Homework questions – Week 2

Jean-Baptiste Campesato

January 25th, 2021 to January 29th, 2021

Exercise 1.

- 1. Prove that $\forall n \in \mathbb{N}, \exists k \in \mathbb{N}, n^3 + 2n = 3k$.
- 2. Prove that $\forall n \in \mathbb{N}$, $\sum_{k=0}^{n} \frac{k}{2^k} = 2 \frac{n+2}{2^n}$.

Exercise 2.

We define a sequence $(u_n)_{n\geq 1}$ by $u_1 = 3$ and $\forall n \in \mathbb{N} \setminus \{0\}, u_{n+1} = \frac{2}{n} \sum_{k=1}^n u_k$.

Prove that $\forall n \in \mathbb{N} \setminus \{0\}, u_n = 3n$.

Exercise 3. Bernoulli's inequality. Prove that $\forall x \in [-1, +\infty), \forall n \in \mathbb{N}, (1 + x)^n \ge 1 + nx.$ (here we consider the usual order $\ge on \mathbb{R}$)

Exercise 4.

For $n \in \mathbb{N}$, we define the statement P(n) by $2^n > n^2$.

- 1. Prove that $\forall n \ge 3$, $P(n) \implies P(n+1)$.
- 2. For which $n \in \mathbb{N}$, is P(n) true?

Exercise 5.

What do you think about the following proof by induction?

We want to prove that for any $n \ge 2$, *n* distinct points of the plane are always on the same line. *Proof:*

- Base case: when n = 2 the property is known to be true.
- Induction step: we assume that the property is true for some $n \ge 2$ and we want to show that it also holds for n + 1.

Let $A_1, A_2, ..., A_{n+1}$ be n + 1 distinct points of the plane. By the induction hypothesis, we have $-A_1, A_2, ..., A_n$ are on the same line *L*.

- $A_2, A_3, \ldots, A_{n+1}$ are on the same line L'.
- Then A_2, A_3, \ldots, A_n are at the same time on *L* and *L'* so that L = L'.

Thus A_1, \ldots, A_{n+1} are on the same line. Which ends the induction step.

Exercise 6.

Given $n \in \mathbb{N} \setminus \{0\}$, prove that there exists a unique couple $(a, b) \in \mathbb{N}$ such that $n = 2^a(2b + 1)$.

Exercise 7.

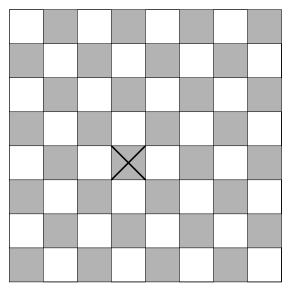
Find all the increasing functions $f : \mathbb{N} \to \mathbb{N}$ such that f(2) = 2 and $\forall p, q \in \mathbb{N}$, f(pq) = f(p)f(q). *Recall that a function* $f : \mathbb{N} \to \mathbb{N}$ *is increasing if* $\forall x, y \in \mathbb{N}$, $x < y \implies f(x) < f(y)$.

Exercise 8.

- 1. Prove that if $S \subset \mathbb{Z}$ admits a greatest element then it is unique.
- 2. Prove that a non-empty finite subset of \mathbb{Z} admits a greatest element.

Exercise 9.

Let $n \in \mathbb{N} \setminus \{0\}$. Prove that if one square of a $2^n \times 2^n$ chessboard is removed, then the remaining squares can be covered by L-shaped trominoes.



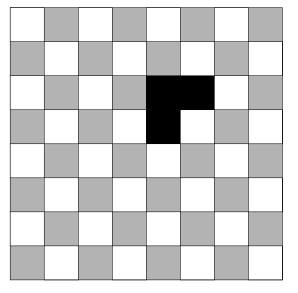


Figure 1: A 8×8 chessboard with a removed square. Figure 2: An *L*-shaped tromino on a chessboard.

Sample solutions to Exercise 1.

- 1. We are going to prove by induction that $\forall n \in \mathbb{N}, \exists k \in \mathbb{N}, n^3 + 2n = 3k$.
 - Base case at n = 0: $0^3 + 2 \times 0 = 3 \times 0$.
 - *Induction step:* assume that for some $n \in \mathbb{N}$ there exists $k \in \mathbb{N}$ such that $n^3 + 2n = 3k$. Then

$$(n+1)^{3} + 2(n+1) = n^{3} + 3n^{2} + 3n + 1 + 2n + 2$$

= 3k + 3n² + 3n + 3 by the induction hypothesis
= 3(k + n² + n + 1)

The induction step is proved since $k + n^2 + n + \in \mathbb{N}$.

2. We are going to prove by induction that $\forall n \in \mathbb{N}$, $\sum_{k=0}^{n} \frac{k}{2^k} = 2 - \frac{n+2}{2^n}$.

• Base case at n = 0: $\sum_{k=0}^{0} \frac{k}{2^k} = 0$ and $2 - \frac{0+2}{2^0} = 2 - 2 = 0$.

