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Exercise 1.
Compute gcd(3123 − 5, 25).

Exercise 2.
Prove that ∀𝑛 ∈ ℤ, 6|𝑛(𝑛 + 1)(𝑛 + 2)

Exercise 3.
1. Prove that ∀𝑛 ∈ ℤ, gcd(2𝑛, 2𝑛 + 2) = 2.
2. Prove that ∀𝑛 ∈ ℤ, gcd(2𝑛 − 1, 2𝑛 + 1) = 1.
3. Prove that for 𝑎, 𝑏 ∈ ℤ not both zero, gcd(5𝑎 + 3𝑏, 13𝑎 + 8𝑏) = gcd(𝑎, 𝑏).

Exercise 4.
Find all the integer solutions of
(a) 𝑥𝑦 = 2𝑥 + 3𝑦 (b) 1

𝑥 + 1
𝑦 = 1

5 (c) 𝑥 + 𝑦 = 𝑥𝑦
(d) 9𝑥 + 15𝑦 = 11 (e) 9𝑥 + 15𝑦 = 18 (f) 1665𝑥 + 1035𝑦 = 45

Exercise 5.
1. Prove that if 𝑎, 𝑏 ∈ ℤ are not both zero then there exist 𝑎′, 𝑏′ ∈ ℤ such that gcd(𝑎′, 𝑏′) = 1, and 𝑎 = 𝑑𝑎′

and 𝑏 = 𝑑𝑏′ where 𝑑 = gcd(𝑎, 𝑏).
2. Prove that ∀𝑎, 𝑏, 𝑐 ∈ ℤ ⧵ {0}, 𝑐|𝑎𝑏 ⟹ 𝑐|(gcd(𝑎, 𝑐) gcd(𝑏, 𝑐))

Exercise 6.
1. Prove Sophie Germain’s identity: 𝑎4 + 4𝑏4 = ((𝑎 + 𝑏)2 + 𝑏2) ((𝑎 − 𝑏)2 + 𝑏2).
2. Prove that 344 + 429 is a composite number.
3. Prove that for every natural number 𝑛 > 1, 𝑛4 + 4𝑛 is a composite number.

Hint: study the parity of 𝑛.

Exercise 7.
Prove that there are infinitely many integers that can’t be written as the sum of a square with a prime
number.
Hint: look at (3𝑘 + 2)2 for 𝑘 ∈ ℕ ⧵ {0}.

Exercise 8.
Prove that ∀𝑛 ∈ ℕ, 𝑛|(𝑛 − 1)! + 1 ⟹ 𝑛 is prime.

Exercise 9.
Let 𝑛 ∈ ℕ ⧵ {0}. Find 𝑛 consecutive natural numbers such that none of them is a prime number.

Exercise 10.
Prove that the following numbers are not rationals using the prime factorization theorem.

1. log10 2
2. √2

For this question you can use what you know about ℚ and ℝ.
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Exercises 11 to 14 are more difficult!
Exercise 11.
Prove that ∀𝑛 ∈ ℤ, 49 ∤ 𝑛3 − 𝑛2 − 2𝑛 + 1

Exercise 12.
Prove that there are infinitely many prime numbers of the form 𝑝 = 4𝑘 + 3 where 𝑘 ∈ ℕ.

Exercise 13. Goldbach’s theorem about Fermat numbers

1. Prove that ∀𝑛 ∈ ℕ, ∀𝑘 ∈ ℕ ⧵ {0}, 22𝑛+𝑘 − 1 = (22𝑛 − 1) ×
𝑘−1

∏
𝑖=0

(22𝑛+𝑖 + 1).

2. Let 𝑚, 𝑛 ∈ ℕ. Prove that if 𝑚 ≠ 𝑛 then 22𝑛 + 1 and 22𝑚 + 1 are coprime.

Exercise 14.
Let 𝑎, 𝑛 ≥ 2 be two natural numbers.

1. Prove that if 𝑎𝑛 − 1 is prime then 𝑎 = 2 and 𝑛 is prime.
A number of the form 𝑀𝑛 = 2𝑛 − 1 is called a Mersenne number.

2. Is the converse true?

Exercise 15.
Three brothers inherit 𝑛 gold pieces weighing 1, 2, … , 𝑛.
For what 𝑛 ∈ ℕ ⧵ {0} can they be split into three equal heaps?

