Homework questions - Week 1

Jean-Baptiste Campesato

January $18^{\text {th }}, 2021$ to January $22^{\text {nd }}, 2021$

Exercise 1.

Using only the definition of the multiplication, the properties of the addition and Peano axioms, prove that:

1. $\forall a \in \mathbb{N}, 0 \times a=a \times 0=0$
2. $\forall a \in \mathbb{N}, a \times 1=a$

Exercise 2.

Given $m \in \mathbb{N}$, we define inductively the function $m^{\bullet}: \begin{array}{cc}\mathbb{N} & \rightarrow \mathbb{N} \\ n & \mapsto\end{array} m^{n}$ by $m^{0}=1$ and $\forall n \in \mathbb{N}, m^{s(n)}=m^{n} \times m$.
Prove that:

1. $\forall m \in \mathbb{N}, m^{1}=m$
2. $\forall a, b, n \in \mathbb{N},(a \times b)^{n}=a^{n} \times b^{n}$
3. $\forall a, m, n \in \mathbb{N}, a^{m+n}=a^{m} \times a^{n}$
4. $\forall n \in \mathbb{N} \backslash\{0\}, 0^{n}=0$
5. $\forall n \in \mathbb{N}, 1^{n}=1$

Exercise 3.

For each of the followings, is the binary relation \mathcal{R} an order on E ? If so, is it total?

1. $E=\mathbb{Z}$ and $\forall x, y \in \mathbb{Z}, x \mathcal{R} y \Leftrightarrow x=-y$
2. $E=\mathbb{R}$ and $\forall x, y \in \mathbb{R}, x \mathcal{R} y \Leftrightarrow \cos ^{2} x+\sin ^{2} y=1$
3. $E=\mathcal{P}(S)$ is the set of subsets of a fixed set S and $\forall A, B \in \mathcal{P}(S), A \mathcal{R} B \Leftrightarrow A \subset B$

Exercise 4.

We define a binary relation \mathcal{R} on \mathbb{N} by $\forall x, y \in \mathbb{N}, x \mathcal{R} y \Leftrightarrow \exists p, q \in \mathbb{N} \backslash\{0\}, y=p x^{q}$.

1. Prove that \mathcal{R} is an order.
2. Is it a total order?

Exercise 5.

We define a binary relation $<$ on \mathbb{N}^{2} by $\left(x_{1}, y_{1}\right)<\left(x_{2}, y_{2}\right) \Leftrightarrow\left(x_{1} \leq x_{2}\right.$ and $\left.y_{1} \leq y_{2}\right)$.

1. Prove that $<$ is an order.
2. Is it a total order?

Exercise 6.

Prove that

1. $\forall a, b, c, d \in \mathbb{N},(a \leq b$ and $c \leq d) \Rightarrow a+c \leq b+d$
2. $\forall a, b, c, d \in \mathbb{N},(a \leq b$ and $c \leq d) \Rightarrow a c \leq b d$

Exercise 7.

For which $c \in \mathbb{N}$, do we have $\forall a, b \in \mathbb{N}, a c \leq b c \Longrightarrow a \leq b$?

Exercise 8.

Using the well-ordering principle, find an alternative proof of: there is no natural number n between 0 and 1.

Sample solutions to Exercise 1.

1. Given $a \in \mathbb{N}$, we already know that $a \times 0=0$ by definition of the multiplication. So we only need to prove that $\forall a \in \mathbb{N}, 0 \times a=0$.
Set $A=\{a \in \mathbb{N}: 0 \times a=0\}$, then

- $A \subset \mathbb{N}$
- $0 \in A$ since $0 \times 0=0$ by definition of the multiplication.
- $s(A) \subset A$. Indeed, let $m \in s(A)$, then $m=s(a)$ for some $a \in A$. Then

$$
\begin{aligned}
0 \times m & =0 \times s(a) \\
& =0 \times a+0 \text { by definition of the multiplication } \\
& =0+0 \text { since } a \in A \\
& =0
\end{aligned}
$$

Thus $m \in A$.
Therefore, by the induction principle, $A=\mathbb{N}$. So $\forall a \in \mathbb{N}, 0 \times a=0$.
2. Let $a \in \mathbb{N}$. Then

$$
\begin{aligned}
a \times 1 & =a \times s(0) \text { since } 1=s(0) \\
& =a \times 0+a \text { by definition of the multiplication } \\
& =0+a \text { by definition of the multiplication } \\
& =a
\end{aligned}
$$

Sample solutions to Exercise 2.

1. Let $m \in \mathbb{N}$ then $m^{1}=m^{s(0)}=m^{0} \times m=1 \times m=m$.
2. Let $a, b \in \mathbb{N}$. Set $A=\left\{n \in \mathbb{N}:(a b)^{n}=a^{n} b^{n}\right\}$.

