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Exercise 1.
1. Prove that ∀𝑛 ∈ ℕ, ∃𝑘 ∈ ℕ, 𝑛3 + 2𝑛 = 3𝑘.

2. Prove that ∀𝑛 ∈ ℕ,
𝑛

∑
𝑘=0

𝑘
2𝑘 = 2 − 𝑛 + 2

2𝑛 .

Exercise 2.

We define a sequence (𝑢𝑛)𝑛≥1 by 𝑢1 = 3 and ∀𝑛 ∈ ℕ ⧵ {0}, 𝑢𝑛+1 = 2
𝑛

𝑛

∑
𝑘=1

𝑢𝑘.

Prove that ∀𝑛 ∈ ℕ ⧵ {0}, 𝑢𝑛 = 3𝑛.

Exercise 3. Bernoulli’s inequality.
Prove that ∀𝑥 ∈ [−1, +∞), ∀𝑛 ∈ ℕ, (1 + 𝑥)𝑛 ≥ 1 + 𝑛𝑥.
(here we consider the usual order ≥ on ℝ)

Exercise 4.
For 𝑛 ∈ ℕ, we define the statement 𝑃 (𝑛) by 2𝑛 > 𝑛2.

1. Prove that ∀𝑛 ≥ 3, 𝑃 (𝑛) ⟹ 𝑃 (𝑛 + 1).
2. For which 𝑛 ∈ ℕ, is 𝑃 (𝑛) true?

Exercise 5.
What do you think about the following proof by induction?

We want to prove that for any 𝑛 ≥ 2, 𝑛 distinct points of the plane are always on the same line.
Proof:

• Base case: when 𝑛 = 2 the property is known to be true.
• Induction step: we assume that the property is true for some 𝑛 ≥ 2 and we want to show that it also

holds for 𝑛 + 1.
Let 𝐴1, 𝐴2, … , 𝐴𝑛+1 be 𝑛 + 1 distinct points of the plane. By the induction hypothesis, we have

– 𝐴1, 𝐴2, … , 𝐴𝑛 are on the same line 𝐿.
– 𝐴2, 𝐴3, … , 𝐴𝑛+1 are on the same line 𝐿′.

Then 𝐴2, 𝐴3, … , 𝐴𝑛 are at the same time on 𝐿 and 𝐿′ so that 𝐿 = 𝐿′.
Thus 𝐴1, … , 𝐴𝑛+1 are on the same line. Which ends the induction step.

Exercise 6.
Given 𝑛 ∈ ℕ ⧵ {0}, prove that there exists a unique couple (𝑎, 𝑏) ∈ ℕ such that 𝑛 = 2𝑎(2𝑏 + 1).

Exercise 7.
Find all the increasing functions 𝑓 ∶ ℕ → ℕ such that 𝑓(2) = 2 and ∀𝑝, 𝑞 ∈ ℕ, 𝑓(𝑝𝑞) = 𝑓(𝑝)𝑓(𝑞).
Recall that a function 𝑓 ∶ ℕ → ℕ is increasing if ∀𝑥, 𝑦 ∈ ℕ, 𝑥 < 𝑦 ⟹ 𝑓(𝑥) < 𝑓(𝑦).

Exercise 8.
1. Prove that if 𝑆 ⊂ ℤ admits a greatest element then it is unique.

2. Prove that a non-empty finite subset of ℤ admits a greatest element.
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Exercise 9.
Let 𝑛 ∈ ℕ ⧵ {0}. Prove that if one square of a 2𝑛 × 2𝑛 chessboard is removed, then the remaining squares can
be covered by L-shaped trominoes.

Figure 1: A 8×8 chessboard with a removed square. Figure 2: An 𝐿-shaped tromino on a chessboard.
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Sample solutions to Exercise 1.
1. We are going to prove by induction that ∀𝑛 ∈ ℕ, ∃𝑘 ∈ ℕ, 𝑛3 + 2𝑛 = 3𝑘.

• Base case at 𝑛 = 0: 03 + 2 × 0 = 3 × 0.
• Induction step: assume that for some 𝑛 ∈ ℕ there exists 𝑘 ∈ ℕ such that 𝑛3 + 2𝑛 = 3𝑘. Then

(𝑛 + 1)3 + 2(𝑛 + 1) = 𝑛3 + 3𝑛2 + 3𝑛 + 1 + 2𝑛 + 2
= 3𝑘 + 3𝑛2 + 3𝑛 + 3 by the induction hypothesis
= 3(𝑘 + 𝑛2 + 𝑛 + 1)

The induction step is proved since 𝑘 + 𝑛2 + 𝑛+ ∈ ℕ.