Exercise 16.
A sea pirate wants to share a treasure with its sailors.
The treasure is made of 69 diamonds, 1150 pearls and 4140 gold coins.
He is able to share fairly the treasure such that everyone (including himself) receive the same amount of
each object.
How many sailors are there?
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Sample solutions to Exercise 1.
The positive divisors of 25 are 1, 5 and 25. Hence, gcd(3123 − 5, 25) has to be equal to one of these numbers.
Assume by contradiction that gcd(3123 − 5, 25) = 5 or gcd(3123 − 5, 25) = 25. In both cases, 5|3123 − 5 and so
5|3123 = (3123 − 5) + 5. Contradiction.
Therefore gcd(3123 − 5, 25) = 1.

Sample solutions to Exercise 2.
Let 𝑛 ∈ ℤ.
Since 𝑛, 𝑛 + 1 and 𝑛 + 2 are three consecutive integers, one is divisible by 2 and one is divisible by 3.
Hence 𝑛(𝑛 + 1)(𝑛 + 2) = 2𝑘 and 𝑛(𝑛 + 1)(𝑛 + 2) = 3𝑙 for some 𝑘, 𝑙 ∈ ℤ.
Then 2𝑘 = 3𝑙, so that 2|3𝑙. Besides gcd(2, 3) = 1 thus 2|𝑙 by Gauss’ lemma, i.e. 𝑙 = 2𝑚 for some 𝑚 ∈ ℤ.
Therefore 𝑛(𝑛 + 1)(𝑛 + 2) = 3𝑙 = 6𝑚 and 6|𝑛(𝑛 + 1)(𝑛 + 2).

Sample solutions to Exercise 3.
In my solutions I use that gcd(𝑎, 𝑏) = gcd(𝑎 + 𝑘𝑏, 𝑏) (see Proposition 35 of Chapter 2).

1. gcd(2𝑛, 2𝑛 + 2) = gcd(2𝑛, (2𝑛 + 2) − 2𝑛) = gcd(2𝑛, 2) = gcd(2𝑛 − 2 × 𝑛, 2) = gcd(0, 2) = 2.

2. gcd(2𝑛−1, 2𝑛+1) = gcd(2𝑛−1, (2𝑛+1)−(2𝑛−1)) = gcd(2𝑛−1, 2) = gcd((2𝑛−1)−2×𝑛, 2) = gcd(−1, 2) = 1.

3. gcd(5𝑎 + 3𝑏, 13𝑎 + 8𝑏) = gcd(5𝑎 + 3𝑏, (13𝑎 + 8𝑏) − 2 × (5𝑎 + 3𝑏))
= gcd(5𝑎 + 3𝑏, 3𝑎 + 2𝑏) = gcd((5𝑎 + 3𝑏) − (3𝑎 + 2𝑏), 3𝑎 + 2𝑏)
= gcd(2𝑎 + 𝑏, 3𝑎 + 2𝑏) = gcd(2𝑎 + 𝑏, (3𝑎 + 2𝑏) − (2𝑎 + 𝑏))
= gcd(2𝑎 + 𝑏, 𝑎 + 𝑏) = gcd((2𝑎 + 𝑏) − 𝑏, 𝑏)
= gcd(𝑎 + 𝑏, 𝑏) = gcd(𝑎, 𝑏)

Sample solutions to Exercise 4.
(a) Let 𝑥, 𝑦 ∈ ℤ. Then

𝑥𝑦 = 2𝑥 + 3𝑦 ⇔ (𝑥 − 3)(𝑦 − 2) = 6
⇔ (𝑥 − 3, 𝑦 − 2) ∈ {(1, 6), (2, 3), (3, 2), (6, 1), (−1, −6), (−2, −3), (−3, −2), (−6, −1)}
⇔ (𝑥, 𝑦) ∈ {(4, 8), (5, 5), (6, 4), (9, 3), (2, −4), (1, −1), (0, 0), (−3, 1)}

(b) Let 𝑥, 𝑦 ∈ ℤ ⧵ {0}. Then
1
𝑥 + 1

𝑦 = 1
5 ⇔ 5𝑦 + 5𝑥 = 𝑥𝑦

⇔ (𝑥 − 5)(𝑦 − 5) = 25
⇔ (𝑥 − 5, 𝑦 − 5) ∈ {(1, 25), (5, 5), (25, 1), (−1, −25), (−25, −1)} since 𝑥, 𝑦 ≠ 0
⇔ (𝑥, 𝑦) ∈ {(6, 30), (10, 10), (30, 6), (4, −20), (−20, 4)}