- $A \subset \mathbb{N}$
- $0 \in A$: indeed, $(a b)^{0}=1$ and $a^{0} b^{0}=1 \times 1=1$.
- $s(A) \subset A$: let $m \in s(A)$ then $m=s(n)$ for some $n \in A$. Next

$$
\begin{aligned}
(a b)^{m} & =(a b)^{s(n)} \text { since } m=s(n) \\
& =(a b)^{n}(a b) \text { by definition of }(a b)^{\bullet} \\
& =a^{n} b^{n} a b \text { since } n \in A \\
& =\left(a^{n} a\right)\left(b^{n} b\right) \text { by properties of the product } \\
& =a^{s(n)} b^{s(n)} \text { by definition of } a^{\bullet} \text { and } b^{\bullet} \\
& =a^{m} b^{m} \text { since } m=s(n)
\end{aligned}
$$

Hence $m \in A$.
Therefore, by the induction principle, $A=\mathbb{N}$. So for all $n \in \mathbb{N},(a b)^{n}=a^{n} b^{n}$.
3. Let $a, m \in \mathbb{N}$. Set $A=\left\{n \in \mathbb{N}: a^{m+n}=a^{m} a^{n}\right\}$. Then

- $A \subset \mathbb{N}$
- $0 \in A$: indeed, $a^{m+0}=a^{m}=a^{m} \times 1=a^{m} \times a^{0}$
- $s(A) \subset A$: let $k \in s(A)$ then $k=s(n)$ for some $n \in A$. Next

$$
\begin{aligned}
a^{m+k} & =a^{m+s(n)} \text { since } k=s(n) \\
& =a^{s(m+n)} \text { by definition of the addition } \\
& =a^{m+n} \times a \text { by definition of } a^{\bullet} \\
& =a^{m} a^{n} a \text { since } n \in A \\
& =a^{m} a^{s(n)} \text { by definition of } a^{\bullet} \\
& =a^{m} a^{k} \text { since } k=s(n)
\end{aligned}
$$

Hence $k \in A$.
Therefore, by the induction principle, $A=\mathbb{N}$. So for all $n \in \mathbb{N}, a^{m+n}=a^{m} a^{n}$.
4. Let $n \in \mathbb{N} \backslash\{0\}$. Then there exists $m \in \mathbb{N}$ such that $n=s(m)$. Thus $0^{n}=0^{s(m)}=0^{m} \times 0=0$.
5. Set $A=\left\{n \in \mathbb{N}: 1^{n}=1\right\}$. Then

- $A \subset \mathbb{N}$
- $0 \in A: 1^{0}=1$ by definition of 1^{\bullet}.
- $s(A) \subset A$: let $m \in s(A)$ then $m=s(n)$ for some $n \in A$. Next

$$
\begin{aligned}
1^{m} & =1^{s(n)} \text { since } m=s(n) \\
& =1^{n} \times 1 \text { by definition of } 1^{\bullet} \\
& =1 \times 1 \text { since } n \in A \\
& =1
\end{aligned}
$$

Hence $m \in A$.
Therefore, by the induction principle, $A=\mathbb{N}$. So for all $n \in \mathbb{N}, 1^{n}=1$.

Sample solutions to Exercise 3.

1. This binary relation is not an order since it is not reflexive.

Indeed, $1 \mathcal{R} 1$ is false since $1 \neq-1$.
2. This binary relation is not an order since it is not antisymmetric.

Indeed, $0 \mathcal{R}(2 \pi)$ and $(2 \pi) \mathcal{R} 0$ are true but $0 \neq 2 \pi$.
3. The inclusion is an order on $\mathcal{P}(S)$. Indeed

- $\forall A \in \mathcal{P}(S), A \subset A$ (reflexivity).
- $\forall A, B \in \mathcal{P}(S),(A \subset B$ and $B \subset A) \Longrightarrow A=B$ (antisymmetry).
- $\forall A, B, C \in \mathcal{P}(S),(A \subset B$ and $B \subset C) \Longrightarrow A \subset C$ (transitivity).

If $S=\varnothing$ then $\mathcal{P}(S)=\{\varnothing\}$: the order is obviously total.
If $S=\{*\}$ has only one element then $\mathcal{P}(S)=\{\varnothing,\{*\}\}$: the order is obviously total.
If S contains at least two elements a, b then the order is not total.
Indeed, set $A=S \backslash\{a\}$ and $B=S \backslash\{b\}$.
Then $A \not \subset B$ since $b \in A$ but $b \notin B$, and, $B \not \subset A$ since $a \in B$ but $a \notin A$.
Thus, if S contains at least two elements, then \subset is not a total order on $\mathcal{P}(S)$.

Sample solutions to Exercise 4.

1. - Reflexivity. Let $x \in \mathbb{N}$. Then $x=1 \times x^{1}$. Hence $x \mathcal{R} x$.

