# Homework questions - Week 6 

Jean-Baptiste Campesato<br>March $1^{\text {st }}, 2021$ to March $5^{\text {th }}, 2021$

## Hint: all these exercises can be solved using Fermat's little theorem and/or Wilson's theorem.

## Exercise 1.

Find the remainder of the Euclidean division of $24^{103}$ by 103.

## Exercise 2.

Prove that $\forall n \in \mathbb{Z}, \frac{n^{7}}{7}+\frac{n^{5}}{5}+\frac{23 n}{35} \in \mathbb{Z}$.
You may already use $\mathbb{Q}$ for this question.
Hint: introduce $A_{n}=35\left(\frac{n^{7}}{7}+\frac{n^{5}}{5}+\frac{23 n}{35}\right)$.

## Exercise 3.

Let $p$ be an odd prime number. Prove that $\forall n \in \mathbb{Z},(n+1)^{p}-\left(n^{p}+1\right) \equiv 0(\bmod 2 p)$.

## Exercise 4.

Let $p$ be a prime number. Prove that $\forall k \in \mathbb{N}, \forall n \in \mathbb{Z} \backslash\{0\}, \operatorname{gcd}(n, p)=1 \Longrightarrow\left(n^{p-1}\right)^{p^{k}} \equiv 1\left(\bmod p^{k+1}\right)$.

## Exercise 5.

Let $p$ and $q$ be two distinct prime numbers. Prove that $p^{q-1}+q^{p-1} \equiv 1(\bmod p q)$.

## Exercise 6.

Prove that $x^{4}+781=3 y^{4}$ has no integer solution.

## Exercise 7.

Let $n \in \mathbb{N}$ be such that $n \geq 5$. Prove that if $n+2$ is prime then $n!-1$ is composite.

## Exercise 8.

Let $p$ be an odd prime number. Prove that $2(p-3)!\equiv-1(\bmod p)$.
Exercise 9. A characterization of twin prime numbers.
Let $n \in \mathbb{N} \backslash\{0,1\}$. Prove that if $n$ and $n+2$ are both prime numbers then

$$
4((n-1)!+1)+n \equiv 0(\bmod n(n+2))
$$

(Actually the converse holds too, but it's a little bit more difficult to prove)

## Exercise 10.

Let $p$ be a prime number. Prove that $\forall n \in \mathbb{Z}, p \mid n^{p}+(p-1)!n$.

## Sample solutions to Exercise 1.

By Fermat's little theorem, we know that $24^{103} \equiv 24(\bmod 103)$.
Therefore the remainder of the Euclidean division of $24^{103}$ by 103 is 24 .

## Sample solutions to Exercise 2.

Let $n \in \mathbb{Z}$. Set $A_{n}=5 n^{7}+7 n^{5}+23 n$.
By Fermat's little theorem, $n^{5} \equiv n(\bmod 5)$ so $A_{n} \equiv 30 n(\bmod 5) \equiv 0(\bmod 5)$, i.e. $5 \mid A_{n}$.
Similarly $n^{7} \equiv n(\bmod 7)$, so $A_{n} \equiv 28 n(\bmod 7) \equiv 0(\bmod 7)$, i.e. $7 \mid A_{n}$.
Therefore $35=5 \times 7 \mid A_{n}$, so $\frac{n^{7}}{7}+\frac{n^{5}}{5}+\frac{23 n}{35}=\frac{A_{n}}{35} \in \mathbb{Z}$.

## Sample solutions to Exercise 3.

Let $p$ be an odd prime number and $n \in \mathbb{Z}$.

- By Fermat's little theorem, $\left\{\begin{array}{l}(n+1)^{p} \equiv n+1(\bmod p) \\ n^{p} \equiv n(\bmod p)\end{array}\right.$

Therefore $(n+1)^{p}-\left(n^{p}+1\right) \equiv 0(\bmod p)$, i.e. $p \mid(n+1)^{p}-\left(n^{p}+1\right)$.

- Note that $\forall x \in \mathbb{Z}, \forall k \in \mathbb{N} \backslash\{0\}, x^{k} \equiv x(\bmod 2)$ :

$$
\begin{array}{|c|l|l|}
\hline a(\bmod 2) & 0 & 1 \\
\hline a^{2}(\bmod 2) & 0 & 1 \\
\hline
\end{array}
$$

Therefore $\left\{\begin{array}{l}(n+1)^{p} \equiv n+1(\bmod 2) \\ n^{p} \equiv n(\bmod 2)\end{array}\right.$.
Thus $(n+1)^{p}-\left(n^{p}+1\right) \equiv 0(\bmod 2)$, i.e. $2 \mid(n+1)^{p}-\left(n^{p}+1\right)$.
Since 2 and $p$ are two distinct prime numbers, $2 p \mid(n+1)^{p}-\left(n^{p}+1\right)$, i.e. $(n+1)^{p}-\left(n^{p}+1\right) \equiv 0(\bmod 2 p)$.

## Sample solutions to Exercise 4.

We are going to prove the statement by induction on $k \in \mathbb{N}$.