(c) Let 𝑥, 𝑦 ∈ ℤ. Then

𝑥 + 𝑦 = 𝑥𝑦 ⇔ 𝑥 + 𝑦 − 𝑥𝑦 + 1 = 1
⇔ (𝑥 − 1)(𝑦 − 1) = 1
⇔ (𝑥 − 1, 𝑦 − 1) = (−1, −1) or (𝑥 − 1, 𝑦 − 1) = (1, 1)
⇔ (𝑥, 𝑦) = (0, 0) or (𝑥, 𝑦) = (2, 2)

(d) For the next questions, look at the slides from Feb 2 and/or the last part of Chapter 2.
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Sample solutions to Exercise 5.
1. Let 𝑎, 𝑏 ∈ ℤ not both zero. Set 𝑑 = gcd(𝑎, 𝑏).

Since 𝑑|𝑎 and 𝑑|𝑏, we know that 𝑎 = 𝑑𝑎′ and that 𝑏 = 𝑑𝑏′ for some 𝑎′, 𝑏′ ∈ ℤ.
Then 𝑑 = gcd (𝑎, 𝑏) = gcd (𝑑𝑎′, 𝑑𝑏′) = 𝑑 gcd (𝑎′, 𝑏′). Hence gcd(𝑎′, 𝑏′) = 1.

2. Method 1: Let 𝑎, 𝑏, 𝑐 ∈ ℤ ⧵ {0} be such that 𝑐|𝑎𝑏.
Set 𝑑 = gcd(𝑎, 𝑐) and 𝛿 = gcd(𝑏, 𝑐). Then 𝑎 = 𝑑𝑎′, 𝑐 = 𝑑𝑐′, 𝑏 = 𝛿𝑏″, 𝑐 = 𝛿𝑐″ where gcd(𝑎′, 𝑐′) = 1 and
gcd(𝑏″, 𝑐″) = 1.
Therefore 𝑐|𝑎𝑏 becomes 𝑑𝑐′|𝑑𝑎′𝛿𝑏″, hence 𝑐′|𝑎′𝛿𝑏″. Since gcd(𝑎′, 𝑐′) = 1, by Gauss’ lemma, 𝑐′|𝛿𝑏″.
Hence 𝛿𝑐″ = 𝑐 = 𝑑𝑐′|𝑑𝛿𝑏″, so that 𝑐″|𝑑𝑏″. Since gcd(𝑐″, 𝑏″) = 1, by Gauss’ lemma, 𝑐″|𝑑.
Finally 𝑐 = 𝛿𝑐″|𝛿𝑑|𝑑𝑎′𝛿𝑏″ = 𝑎𝑏.

Method 2: Let 𝑎, 𝑏, 𝑐 ∈ ℤ ⧵ {0} be such that 𝑐|𝑎𝑏.
Write 𝑎 = 𝑝𝛼1

1 𝑝𝛼2
2 ⋯ 𝑝𝛼𝑟

𝑟 , 𝑏 = 𝑝𝛽1
1 𝑝𝛽2

2 ⋯ 𝑝𝛽𝑟
𝑟 and 𝑐 = 𝑝𝛾1

1 𝑝𝛾2
2 ⋯ 𝑝𝛾𝑟

𝑟 where the 𝑝𝑖 are prime numbers and
𝛼𝑖, 𝛽𝑖, 𝛾𝑖 ∈ ℕ.
Then gcd(𝑎, 𝑐) = 𝑝min(𝛼1,𝛾1)

1 𝑝min(𝛼2,𝛾2)
2 ⋯ 𝑝min(𝛼𝑟,𝛾𝑟)

𝑟 and gcd(𝑏, 𝑐) = 𝑝min(𝛽1,𝛾1)
1 𝑝min(𝛽2,𝛾2)

2 ⋯ 𝑝min(𝛽𝑟,𝛾𝑟)
𝑟 .

Hence gcd(𝑎, 𝑐) gcd(𝑏, 𝑐) = 𝑝min(𝛼1,𝛾1)+min(𝛽1,𝛾1)
1 𝑝min(𝛼2,𝛾2)+min(𝛽2,𝛾2)

2 ⋯ 𝑝min(𝛼𝑟,𝛾𝑟)+min(𝛽𝑟,𝛾𝑟)
𝑟 .

