Homework questions - Week 2

Jean-Baptiste Campesato

January $25^{\text {th }}, 2021$ to January $29^{\text {th }}, 2021$

Exercise 1.

1. Prove that $\forall n \in \mathbb{N}, \exists k \in \mathbb{N}, n^{3}+2 n=3 k$.
2. Prove that $\forall n \in \mathbb{N}, \sum_{k=0}^{n} \frac{k}{2^{k}}=2-\frac{n+2}{2^{n}}$.

Exercise 2.

We define a sequence $\left(u_{n}\right)_{n \geq 1}$ by $u_{1}=3$ and $\forall n \in \mathbb{N} \backslash\{0\}, u_{n+1}=\frac{2}{n} \sum_{k=1}^{n} u_{k}$.
Prove that $\forall n \in \mathbb{N} \backslash\{0\}, u_{n}=3 n$.
Exercise 3. Bernoulli's inequality.
Prove that $\forall x \in[-1,+\infty), \forall n \in \mathbb{N},(1+x)^{n} \geq 1+n x$.
(here we consider the usual order \geq on \mathbb{R})

Exercise 4.

For $n \in \mathbb{N}$, we define the statement $P(n)$ by $2^{n}>n^{2}$.

1. Prove that $\forall n \geq 3, P(n) \Longrightarrow P(n+1)$.
2. For which $n \in \mathbb{N}$, is $P(n)$ true?

Exercise 5.

What do you think about the following proof by induction?
We want to prove that for any $n \geq 2, n$ distinct points of the plane are always on the same line.
Proof:

- Base case: when $n=2$ the property is known to be true.
- Induction step: we assume that the property is true for some $n \geq 2$ and we want to show that it also holds for $n+1$.
Let $A_{1}, A_{2}, \ldots, A_{n+1}$ be $n+1$ distinct points of the plane. By the induction hypothesis, we have - $A_{1}, A_{2}, \ldots, A_{n}$ are on the same line L.
- $A_{2}, A_{3}, \ldots, A_{n+1}$ are on the same line L^{\prime}.

Then $A_{2}, A_{3}, \ldots, A_{n}$ are at the same time on L and L^{\prime} so that $L=L^{\prime}$.
Thus A_{1}, \ldots, A_{n+1} are on the same line. Which ends the induction step.

Exercise 6.

Given $n \in \mathbb{N} \backslash\{0\}$, prove that there exists a unique couple $(a, b) \in \mathbb{N}$ such that $n=2^{a}(2 b+1)$.

Exercise 7.

Find all the increasing functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(2)=2$ and $\forall p, q \in \mathbb{N}, f(p q)=f(p) f(q)$.
Recall that a function $f: \mathbb{N} \rightarrow \mathbb{N}$ is increasing if $\forall x, y \in \mathbb{N}, x<y \Longrightarrow f(x)<f(y)$.

Exercise 8.

1. Prove that if $S \subset \mathbb{Z}$ admits a greatest element then it is unique.
2. Prove that a non-empty finite subset of \mathbb{Z} admits a greatest element.

Exercise 9.

Let $n \in \mathbb{N} \backslash\{0\}$. Prove that if one square of a $2^{n} \times 2^{n}$ chessboard is removed, then the remaining squares can be covered by L-shaped trominoes.

Figure 1: A 8×8 chessboard with a removed square. Figure 2: An L-shaped tromino on a chessboard.

Sample solutions to Exercise 1.

1. We are going to prove by induction that $\forall n \in \mathbb{N}, \exists k \in \mathbb{N}, n^{3}+2 n=3 k$.

- Base case at $n=0: 0^{3}+2 \times 0=3 \times 0$.
- Induction step: assume that for some $n \in \mathbb{N}$ there exists $k \in \mathbb{N}$ such that $n^{3}+2 n=3 k$. Then

$$
\begin{aligned}
(n+1)^{3}+2(n+1) & =n^{3}+3 n^{2}+3 n+1+2 n+2 \\
& =3 k+3 n^{2}+3 n+3 \text { by the induction hypothesis } \\
& =3\left(k+n^{2}+n+1\right)
\end{aligned}
$$

The induction step is proved since $k+n^{2}+n+\in \mathbb{N}$.
2. We are going to prove by induction that $\forall n \in \mathbb{N}, \sum_{k=0}^{n} \frac{k}{2^{k}}=2-\frac{n+2}{2^{n}}$.