• *Induction step:* assume that $\sum_{k=0}^{n} \frac{k}{2^k} = 2 - \frac{n+2}{2^n}$ for some $n \in \mathbb{N}$.

$$\sum_{k=0}^{n+1} \frac{k}{2^k} = \sum_{k=0}^n \frac{k}{2^k} + \frac{n+1}{2^{n+1}}$$
$$= 2 - \frac{n+2}{2^n} + \frac{n+1}{2^{n+1}} \text{ by the induction hypothesis}$$
$$= 2 - \frac{2n+4-n-1}{2^{n+1}} = 2 - \frac{(n+1)+2}{2^{n+1}}$$

which ends the induction step.

Sample solutions to Exercise 2.

We are going to prove by (strong) induction that $\forall n \ge 1$, $u_n = 3n$.

- *Base case at* n = 1: $u_1 = 3 \times 1$.
- *Induction step:* assume that $u_k = 3k$ for k = 1, ..., n where $n \ge 1$. Then

$$u_{n+1} = \frac{2}{n+1} \sum_{k=1}^{n} u_k$$
$$= \frac{2}{n} \sum_{k=1}^{n} 3k$$
 by the induction hypothesis
$$= \frac{6}{n} \sum_{k=1}^{n} k = \frac{6}{n} \frac{n(n+1)}{2} = 3(n+1)$$

which ends the induction step.

Sample solutions to Exercise 3.

Let $x \in [-1, +\infty)$. We are going to prove by induction that $\forall n \in \mathbb{N}, (1 + x)^n \ge 1 + nx$.

- Base case at n = 0: $(1 + x)^0 = 1$ and $1 + 0 \times x = 1$.
- *Induction step:* assume that $(1 + x)^n \ge 1 + nx$ for some $n \in \mathbb{N}$. Then

$$(1+x)^{n+1} = (1+x)^n (1+x)$$

$$\geq (1+nx)(1+x) \text{ by the induction hypothesis since } 1+x \geq 0$$

$$= 1+x+nx+nx^2$$

$$\geq 1+x+nx = 1+(n+1)x$$

which ends the induction step.

Sample solutions to Exercise 4.

1. Let $n \ge 3$. Assume that P(n) is true, i.e. $2^n > n^2$, and let's prove P(n + 1), i.e. $2^{n+1} > (n + 1)^2$. From the assumption, we get that $2^{n+1} = 2 \times 2^n \ge 2n^2$. Hence it is enough to prove that $2n^2 > (n + 1)^2$ which is equivalent to $n^2 - 2n - 1 > 0$.

We study the sign of the polynomial $x^2 - 2x - 1$. It is a polynomial of degree 2 with positive leading coefficient and its discriminant is $(-2)^2 - 4 \times (-1) = 8 > 0$. Therefore

x	-∞		$1 - \sqrt{2}$		$1 + \sqrt{2}$		+∞
$x^2 - 2x - 1$		+	0	_	0	+	

Since $n \ge 3 > 1 + \sqrt{2}$, we know that $n^2 - 2n - 1 > 0$. Hence P(n + 1) holds.

2. P(3) and P(4) are false, but P(5) is true. So by induction, $\forall n \ge 5$, P(n) is true. *Beware:* even if the induction step is true for $n \ge 3$, we can only start the induction proof at n = 5! The base case is very important in a proof by induction.

Sample solutions to Exercise 5.

The induction step is false when n = 2 (it only holds for $n \ge 3$). Indeed, for n = 2, we only have that $A_1, A_2 \in L$ and that $A_2, A_3 \in L'$. Which is not enough to get that L = L' since we only know that they have one point in common (it works if they have at least two points in common).

Beware: if you start an induction proof with a base case at n_0 , you have to make sure that the induction step $P(n) \implies P(n+1)$ holds for every $n \ge n_0$. Otherwise, you didn't prove anything...

Sample solutions to Exercise 6.

Existence. We are going to prove the existence of such a couple (*a*, *b*) by a strong induction on *n*.

- Base case at n = 1: $1 = 2^0(2 \times 0 + 1)$.
- *Induction step.* Assume that for 1, 2, ..., n admit such an expression for some $n \ge 1$.
 - First case: n + 1 is even, i.e. n + 1 = 2k for some $k \in \mathbb{N}$.

Note that $k \neq 0$ since otherwise $1 \leq n + 1 = 0$.

- Since 1 < 2 and $k \neq 0$, we get that k < 2k = n + 1, so that $k \le n$.
- Hence, by the induction hypothesis, $k = 2^{a}(2b + 1)$ for some $(a, b) \in \mathbb{N}^{2}$.

Then
$$n + 1 = 2k = 2^{a+1}(2b + 1)$$
.

- Second case: n + 1 is odd, i.e. n + 1 = 2k + 1 for some $k \in \mathbb{N}$. But then $n + 1 = 2^0(2 \times k + 1)$. Which ends the induction step.

Uniqueness. Assume that $2^{a}(2b+1) = 2^{\alpha}(2\beta+1)$ for $a, b, \alpha, \beta \in \mathbb{N}$.

If $a < \alpha$ then, by cancellation, we obtain $2b + 1 = 2^{\alpha-a}(2\beta + 1)$. Which is impossible since the LHS is odd whereas the RHS is even.

