 𝐴𝑛 ≡ 28𝑛 (mod 7) ≡ 0 (mod 7), i.e. 7|𝐴𝑛.
Therefore 35 = 5 × 7|𝐴𝑛, so

𝑛7

7 + 𝑛5

5 + 23𝑛
35 = 𝐴𝑛

35 ∈ ℤ.

Sample solutions to Exercise 3.
Let 𝑝 be an odd prime number and 𝑛 ∈ ℤ.

• By Fermat’s little theorem, {
(𝑛 + 1)𝑝 ≡ 𝑛 + 1 (mod 𝑝)
𝑛𝑝 ≡ 𝑛 (mod 𝑝)

Therefore (𝑛 + 1)𝑝 − (𝑛𝑝 + 1) ≡ 0 (mod 𝑝), i.e. 𝑝|(𝑛 + 1)𝑝 − (𝑛𝑝 + 1).

• Note that ∀𝑥 ∈ ℤ, ∀𝑘 ∈ ℕ ⧵ {0}, 𝑥𝑘 ≡ 𝑥 (mod 2):

𝑎 (mod 2) 0 1
𝑎2 (mod 2) 0 1

Therefore {
(𝑛 + 1)𝑝 ≡ 𝑛 + 1 (mod 2)
𝑛𝑝 ≡ 𝑛 (mod 2) .

Thus (𝑛 + 1)𝑝 − (𝑛𝑝 + 1) ≡ 0 (mod 2), i.e. 2|(𝑛 + 1)𝑝 − (𝑛𝑝 + 1).
Since 2 and 𝑝 are two distinct prime numbers, 2𝑝|(𝑛 + 1)𝑝 − (𝑛𝑝 + 1), i.e. (𝑛 + 1)𝑝 − (𝑛𝑝 + 1) ≡ 0 (mod 2𝑝).

Sample solutions to Exercise 4.
We are going to prove the statement by induction on 𝑘 ∈ ℕ.

• Base case at 𝑘 = 0: it is exactly Fermat’s little theorem (v2).

• Induction step: assume that the statement hold for some 𝑘 ∈ ℕ, i.e.

∀𝑛 ∈ ℤ ⧵ {0}, gcd(𝑛, 𝑝) = 1 ⟹ (𝑛𝑝−1)
𝑝𝑘

≡ 1 (mod 𝑝𝑘+1)

Let 𝑛 ∈ ℤ be such that gcd(𝑛, 𝑝) = 1.
By induction hypothesis, there exists 𝜆 ∈ ℤ such that (𝑛𝑝−1)

𝑝𝑘
= 1 + 𝜆𝑝𝑘+1. Then

(𝑛𝑝−1)
𝑝𝑘+1

= (𝑛𝑝−1)
𝑝𝑘×𝑝 = ((𝑛𝑝−1)

𝑝𝑘

)
𝑝

= (1 + 𝜆𝑝𝑘+1)
𝑝 =

𝑝

∑
𝑖=0

(
𝑝
𝑖)𝜆𝑖𝑝𝑖(𝑘+1) = 1 +

𝑝

∑
𝑖=1

(
𝑝
𝑖)𝜆𝑖𝑝𝑖(𝑘+1) ≡ 1 (mod 𝑝𝑘+1)

Which ends the induction step.

Sample solutions to Exercise 5.
Let 𝑝 and 𝑞 be two distinct prime numbers.
Since gcd(𝑝, 𝑞) = 1, by Fermat’s little theorem we get that 𝑝𝑞−1 ≡ 1 (mod 𝑞).
Besides 𝑞𝑝−1 ≡ 0 (mod 𝑞) (since 𝑝 ≥ 2).
Therefore 𝑝𝑞−1 + 𝑞𝑝−1 ≡ 1 (mod 𝑝), i.e. 𝑝| (𝑝𝑞−1 + 𝑞𝑝−1 − 1).
Similarly, we may prove that 𝑞| (𝑝𝑞−1 + 𝑞𝑝−1 − 1).
Thus 𝑝𝑞| (𝑝𝑞−1 + 𝑞𝑝−1 − 1).
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Sample solutions to Exercise 6.
Let 𝑥, 𝑦 ∈ ℤ.
By Fermat’s little theorem, 𝑥4 ≡ 1 (mod 5) (if 5 ∤ 𝑥) or 𝑥4 ≡ 0 (mod 5) (if 5|𝑥).
Therefore 𝑥4 + 781 ≡ 1 (mod 5) or 𝑥4 + 781 ≡ 2 (mod 5).
But 3𝑦4 ≡ 3 (mod 5) (if 5 ∤ 𝑦) or 3𝑦4 ≡ 0 (mod 5) (if 5|𝑦).
Therefore ∀𝑥, 𝑦 ∈ ℤ, 𝑥4 + 781 ≢ 3𝑦4 (mod 5).