2. We are going to prove by induction that ∀𝑛 ∈ ℕ,
𝑛

∑
𝑘=0

𝑘
2𝑘 = 2 − 𝑛 + 2

2𝑛 .

• Base case at 𝑛 = 0:
0

∑
𝑘=0

𝑘
2𝑘 = 0 and 2 − 0+2

20 = 2 − 2 = 0.

• Induction step: assume that
𝑛

∑
𝑘=0

𝑘
2𝑘 = 2 − 𝑛 + 2

2𝑛 for some 𝑛 ∈ ℕ.

𝑛+1

∑
𝑘=0

𝑘
2𝑘 =

𝑛

∑
𝑘=0

𝑘
2𝑘 + 𝑛 + 1

2𝑛+1

= 2 − 𝑛 + 2
2𝑛 + 𝑛 + 1

2𝑛+1 by the induction hypothesis

= 2 − 2𝑛 + 4 − 𝑛 − 1
2𝑛+1 = 2 − (𝑛 + 1) + 2

2𝑛+1

which ends the induction step.

Sample solutions to Exercise 2.
We are going to prove by (strong) induction that ∀𝑛 ≥ 1, 𝑢𝑛 = 3𝑛.

• Base case at 𝑛 = 1: 𝑢1 = 3 × 1.
• Induction step: assume that 𝑢𝑘 = 3𝑘 for 𝑘 = 1, … , 𝑛 where 𝑛 ≥ 1. Then

𝑢𝑛+1 = 2
𝑛 + 1

𝑛

∑
𝑘=1

𝑢𝑘

= 2
𝑛

𝑛

∑
𝑘=1

3𝑘 by the induction hypothesis

= 6
𝑛

𝑛

∑
𝑘=1

𝑘 = 6
𝑛

𝑛(𝑛 + 1)
2 = 3(𝑛 + 1)

which ends the induction step.

Sample solutions to Exercise 3.
Let 𝑥 ∈ [−1, +∞). We are going to prove by induction that ∀𝑛 ∈ ℕ, (1 + 𝑥)𝑛 ≥ 1 + 𝑛𝑥.

• Base case at 𝑛 = 0: (1 + 𝑥)0 = 1 and 1 + 0 × 𝑥 = 1.
• Induction step: assume that (1 + 𝑥)𝑛 ≥ 1 + 𝑛𝑥 for some 𝑛 ∈ ℕ. Then

(1 + 𝑥)𝑛+1 = (1 + 𝑥)𝑛(1 + 𝑥)
≥ (1 + 𝑛𝑥)(1 + 𝑥) by the induction hypothesis since 1 + 𝑥 ≥ 0
= 1 + 𝑥 + 𝑛𝑥 + 𝑛𝑥2

≥ 1 + 𝑥 + 𝑛𝑥 = 1 + (𝑛 + 1)𝑥
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which ends the induction step.

Sample solutions to Exercise 4.
1. Let 𝑛 ≥ 3. Assume that 𝑃 (𝑛) is true, i.e. 2𝑛 > 𝑛2, and let’s prove 𝑃 (𝑛 + 1), i.e. 2𝑛+1 > (𝑛 + 1)2.

From the assumption, we get that 2𝑛+1 = 2 × 2𝑛 ≥ 2𝑛2. Hence it is enough to prove that 2𝑛2 > (𝑛 + 1)2

which is equivalent to 𝑛2 − 2𝑛 − 1 > 0.
We study the sign of the polynomial 𝑥2 − 2𝑥 − 1. It is a polynomial of degree 2 with positive leading
coefficient and its discriminant is (−2)2 − 4 × (−1) = 8 > 0. Therefore

𝑥

𝑥2 −2𝑥−1

−∞ 1 − √2 1 + √2 +∞

+ 0 − 0 +

Since 𝑛 ≥ 3 > 1 + √2, we know that 𝑛2 − 2𝑛 − 1 > 0. Hence 𝑃 (𝑛 + 1) holds.
2. 𝑃 (3) and 𝑃 (4) are false, but 𝑃 (5) is true. So by induction, ∀𝑛 ≥ 5, 𝑃 (𝑛) is true.