If $\alpha < a$ then, by cancellation, we obtain $2^{a-\alpha}(2b+1) = 2\beta + 1$. Which is impossible since the RHS is odd whereas the LHS is even.

Therefore $a = \alpha$, and by cancellation we obtain $2b + 1 = 2\beta + 1$, hence $2b = 2\beta$ and finally $b = \beta$. We proved that $(a, b) = (\alpha, \beta)$.

Sample solutions to Exercise 7.

The function $f : \mathbb{N} \to \mathbb{N}$ defined by f(n) = n satisfies the conditions of the question. Actually, as we are going to prove, it is the only one.

From now on, we assume that $f : \mathbb{N} \to \mathbb{N}$ satisfigies f(2) = 2 and $\forall p, q \in \mathbb{N}$, f(pq) = f(p)f(q), and we want to prove that $\forall n \in \mathbb{N}$, f(n) = n.

• We know that 0 < 1 < 2 hence $0 \le f(0) < f(1) < f(2) = 2$. Therefore, the only possibility is that f(0) = 0 and f(1) = 1.

- Let's prove by strong induction that $\forall n \in \mathbb{N}, f(n) = n$.
 - Base case at n = 0: f(0) = 0.
 - *Induction step.* Assume that f(0) = 0, f(1) = 1, f(2) = 2, f(3) = 3, ..., f(n) = n for some $n \ge 0$.
 - * First case: n + 1 is even, i.e. there exists $k \in \mathbb{N}$ such that n + 1 = 2k. Note that $k \neq 0$ since otherwise $1 \leq n + 1 = 0$. Since 1 < 2 and $k \neq 0$, we get that k < 2k = n + 1, so that $k \leq n$. Then, by the induction hypothesis, f(n + 1) = f(2k) = f(2)f(k) = 2k = n + 1.
 - * Second case: n + 1 is odd, i.e. there exists $k \in \mathbb{N}$ such that n + 1 = 2k + 1. Either k = 0 and then f(n + 1) = f(1) = 1 = n + 2. Or $k \neq 0$ and then k + 1 < 2k + 1 = n + 1, i.e. $k \leq n$. Then f(n + 2) = f(2(k + 1)) = f(2)f(k + 1) = n + 2 by the induction hypothesis. Thus $n = f(n) < f(n + 1) \leq f(n + 2) = n + 2$. The only possible value is that f(n + 1) = n + 1.

Sample solutions to Exercise 8.

1. Let $m, m' \in S$ be two greatest elements of S. Since $m \in S$ and m' is a greatest element, we have $m \le m'$. Similarly, since $m' \in S$ and m is a greatest element of S, we have $m' \le m$. Hence m = m'.

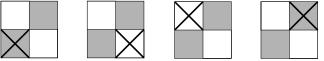
That's why we say **the** greatest element: if it exists, it is unique (whereas we say **an** upper bound).

- 2. Let's prove that a non-empty finite subset $S \subset \mathbb{Z}$ has a greatest element, by induction on n = #S.
 - *Base case at* n = 1: if S is a singleton, then its unique element is its greatest element.
 - Induction step. Assume that the statement holds for sets of cardinal *n*, for some *n* ≥ 1. Let *S* ⊂ Z be such that #*S* = *n* + 1. Particulalry *S* ≠ Ø, so there exists *a* ∈ *S*. Set *T* = *S* \ {*a*}. Then #*T* = *n*, so by the induction hypothesis *T* admits a greatest element *m* ∈ *T*. I claim that *M* = max(*m*, *a*) ∈ *T* ∪ {*a*} = *S* is the greatest element of *S*. Indeed, let *n* ∈ *S*, either *n* = *a* and then *a* ≤ *M*, or *n* ∈ *T* and then *n* ≤ *m* ≤ *M*. Which ends the inductive step.

Sample solutions to Exercise 9.

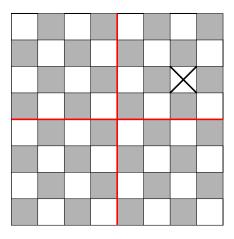
We are going to prove by induction on $n \ge 1$ that if one square of a $2^n \times 2^n$ chessboard is removed, then the remaining squares can be covered with L-shaped trominoes.

• *Base case at n* = 1. There are only four possible cases and for each of them the remaining is exactly one *L*-shaped tromino:

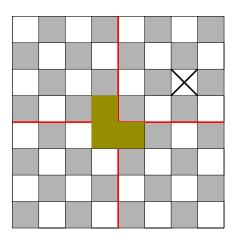


• Assume that the statement holds for some $n \ge 1$ and consider a $2^{n+1} \times 2^{n+1}$ chessboard with a removed square.

We may split this chessboard into four $2^n \times 2^n$ chessboards as follows:



We may place an *L*-shaped tromino such that it covers the corner situated at the center for each $2^n \times 2^n$ chessboard without a removed square, see below.



Now, each of the $2^n \times 2^n$ chessboards has a removed square: we may apply the induction hypothesis in order to cover the remaining squares with *L*-shaped trominoes.