- Antisymmetry. Let $x, y \in \mathbb{N}$ be such that $x \mathcal{R} y$ and $y \mathcal{R} x$. Then $x \leq y$ and $y \leq x$. Thus $x=y$.
- Transitivity. Let $x, y, z \in \mathbb{N}$ be such that $x \mathcal{R} y$ and $y \mathcal{R} z$. Then $y=p x^{q}$ and $z=r y^{s}$ for some $p, q, r, s \in \mathbb{N} \backslash\{0\}$. Hence $z=r y^{s}=r p^{s} x^{q s}$ with $r p^{s}, q s \in \mathbb{N} \backslash\{0\}$. Thus $x \mathcal{R} z$.

2. This order is not total since $0 \mathcal{R} 1$ and $1 \mathcal{R} 0$ are both false.

Sample solutions to Exercise 5.

1. Reflexivity. Let $(x, y) \in \mathbb{N}^{2}$, then $x \leq x$ and $y \leq y$ hence $(x, y)<(x, y)$.

- Antisymmetry. Assume that $\left(x_{1}, y_{1}\right)<\left(x_{2}, y_{2}\right)$ and that $\left(x_{2}, y_{2}\right)<\left(x_{1}, y_{1}\right)$.

Then $x_{1} \leq x_{2}, y_{1} \leq y_{2}, x_{2} \leq x_{1}$ and $y_{2} \leq y_{1}$.
Since \leq is an order on \mathbb{N}, we get that $x_{1}=x_{2}$ and $y_{1}=y_{2}$. Thus $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$.

- Transitivity. Assume that $\left(x_{1}, y_{1}\right)<\left(x_{2}, y_{2}\right)$ and that $\left(x_{2}, y_{2}\right)<\left(x_{3}, y_{3}\right)$.

Then $x_{1} \leq x_{2}, y_{1} \leq y_{2}, x_{2} \leq x_{3}$ and $y_{2} \leq y_{3}$.
Since \leq is an order on \mathbb{N}, we get that $x_{1} \leq x_{3}$ and $y_{1} \leq y_{3}$. Thus $\left(x_{1}, y_{1}\right)<\left(x_{3}, y_{3}\right)$.
2. Note that $(1,0)<(0,1)$ and $(0,1)<(1,0)$ are both false. Hence $<$ is not a total order on \mathbb{N}^{2}.

Sample solutions to Exercise 6.

Method 1: using the definition.

1. Let $a, b, c, d \in \mathbb{N}$. Assume that $a \leq b$ and $c \leq d$.

Then there exist $k, l \in \mathbb{N}$ such that $b=a+k$ and $d=c+l$.
Hence $b+d=a+k+c+l=(a+c)+(k+l)$ with $k+l \in \mathbb{N}$.
Thus $a+c \leq b+d$.
2. Let $a, b, c, d \in \mathbb{N}$. Assume that $a \leq b$ and $c \leq d$.

Then there exist $k, l \in \mathbb{N}$ such that $b=a+k$ and $d=c+l$.
Hence $b d=(a+k)(c+l)=a c+(a l+k c+k l)$ with $a l+k c+k l \in \mathbb{N}$.
Thus $a c \leq b d$.
Method 2: using the properties proved in class.

1. Let $a, b, c, d \in \mathbb{N}$ be such that $a \leq b$ and $c \leq d$.

Then $a \leq b \Longrightarrow a+c \leq b+c$ and $c \leq d \Longrightarrow b+c \leq b+d$.
Finally $\left\{\begin{array}{l}a+c \leq b+c \\ b+c \leq b+d\end{array} \Longrightarrow a+c \leq b+d\right.$.
2. Let $a, b, c, d \in \mathbb{N}$ be such that $a \leq b$ and $c \leq d$.

Then $a \leq b \Longrightarrow a c \leq b c$ and $c \leq d \Longrightarrow b c \leq b d$.
Finally $\left\{\begin{array}{l}a c \leq b c \\ b c \leq b d\end{array} \Longrightarrow a c \leq b d\right.$.

Sample solutions to Exercise 7.

- The statement is false for $c=0$, indeed, $2 \times 0 \leq 1 \times 0$ but $2 \leq 1$ is false.
- The statement is true for $c \neq 0$. We are going to prove the contrapositive, $\forall a, b \in \mathbb{N}, b<a \Longrightarrow b c<a c$. Let $a, b \in \mathbb{N}$ be such that $b<a$. Then $b \leq a$ and hence $b c \leq a c$.
Assume by contradiction that $b c=a c$ then $b=a$ since $c \neq 0$. Hence $b c<a c$ as expected.

Sample solutions to Exercise 8.

Assume by contradiction that the set $E=\{n \in \mathbb{N}: 0<n<1\}$ is not empty.
Then, by the well-ordering principle, E admits a least element, i.e. there exists $l \in E$ such that $\forall n \in \mathbb{N}, l \leq n$.
Since $l \in E$, we get that $l<1$. Note that $0 \notin E$, so $l \neq 0$. Hence $l<1 \Longrightarrow l^{2}<l$.
We know that if $0=l^{2}=l \times l$ then $l=0$. Hence l^{2} is positive.
Finally $0<l^{2}<l<1$. So $l^{2} \in E$ which contradicts the fact that l is the least element of E.