Beware: even if the induction step is true for 𝑛 ≥ 3, we can only start the induction proof at 𝑛 = 5! The
base case is very important in a proof by induction.

Sample solutions to Exercise 5.
The induction step is false when 𝑛 = 2 (it only holds for 𝑛 ≥ 3). Indeed, for 𝑛 = 2, we only have that
𝐴1, 𝐴2 ∈ 𝐿 and that 𝐴2, 𝐴3 ∈ 𝐿′. Which is not enough to get that 𝐿 = 𝐿′ since we only know that they have
one point in common (it works if they have at least two points in common).

Beware: if you start an induction proof with a base case at 𝑛0, you have to make sure that the induction
step 𝑃 (𝑛) ⟹ 𝑃 (𝑛 + 1) holds for every 𝑛 ≥ 𝑛0. Otherwise, you didn’t prove anything…

Sample solutions to Exercise 6.
Existence. We are going to prove the existence of such a couple (𝑎, 𝑏) by a strong induction on 𝑛.

• Base case at 𝑛 = 1: 1 = 20(2 × 0 + 1).
• Induction step. Assume that for 1, 2, … , 𝑛 admit such an expression for some 𝑛 ≥ 1.

– First case: 𝑛 + 1 is even, i.e. 𝑛 + 1 = 2𝑘 for some 𝑘 ∈ ℕ.
Note that 𝑘 ≠ 0 since otherwise 1 ≤ 𝑛 + 1 = 0.
Since 1 < 2 and 𝑘 ≠ 0, we get that 𝑘 < 2𝑘 = 𝑛 + 1, so that 𝑘 ≤ 𝑛.
Hence, by the induction hypothesis, 𝑘 = 2𝑎(2𝑏 + 1) for some (𝑎, 𝑏) ∈ ℕ2.
Then 𝑛 + 1 = 2𝑘 = 2𝑎+1(2𝑏 + 1).

– Second case: 𝑛 + 1 is odd, i.e. 𝑛 + 1 = 2𝑘 + 1 for some 𝑘 ∈ ℕ. But then 𝑛 + 1 = 20(2 × 𝑘 + 1).
Which ends the induction step.

Uniqueness. Assume that 2𝑎(2𝑏 + 1) = 2𝛼(2𝛽 + 1) for 𝑎, 𝑏, 𝛼, 𝛽 ∈ ℕ.
If 𝑎 < 𝛼 then, by cancellation, we obtain 2𝑏 + 1 = 2𝛼−𝑎(2𝛽 + 1). Which is impossible since the LHS is odd
whereas the RHS is even.
If 𝛼 < 𝑎 then, by cancellation, we obtain 2𝑎−𝛼(2𝑏 + 1) = 2𝛽 + 1. Which is impossible since the RHS is odd
whereas the LHS is even.
Therefore 𝑎 = 𝛼, and by cancellation we obtain 2𝑏 + 1 = 2𝛽 + 1, hence 2𝑏 = 2𝛽 and finally 𝑏 = 𝛽.
We proved that (𝑎, 𝑏) = (𝛼, 𝛽).

Sample solutions to Exercise 7.
The function 𝑓 ∶ ℕ → ℕ defined by 𝑓(𝑛) = 𝑛 satisfies the conditions of the question. Actually, as we are
going to prove, it is the only one.
From now on, we assume that 𝑓 ∶ ℕ → ℕ satisfigies 𝑓(2) = 2 and ∀𝑝, 𝑞 ∈ ℕ, 𝑓(𝑝𝑞) = 𝑓(𝑝)𝑓(𝑞), and we want
to prove that ∀𝑛 ∈ ℕ, 𝑓(𝑛) = 𝑛.

• We know that 0 < 1 < 2 hence 0 ≤ 𝑓(0) < 𝑓(1) < 𝑓(2) = 2.
Therefore, the only possibility is that 𝑓(0) = 0 and 𝑓(1) = 1.
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• Let’s prove by strong induction that ∀𝑛 ∈ ℕ, 𝑓(𝑛) = 𝑛.

– Base case at 𝑛 = 0: 𝑓(0) = 0.