- Base case at $k=0$ : it is exactly Fermat's little theorem (v2).
- Induction step: assume that the statement hold for some $k \in \mathbb{N}$, i.e.

$$
\forall n \in \mathbb{Z} \backslash\{0\}, \operatorname{gcd}(n, p)=1 \Longrightarrow\left(n^{p-1}\right)^{p^{k}} \equiv 1\left(\bmod p^{k+1}\right)
$$

Let $n \in \mathbb{Z}$ be such that $\operatorname{gcd}(n, p)=1$.
By induction hypothesis, there exists $\lambda \in \mathbb{Z}$ such that $\left(n^{p-1}\right)^{p^{k}}=1+\lambda p^{k+1}$. Then

$$
\left(n^{p-1}\right)^{p^{k+1}}=\left(n^{p-1}\right)^{p^{k} \times p}=\left(\left(n^{p-1}\right)^{p^{k}}\right)^{p}=\left(1+\lambda p^{k+1}\right)^{p}=\sum_{i=0}^{p}\binom{p}{i} \lambda^{i} p^{i(k+1)}=1+\sum_{i=1}^{p}\binom{p}{i} \lambda^{i} p^{i(k+1)} \equiv 1\left(\bmod p^{k+1}\right)
$$

Which ends the induction step.

## Sample solutions to Exercise 5.

Let $p$ and $q$ be two distinct prime numbers.
Since $\operatorname{gcd}(p, q)=1$, by Fermat's little theorem we get that $p^{q-1} \equiv 1(\bmod q)$.
Besides $q^{p-1} \equiv 0(\bmod q)($ since $p \geq 2)$.
Therefore $p^{q-1}+q^{p-1} \equiv 1(\bmod p)$, i.e. $p \mid\left(p^{q-1}+q^{p-1}-1\right)$.
Similarly, we may prove that $q \mid\left(p^{q-1}+q^{p-1}-1\right)$.
Thus $p q \mid\left(p^{q-1}+q^{p-1}-1\right)$.

## Sample solutions to Exercise 6.

Let $x, y \in \mathbb{Z}$.
By Fermat's little theorem, $x^{4} \equiv 1(\bmod 5)($ if $5+x)$ or $x^{4} \equiv 0(\bmod 5)($ if $5 \mid x)$.
Therefore $x^{4}+781 \equiv 1(\bmod 5)$ or $x^{4}+781 \equiv 2(\bmod 5)$.
But $3 y^{4} \equiv 3(\bmod 5)($ if $5+y)$ or $3 y^{4} \equiv 0(\bmod 5)($ if $5 \mid y)$.
Therefore $\forall x, y \in \mathbb{Z}, x^{4}+781 \not \equiv 3 y^{4}(\bmod 5)$.

## Sample solutions to Exercise 7.

Let $n \geq 5$ be such that $n+2$ is prime.
By Wilson's theorem $(n+1)!\equiv-1(\bmod n+2)$. Thus $n+2 \mid(n+1)!+1$.
Besides $(n+1)!+1=(n+2) n!-n!+1$.
Thus $n+2 \mid n!-1=(n+2) n!-((n+1)!+1)$.
Since $n \geq 4$, we have $n!>n+3$ (prove it).
Therefore $n!-1$ admits at least three positive divisors: $1, n+2, n!-1$, so that $n$ is composite.

## Sample solutions to Exercise 8.

Let $p$ be an odd prime number.
By Wilson's theorem $(p-1)!\equiv-1(\bmod p)$, thus $2(p-3)!(p-2)(p-1) \equiv-2(\bmod p)$.
But we also have that $2(p-3)!(p-2)(p-1) \equiv 4(p-3)!(\bmod p)$.
Thus $4(p-3)!\equiv-2(\bmod p)$, i.e. $p \mid 4(p-3)!+2=2(2(p-3)!+1)$.
Since $\operatorname{gcd}(2, p)=1$ (as $p$ is an odd prime number), by Gauss' lemma we get $p \mid 2(p-3)!+1$,
i.e. $2(p-3)!\equiv-1(\bmod p)$.

## Sample solutions to Exercise 9.

$\Rightarrow$ Assume that $n$ and $n+2$ are both prime then,

- By Wilson's theorem, $(n-1)!\equiv-1(\bmod n)$, so $4((n-1)!+1)+n \equiv 0(\bmod n)$, i.e. $n \mid 4((n-1)!+1)+n$.
- By Wilson's theorem, $(n+1)!\equiv-1(\bmod n+2)$.

Besides $2 \equiv-n(\bmod n+2) \equiv(n+1) n(\bmod n+2)$.
Thus
$4((n-1)!+1)+n=2(2(n-1)!)+4+n \equiv 2((n+1) n(n-1)!)+2(\bmod n+2) \equiv 2((n+1)!+1) \equiv 0(\bmod n+2)$ i.e. $n+2 \mid 4((n-1)!+1)+n$.

Since $\operatorname{gcd}(n, n+2)=1$, we get that $n(n+2) \mid 4((n-1)!+1)+n$.

## Sample solutions to Exercise 10.

Let $p$ be a prime number. Let $n \in \mathbb{Z}$.
By Fermat's little theorem $n^{p} \equiv n(\bmod p)$ and by Wilson's theorem $(p-1)!\equiv-1(\bmod p)$.
Therefore $n^{p}+(p-1)!n \equiv n+(-1) n(\bmod p) \equiv 0(\bmod p)$.