Sample solutions to Exercise 7.
Let 𝑛 ≥ 5 be such that 𝑛 + 2 is prime.
By Wilson’s theorem (𝑛 + 1)! ≡ −1 (mod 𝑛 + 2). Thus 𝑛 + 2|(𝑛 + 1)! + 1.
Besides (𝑛 + 1)! + 1 = (𝑛 + 2)𝑛! − 𝑛! + 1.
Thus 𝑛 + 2|𝑛! − 1 = (𝑛 + 2)𝑛! − ((𝑛 + 1)! + 1).
Since 𝑛 ≥ 4, we have 𝑛! > 𝑛 + 3 (prove it).
Therefore 𝑛! − 1 admits at least three positive divisors: 1, 𝑛 + 2, 𝑛! − 1, so that 𝑛 is composite.

Sample solutions to Exercise 8.
Let 𝑝 be an odd prime number.
By Wilson’s theorem (𝑝 − 1)! ≡ −1 (mod 𝑝), thus 2(𝑝 − 3)!(𝑝 − 2)(𝑝 − 1) ≡ −2 (mod 𝑝).
But we also have that 2(𝑝 − 3)!(𝑝 − 2)(𝑝 − 1) ≡ 4(𝑝 − 3)! (mod 𝑝).
Thus 4(𝑝 − 3)! ≡ −2 (mod 𝑝), i.e. 𝑝|4(𝑝 − 3)! + 2 = 2(2(𝑝 − 3)! + 1).
Since gcd(2, 𝑝) = 1 (as 𝑝 is an odd prime number), by Gauss’ lemma we get 𝑝|2(𝑝 − 3)! + 1,
i.e. 2(𝑝 − 3)! ≡ −1 (mod 𝑝).

Sample solutions to Exercise 9.
⇒ Assume that 𝑛 and 𝑛 + 2 are both prime then,

• By Wilson’s theorem, (𝑛 − 1)! ≡ −1 (mod 𝑛), so 4((𝑛 − 1)! + 1) + 𝑛 ≡ 0 (mod 𝑛),
i.e. 𝑛|4((𝑛 − 1)! + 1) + 𝑛.

• By Wilson’s theorem, (𝑛 + 1)! ≡ −1 (mod 𝑛 + 2).
Besides 2 ≡ −𝑛 (mod 𝑛 + 2) ≡ (𝑛 + 1)𝑛 (mod 𝑛 + 2).
Thus
4((𝑛 − 1)! + 1) + 𝑛 = 2(2(𝑛 − 1)!) + 4 + 𝑛 ≡ 2((𝑛 + 1)𝑛(𝑛 − 1)!) + 2 (mod 𝑛 + 2) ≡ 2((𝑛 + 1)! + 1) ≡ 0 (mod 𝑛 + 2)
i.e. 𝑛 + 2|4((𝑛 − 1)! + 1) + 𝑛.

Since gcd(𝑛, 𝑛 + 2) = 1, we get that 𝑛(𝑛 + 2)|4((𝑛 − 1)! + 1) + 𝑛.

Sample solutions to Exercise 10.
Let 𝑝 be a prime number. Let 𝑛 ∈ ℤ.
By Fermat’s little theorem 𝑛𝑝 ≡ 𝑛 (mod 𝑝) and by Wilson’s theorem (𝑝 − 1)! ≡ −1 (mod 𝑝).
Therefore 𝑛𝑝 + (𝑝 − 1)!𝑛 ≡ 𝑛 + (−1)𝑛 (mod 𝑝) ≡ 0 (mod 𝑝).