– Induction step. Assume that 𝑓(0) = 0, 𝑓(1) = 1, 𝑓(2) = 2, 𝑓(3) = 3, … , 𝑓(𝑛) = 𝑛 for some 𝑛 ≥ 0.
∗ First case: 𝑛 + 1 is even, i.e. there exists 𝑘 ∈ ℕ such that 𝑛 + 1 = 2𝑘.

Note that 𝑘 ≠ 0 since otherwise 1 ≤ 𝑛 + 1 = 0.
Since 1 < 2 and 𝑘 ≠ 0, we get that 𝑘 < 2𝑘 = 𝑛 + 1, so that 𝑘 ≤ 𝑛.
Then, by the induction hypothesis, 𝑓(𝑛 + 1) = 𝑓(2𝑘) = 𝑓(2)𝑓(𝑘) = 2𝑘 = 𝑛 + 1.

∗ Second case: 𝑛 + 1 is odd, i.e. there exists 𝑘 ∈ ℕ such that 𝑛 + 1 = 2𝑘 + 1.
Either 𝑘 = 0 and then 𝑓(𝑛 + 1) = 𝑓(1) = 1 = 𝑛 + 2.
Or 𝑘 ≠ 0 and then 𝑘 + 1 < 2𝑘 + 1 = 𝑛 + 1, i.e. 𝑘 ≤ 𝑛.
Then 𝑓(𝑛 + 2) = 𝑓(2(𝑘 + 1)) = 𝑓(2)𝑓(𝑘 + 1) = 𝑛 + 2 by the induction hypothesis.
Thus 𝑛 = 𝑓(𝑛) < 𝑓(𝑛 + 1) ≤ 𝑓(𝑛 + 2) = 𝑛 + 2.
The only possible value is that 𝑓(𝑛 + 1) = 𝑛 + 1.

Sample solutions to Exercise 8.
1. Let 𝑚, 𝑚′ ∈ 𝑆 be two greatest elements of 𝑆.

Since 𝑚 ∈ 𝑆 and 𝑚′ is a greatest element, we have 𝑚 ≤ 𝑚′.
Similarly, since 𝑚′ ∈ 𝑆 and 𝑚 is a greatest element of 𝑆, we have 𝑚′ ≤ 𝑚.
Hence 𝑚 = 𝑚′.

That’s why we say the greatest element: if it exists, it is unique (whereas we say an upper bound).

2. Let’s prove that a non-empty finite subset 𝑆 ⊂ ℤ has a greatest element, by induction on 𝑛 = #𝑆.

• Base case at 𝑛 = 1: if 𝑆 is a singleton, then its unique element is its greatest element.

• Induction step. Assume that the statement holds for sets of cardinal 𝑛, for some 𝑛 ≥ 1.
Let 𝑆 ⊂ ℤ be such that #𝑆 = 𝑛 + 1.
Particulalry 𝑆 ≠ ∅, so there exists 𝑎 ∈ 𝑆.
Set 𝑇 = 𝑆 ⧵ {𝑎}. Then #𝑇 = 𝑛, so by the induction hypothesis 𝑇 admits a greatest element 𝑚 ∈ 𝑇 .
I claim that 𝑀 = max(𝑚, 𝑎) ∈ 𝑇 ∪ {𝑎} = 𝑆 is the greatest element of 𝑆.
Indeed, let 𝑛 ∈ 𝑆, either 𝑛 = 𝑎 and then 𝑎 ≤ 𝑀 , or 𝑛 ∈ 𝑇 and then 𝑛 ≤ 𝑚 ≤ 𝑀 .
Which ends the inductive step.

Sample solutions to Exercise 9.
We are going to prove by induction on 𝑛 ≥ 1 that if one square of a 2𝑛 × 2𝑛 chessboard is removed, then the
remaining squares can be covered with L-shaped trominoes.

• Base case at 𝑛 = 1. There are only four possible cases and for each of them the remaining is exactly one
𝐿-shaped tromino:

• Assume that the statement holds for some 𝑛 ≥ 1 and consider a 2𝑛+1 ×2𝑛+1 chessboard with a removed
square.
We may split this chessboard into four 2𝑛 × 2𝑛 chessboards as follows:
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Wemay place an 𝐿-shaped tromino such that it covers the corner situated at the center for each 2𝑛 ×2𝑛

chessboard without a removed square, see below.

Now, each of the 2𝑛 × 2𝑛 chessboards has a removed square: we may apply the induction hypothesis
in order to cover the remaining squares with 𝐿-shaped trominoes.