- Base case at $n=0: \sum_{k=0}^{0} \frac{k}{2^{k}}=0$ and $2-\frac{0+2}{2^{0}}=2-2=0$.
- Induction step: assume that $\sum_{k=0}^{n} \frac{k}{2^{k}}=2-\frac{n+2}{2^{n}}$ for some $n \in \mathbb{N}$.

$$
\begin{aligned}
\sum_{k=0}^{n+1} \frac{k}{2^{k}} & =\sum_{k=0}^{n} \frac{k}{2^{k}}+\frac{n+1}{2^{n+1}} \\
& =2-\frac{n+2}{2^{n}}+\frac{n+1}{2^{n+1}} \text { by the induction hypothesis } \\
& =2-\frac{2 n+4-n-1}{2^{n+1}}=2-\frac{(n+1)+2}{2^{n+1}}
\end{aligned}
$$

which ends the induction step.

Sample solutions to Exercise 2.

We are going to prove by (strong) induction that $\forall n \geq 1, u_{n}=3 n$.

- Base case at $n=1$: $u_{1}=3 \times 1$.
- Induction step: assume that $u_{k}=3 k$ for $k=1, \ldots, n$ where $n \geq 1$. Then

$$
\begin{aligned}
u_{n+1} & =\frac{2}{n+1} \sum_{k=1}^{n} u_{k} \\
& =\frac{2}{n} \sum_{k=1}^{n} 3 k \text { by the induction hypothesis } \\
& =\frac{6}{n} \sum_{k=1}^{n} k=\frac{6}{n} \frac{n(n+1)}{2}=3(n+1)
\end{aligned}
$$

which ends the induction step.

Sample solutions to Exercise 3.

Let $x \in[-1,+\infty)$. We are going to prove by induction that $\forall n \in \mathbb{N},(1+x)^{n} \geq 1+n x$.

- Base case at $n=0:(1+x)^{0}=1$ and $1+0 \times x=1$.
- Induction step: assume that $(1+x)^{n} \geq 1+n x$ for some $n \in \mathbb{N}$. Then

$$
\begin{aligned}
(1+x)^{n+1} & =(1+x)^{n}(1+x) \\
& \geq(1+n x)(1+x) \text { by the induction hypothesis since } 1+x \geq 0 \\
& =1+x+n x+n x^{2} \\
& \geq 1+x+n x=1+(n+1) x
\end{aligned}
$$

which ends the induction step.

Sample solutions to Exercise 4.

1. Let $n \geq 3$. Assume that $P(n)$ is true, i.e. $2^{n}>n^{2}$, and let's prove $P(n+1)$, i.e. $2^{n+1}>(n+1)^{2}$.

From the assumption, we get that $2^{n+1}=2 \times 2^{n} \geq 2 n^{2}$. Hence it is enough to prove that $2 n^{2}>(n+1)^{2}$ which is equivalent to $n^{2}-2 n-1>0$.
We study the sign of the polynomial $x^{2}-2 x-1$. It is a polynomial of degree 2 with positive leading coefficient and its discriminant is $(-2)^{2}-4 \times(-1)=8>0$. Therefore

x	$-\infty$		$1-\sqrt{2}$		$1+\sqrt{2}$	
$x^{2}-2 x-1$		+	0	-	0	$+\infty$

Since $n \geq 3>1+\sqrt{2}$, we know that $n^{2}-2 n-1>0$. Hence $P(n+1)$ holds.
2. $P(3)$ and $P(4)$ are false, but $P(5)$ is true. So by induction, $\forall n \geq 5, P(n)$ is true.

Beware: even if the induction step is true for $n \geq 3$, we can only start the induction proof at $n=5$! The base case is very important in a proof by induction.

Sample solutions to Exercise 5.

The induction step is false when $n=2$ (it only holds for $n \geq 3$). Indeed, for $n=2$, we only have that $A_{1}, A_{2} \in L$ and that $A_{2}, A_{3} \in L^{\prime}$. Which is not enough to get that $L=L^{\prime}$ since we only know that they have one point in common (it works if they have at least two points in common).

Beware: if you start an induction proof with a base case at n_{0}, you have to make sure that the induction step $P(n) \Longrightarrow P(n+1)$ hold for every $n \geq n_{0}$. Otherwise, you didn't prove anything...

Sample solutions to Exercise 6.

Existence. We are going to prove the existence of such a couple (a, b) by a strong induction on n.

- Base case at $n=1: 1=2^{0}(2 \times 0+1)$.
- Induction step. Assume that for $1,2, \ldots, n$ admit such an expression for some $n \geq 1$.
- First case: $n+1$ is even, i.e. $n+1=2 k$ for some $k \in \mathbb{N}$.

Note that $k \neq 0$ since otherwise $1 \leq n+1=0$.
Since $1<2$ and $k \neq 0$, we get that $k<2 k=n+1$, so that $k \leq n$.
Hence, by the induction hypothesis, $k=2^{a}(2 b+1)$ for some $(a, b) \in \mathbb{N}^{2}$.
Then $n+1=2 k=2^{a+1}(2 b+1)$.

- Second case: $n+1$ is odd, i.e. $n+1=2 k+1$ for some $k \in \mathbb{N}$. But then $n+1=2^{0}(2 \times k+1)$.