Thus 𝑐| gcd(𝑎, 𝑐) gcd(𝑏, 𝑐) if and only if 𝛾1 ≤ min(𝛼1, 𝛾1) + min(𝛽1, 𝛾1), …, 𝛾𝑟 ≤ min(𝛼𝑟, 𝛾𝑟) + min(𝛽𝑟, 𝛾𝑟).
First case: if min(𝛼𝑖, 𝛾𝑖) = 𝛾𝑖 or min(𝛽𝑖, 𝛾𝑖) = 𝛾𝑖 then 𝛾𝑖 ≤ min(𝛼𝑖, 𝛾𝑖) + min(𝛽𝑖, 𝛾𝑖).
Otherwise: min(𝛼𝑖, 𝛾𝑖) + min(𝛽𝑖, 𝛾𝑖) = 𝛼𝑖 + 𝛽𝑖 but since 𝑐|𝑎𝑏, we know that 𝛾1 ≤ 𝛼1 + 𝛽1, …, 𝛾𝑟 ≤ 𝛼𝑟 + 𝛽𝑟.

Sample solutions to Exercise 6.
1. ((𝑎 + 𝑏)2 + 𝑏2) ((𝑎 − 𝑏)2 + 𝑏2) = (𝑎2 + 2𝑏2 + 2𝑎𝑏) (𝑎2 + 2𝑏2 − 2𝑎𝑏)

= (𝑎2 + 2𝑏2)
2 − (2𝑎𝑏)2

= 𝑎4 + 4𝑎2𝑏2 + 4𝑏4 − 4𝑎2𝑏2 = 𝑎4 + 4𝑏4

2. 344 + 429 = (311)4 + 4 × (47)4 = ((311 + 47)
2 + 414

) ((311 − 47)
2 + 414

) is non-trivial (i.e. none of the
factor is ±1, check it).

3. If 𝑛 = 2𝑘 with 𝑘 ∈ ℕ ⧵ {0} then 𝑛4 + 4𝑛 is even and greater than 2, so it is composite.
If 𝑛 = 2𝑘 + 1 with 𝑘 ∈ ℕ ⧵ {0} then 𝑛4 + 4𝑛 = (2𝑘 + 1)4 + 4 × (2𝑘)4 which has a non-trivial factorization
using Germain’s identity (check it), so it is a composite.

Sample solutions to Exercise 7.
Let 𝑘 ∈ ℕ ⧵ {0}. Assume by contradiction that (3𝑘 + 2)2 = 𝑛2 + 𝑝 where 𝑛 ∈ ℕ and 𝑝 is a prime number.
Then 𝑝 = (3𝑘 + 2)2 − 𝑛2 = (3𝑘 − 𝑛 + 2)(3𝑘 + 𝑛 + 2).

• If 3𝑘 − 𝑛 + 2 = 1 then 𝑛 = 3𝑘 + 1 so 𝑝 = 3𝑘 + 𝑛 + 2 = 6𝑘 + 3 = 3(2𝑘 + 1) is not prime, which leads to a
contradiction.

• If 3𝑘 + 𝑛 + 2 = 1 then 3𝑘 = −𝑛 − 1 < 0, which is not possible since 𝑘 > 0.
Therefore 𝑝 admits a non-trivial factorization. Which is a contradiction.

Sample solutions to Exercise 8.
Compare with Wilson’s theorem from Chapter 4.
We are going to prove the contrapositive: ∀𝑛 ∈ ℕ, 𝑛 is not prime ⟹ 𝑛 ∤ (𝑛 − 1)! + 1.
Let 𝑛 ∈ ℕ. Assume that 𝑛 is not prime. Then there exists 𝑘 ∈ ℕ such that 1 < 𝑘 < 𝑛 and 𝑘|𝑛.
Assume by contradiction that 𝑛|(𝑛 − 1)! + 1. Then 𝑘|(𝑛 − 1)! + 1. But 𝑘|(𝑛 − 1)! since 1 < 𝑘 < 𝑛.
Thus 𝑘|(𝑛 − 1)! + 1 − (𝑛 − 1)! = 1. Which is a contradiction.
Therefore 𝑛 ∤ (𝑛 − 1)! + 1.
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Sample solutions to Exercise 9.
Let 𝑛 ∈ ℕ ⧵ {0}. Consider the following 𝑛 consecutive natural numbers