Which ends the induction step.
Uniqueness. Assume that $2^{a}(2 b+1)=2^{\alpha}(2 \beta+1)$ for $a, b, \alpha, \beta \in \mathbb{N}$.
If $a<\alpha$ then, by cancellation, we obtain $2 b+1=2^{\alpha-a}(2 \beta+1)$. Which is impossible since the LHS is odd whereas the RHS is even.
If $\alpha<a$ then, by cancellation, we obtain $2^{a-\alpha}(2 b+1)=2 \beta+1$. Which is impossible since the RHS is odd whereas the LHS is even.
Therefore $a=\alpha$, and by cancellation we obtain $2 b+1=2 \beta+1$, hence $2 b=2 \beta$ and finally $b=\beta$.
We proved that $(a, b)=(\alpha, \beta)$.

Sample solutions to Exercise 7.

The function $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(n)=n$ satisfies the conditions of the question. Actually, as we are going to prove, it is the only one.
From now on, we assume that $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfigies $f(2)=2$ and $\forall p, q \in \mathbb{N}, f(p q)=f(p) f(q)$, and we want to prove that $\forall n \in \mathbb{N}, f(n)=n$.

- We know that $0<1<2$ hence $0 \leq f(0)<f(1)<f(2)=2$.

Therefore, the only possibility is that $f(0)=0$ and $f(1)=1$.

- Let's prove by strong induction that $\forall n \in \mathbb{N}, f(n)=n$.
- Base case at $n=0: f(0)=0$.
- Induction step. Assume that $f(0)=0, f(1)=1, f(2)=2, f(3)=3, \ldots, f(n)=n$ for some $n \geq 0$.
* First case: $n+1$ is even, i.e. there exists $k \in \mathbb{N}$ such that $n+1=2 k$.

Note that $k \neq 0$ since otherwise $1 \leq n+1=0$.
Since $1<2$ and $k \neq 0$, we get that $k<2 k=n+1$, so that $k \leq n$.
Then, by the induction hypothesis, $f(n+1)=f(2 k)=f(2) f(k)=2 k=n+1$.

* Second case: $n+1$ is odd, i.e. there exists $k \in \mathbb{N}$ such that $n+1=2 k+1$.

Either $k=0$ and then $f(n+1)=f(1)=1=n+2$.
Or $k \neq 0$ and then $k+1<2 k+1=n+1$, i.e. $k \leq n$.
Then $f(n+2)=f(2(k+1))=f(2) f(k+1)=n+2$ by the induction hypothesis.
Thus $n=f(n)<f(n+1) \leq f(n+2)=n+2$.
The only possible value is that $f(n+1)=n+1$.

Sample solutions to Exercise 8.

1. Let $m, m^{\prime} \in S$ be two greatest elements of S.

Since $m \in S$ and m^{\prime} is a greatest element, we have $m \leq m^{\prime}$.
Similarly, since $m^{\prime} \in S$ and m is a greatest element of S, we have $m^{\prime} \leq m$.
Hence $m=m^{\prime}$.
That's why we say the greatest element: if it exists, it is unique (whereas we say an upper bound).
2. Let's prove that a non-empty finite subset $S \subset \mathbb{Z}$ has a greatest element, by induction on $n=\# S$.

- Base case at $n=1$: if S is a singleton, then its unique element is its greatest element.
- Induction step. Assume that the statement holds for sets of cardinal n, for some $n \geq 1$.

Let $S \subset \mathbb{Z}$ be such that $\# S=n+1$.
Particulalry $S \neq \varnothing$, so there exists $a \in S$.
Set $T=S \backslash\{a\}$. Then $\# T=n$, so by the induction hypothesis T admits a greatest element $m \in T$.
I claim that $M=\max (m, a) \in T \cup\{a\}=S$ is the greatest element of S.
Indeed, let $n \in S$, either $n=a$ and then $a \leq M$, or $n \in T$ and then $n \leq m \leq M$.
Which ends the inductive step.

Sample solutions to Exercise 9.

We are going to prove by induction on $n \geq 1$ that if one square of a $2^{n} \times 2^{n}$ chessboard is removed, then the remaining squares can be covered with L -shaped trominoes.

- Base case at $n=1$. There are only four possible cases and for each of them the remaining is exactly one L-shaped tromino:

- Assume that the statement holds for some $n \geq 1$ and consider a $2^{n+1} \times 2^{n+1}$ chessboard with a removed square.
We may split this chessboard into four $2^{n} \times 2^{n}$ chessboards as follows:

We may place an L-shaped tromino such that it covers the corner situated at the center for each $2^{n} \times 2^{n}$ chessboard without a removed square, see below.

Now, each of the $2^{n} \times 2^{n}$ chessboards has a removed square: we may apply the induction hypothesis in order to cover the remaining squares with L-shaped trominoes.