(𝑛 + 1)! + 2, (𝑛 + 1)! + 3, (𝑛 + 1)! + 4, … , (𝑛 + 1)! + (𝑛 + 1)

Take (𝑛 + 1)! + 𝑘 in the previous list (i.e. 𝑘 = 2, … , (𝑛 + 1)). Then 𝑘|(𝑛 + 1)! + 𝑘 but 1 < 𝑘 < (𝑛 + 1)! + 𝑘.
Therefore (𝑛 + 1)! + 𝑘 has a non-trivial divisor.

Sample solutions to Exercise 10.
1. Assume by contradiction that log10 2 = 𝑎

𝑏 ∈ ℚ. Then

log 2
log 10 = 𝑎

𝑏 ⇔ 𝑏 log 2 = 𝑎 log 10 ⇔ log(2𝑎) = log(10𝑏) ⇔ 2𝑎 = 10𝑏 ⇔ 2𝑎 = 2𝑏5𝑏

By uniqueness of the prime factorization, 𝑎 = 𝑏 = 0. Contradiction.

2. Assume by contradiction that √2 = 𝑎
𝑏 ∈ ℚ. Then 2𝑏2 = 𝑎2.

The prime factorization of the LHS has an odd number of primes (counted with exponents) whereas
the RHS has an even number of primes (counted with exponents). Which is impossible since the
prime factorization is unique up to order.

Sample solutions to Exercise 11.
Assume by contradiction that 49|𝑛3 − 𝑛2 − 2𝑛 + 1 for some 𝑛 ∈ ℤ.
Note that 𝑛3 − 𝑛2 − 2𝑛 + 1 = (𝑛 + 2)3 − 7𝑛2 − 14𝑛 − 7.
Since 7|49|𝑛3 − 𝑛2 − 2𝑛 + 1 and 7|7𝑛2 + 14𝑛 + 7 then 7|(𝑛3 − 𝑛2 − 2𝑛 + 1) + 7𝑛2 + 14𝑛 + 7 = (𝑛 + 2)3.
By Euclid’s lemma, since 7 is prime, 7|(𝑛 + 2)2 and similarly 7|𝑛 + 2.
Therefore, there exists 𝑘 ∈ ℤ such that 𝑛 = 7𝑘 − 2.
Then 𝑛3 − 𝑛2 − 2𝑛 + 1 = 49(7𝑘3 − 7𝑘2 + 2𝑘) − 7.
Therefore 49|49(7𝑘3 − 7𝑘2 + 2𝑘) − (𝑛3 − 𝑛2 − 2𝑛 + 1) = 7. Which is a contradiction.

Sample solutions to Exercise 12.
It is a special case of Dirichlet’s theorem on arithmetic progressions.
Assume that there are only finitely many primes 3 = 𝑝1 < 𝑝2 < ⋯ < 𝑝𝑟 such that 𝑝𝑚 = 4𝑘𝑚 + 3 with 𝑘𝑚 ∈ ℝ.
Set 𝑛 = 4𝑝1𝑝2 ⋯ 𝑝𝑟 − 1. Then 𝑛 = 4(𝑝1𝑝2 ⋯ 𝑝𝑟 − 1) + 3
Write 𝑛 = ∏𝑠

𝑖=1 𝑞𝑖 as a product of prime numbers.
Note that each 𝑞𝑖 is not one of the 𝑝𝑚 nor 2 (otherwise 𝑞𝑖|1 or 2|1).
Therefore 𝑞𝑖 = 4𝑟𝑖 + 1 (the only possible remainder is 1).
Hence 𝑛 = ∏𝑠

𝑖=1(4𝑟𝑖 + 1) = 4𝛼 + 1 for some 𝛼 ∈ ℕ.
We obtain a contradiction with the uniqueness of the Euclidean division (the remainder of the Euclidean
division of 𝑛 by 4 can’t 3 and 1).

Sample solutions to Exercise 13.
1. Let 𝑛 ∈ ℕ. We are going to prove by induction on 𝑘 ≥ 1 that

∀𝑘 ∈ ℕ ⧵ {0}, 22𝑛+𝑘 − 1 = (22𝑛 − 1) ×
𝑘−1

∏
𝑖=0

(22𝑛+𝑖 + 1)
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Base case at 𝑘 = 1: (22𝑛 − 1) ×
0

∏
𝑖=0

(22𝑛+𝑖 + 1) = (22𝑛 − 1) × (22𝑛 + 1) = (22𝑛
)

2
− 12 = 22𝑛+1 − 1.

Induction step. Assume that 22𝑛+𝑘 − 1 = (22𝑛 − 1) ×
𝑘−1

∏
𝑖=0

(22𝑛+𝑖 + 1) holds for some 𝑘 ≥ 1. Then

(22𝑛 − 1) ×
(𝑘+1)−1

∏
𝑖=0

(22𝑛+𝑖 + 1) = (22𝑛 − 1) ×
𝑘

∏
𝑖=0

(22𝑛+𝑖 + 1)

= (22𝑛 − 1) ×
⎛
⎜
⎜
⎝

𝑘−1

∏
𝑖=0

(22𝑛+𝑖 + 1)
⎞
⎟
⎟
⎠

× (22𝑛+𝑘 + 1)

= (22𝑛+𝑘 − 1) × (22𝑛+𝑘 + 1) by the induction hypothesis

= ((22𝑛+𝑘
)

2
− 12

)

= (22𝑛+𝑘+1 − 1)

Which ends the induction step.

2. We may assume without lost of generality that 𝑛 < 𝑚, i.e. 𝑚 = 𝑛 + 𝑘 for some 𝑘 ∈ ℕ ⧵ {0}.
Write 𝐹𝑖 = 22𝑖 + 1 then from the first question we get that

𝐹𝑚 + 2 = (22𝑛 − 1) ×
𝑘−1

∏
𝑖=0

𝐹𝑛+𝑖

Let 𝑔 = gcd(𝐹𝑚, 𝐹𝑛). Then 𝑑 divides 𝐹𝑚 and 𝐹𝑛 thus 𝑑 divides 2 = (22𝑛 − 1) × (∏𝑘−1
𝑖=0 𝐹𝑛+𝑖) − 𝐹𝑚.

So either 𝑑 = 2 or 𝑑 = 1. Since 𝐹𝑚 is even, we get that 𝑑 = 1.
Therefore gcd(𝐹𝑚, 𝐹𝑛) = 1.

Sample solutions to Exercise 14.
1. Assume that 𝑎𝑛 − 1 is prime.

Note that 𝑎𝑛 − 1 = (𝑎 − 1) (𝑎𝑛−1 + 𝑎𝑛−2 + ⋯ + ⋯ + 𝑎 + 1).
Since 𝑎𝑛 − 1 is prime, then it has no trivial divisor, therefore either 𝑎 − 1 = 1 or 𝑎 − 1 = 𝑎𝑛 − 1.
The latter is not possible since 𝑎, 𝑛 ≥ 2, thus 𝑎 − 1 = 1, i.e. 𝑎 = 2.

Assume that 𝑛 = 𝑝𝑞 with 𝑝, 𝑞 ∈ ℕ. Then 2𝑛 − 1 = 2𝑝𝑞 − 1 = (2𝑝 − 1) ((2𝑝)𝑞−1 + (2𝑝)𝑞−2 + ⋯ + 2𝑝 + 1).
Since 2𝑛 − 1 is a prime number, then either 2𝑝 − 1 = 1 or 2𝑝 − 1 = 2𝑝𝑞 − 1.
In the first case 𝑝 = 1 and in the other case 𝑝 = 𝑝𝑞 = 𝑛.
Hence the only positive divisors of 𝑛 are 1 and itself, i.e. 𝑛 is a prime number.

2. No, 211 − 1 = 2047 = 23 × 89.

Sample solutions to Exercise 15.
Since 1 + 2 + 3 + ⋯ + 𝑛 = 𝑛(𝑛+1)

2 must be divisible by 3, either 3|𝑛 or 3|𝑛 + 1. It is easy to check that this
necessary condition is also sufficient when 𝑛 > 3.

Sample solutions to Exercise 16.
Note that 69 = 3 × 23, 1150 = 2 × 52 × 23 and 4140 = 22 × 32 × 5 × 23. Note that only positive common
divisors are 1 and 23. Assuming the pirate is not alone, the treasure is shared between 23 people so there
are 22 sailors.


