Homework questions – Week 1

Jean-Baptiste Campesato

January 18th, 2021 to January 22nd, 2021

Exercise 1.

Using only the definition of the multiplication, the properties of the addition and Peano axioms, prove that:

- 1. $\forall a \in \mathbb{N}, \ 0 \times a = a \times 0 = 0$
- 2. $\forall a \in \mathbb{N}, a \times 1 = a$

Exercise 2.

Given $m \in \mathbb{N}$, we define inductively the function m^{\bullet} : $\begin{array}{cc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & m^n \end{array}$ by $m^0 = 1$ and $\forall n \in \mathbb{N}$, $m^{s(n)} = m^n \times m$.

Prove that:

- 1. $\forall m \in \mathbb{N}, m^1 = m$
- 2. $\forall a, b, n \in \mathbb{N}, (a \times b)^n = a^n \times b^n$
- 3. $\forall a, m, n \in \mathbb{N}, a^{m+n} = a^m \times a^n$
- 4. $\forall n \in \mathbb{N} \setminus \{0\}, 0^n = 0$
- 5. $\forall n \in \mathbb{N}, 1^n = 1$

Exercise 3.

For each of the followings, is the binary relation \mathcal{R} an order on E? If so, is it total?

- 1. $E = \mathbb{Z}$ and $\forall x, y \in \mathbb{Z}, x \mathcal{R} y \Leftrightarrow x = -y$
- 2. $E = \mathbb{R}$ and $\forall x, y \in \mathbb{R}$, $x \mathcal{R} y \Leftrightarrow \cos^2 x + \sin^2 y = 1$
- 3. $E = \mathcal{P}(S)$ is the set of subsets of a fixed set *S* and $\forall A, B \in \mathcal{P}(S)$, $A\mathcal{R}B \Leftrightarrow A \subset B$

Exercise 4.

We define a binary relation \mathcal{R} on \mathbb{N} by $\forall x, y \in \mathbb{N}$, $x\mathcal{R}y \Leftrightarrow \exists p, q \in \mathbb{N} \setminus \{0\}, y = px^q$.

- 1. Prove that \mathcal{R} is an order.
- 2. Is it a total order?

Exercise 5.

We define a binary relation \prec on \mathbb{N}^2 by $(x_1, y_1) \prec (x_2, y_2) \Leftrightarrow (x_1 \leq x_2 \text{ and } y_1 \leq y_2)$.

- 1. Prove that \prec is an order.
- 2. Is it a total order?

Exercise 6.

Prove that

1. $\forall a, b, c, d \in \mathbb{N}$, $(a \le b \text{ and } c \le d) \Rightarrow a + c \le b + d$ 2. $\forall a, b, c, d \in \mathbb{N}$, $(a \le b \text{ and } c \le d) \Rightarrow ac \le bd$

Exercise 7.

For which $c \in \mathbb{N}$, do we have $\forall a, b \in \mathbb{N}$, $ac \leq bc \implies a \leq b$?

Exercise 8.

Using the well-ordering principle, find an alternative proof of: *there is no natural number n between 0 and 1*.

Sample solutions to Exercise 1.

- 1. Given $a \in \mathbb{N}$, we already know that $a \times 0 = 0$ by definition of the multiplication. So we only need to prove that $\forall a \in \mathbb{N}, 0 \times a = 0$.
 - Set $A = \{a \in \mathbb{N} : 0 \times a = 0\}$, then
 - $A \subset \mathbb{N}$
 - $0 \in A$ since $0 \times 0 = 0$ by definition of the multiplication.
 - $s(A) \subset A$. Indeed, let $m \in s(A)$, then m = s(a) for some $a \in A$. Then

 $0 \times m = 0 \times s(a)$

 $= 0 \times a + 0$ by definition of the multiplication

= 0 + 0 since $a \in A$ = 0

Thus $m \in A$.

Therefore, by the induction principle, $A = \mathbb{N}$. So $\forall a \in \mathbb{N}$, $0 \times a = 0$.

2. Let $a \in \mathbb{N}$. Then

 $a \times 1 = a \times s(0)$ since 1 = s(0)

- $= a \times 0 + a$ by definition of the multiplication
- = 0 + a by definition of the multiplication
- = a

Sample solutions to Exercise 2.

1. Let $m \in \mathbb{N}$ then $m^1 = m^{s(0)} = m^0 \times m = 1 \times m = m$.

- 2. Let $a, b \in \mathbb{N}$. Set $A = \{n \in \mathbb{N} : (ab)^n = a^n b^n\}$.
 - $A \subset \mathbb{N}$
 - $0 \in A$: indeed, $(ab)^0 = 1$ and $a^0b^0 = 1 \times 1 = 1$.
 - $s(A) \subset A$: let $m \in s(A)$ then m = s(n) for some $n \in A$. Next

 $(ab)^{m} = (ab)^{s(n)} \text{ since } m = s(n)$ = $(ab)^{n}(ab)$ by definition of $(ab)^{\bullet}$ = $a^{n}b^{n}ab$ since $n \in A$ = $(a^{n}a)(b^{n}b)$ by properties of the product = $a^{s(n)}b^{s(n)}$ by definition of a^{\bullet} and b^{\bullet} = $a^{m}b^{m}$ since m = s(n)

Hence $m \in A$.

Therefore, by the induction principle, $A = \mathbb{N}$. So for all $n \in \mathbb{N}$, $(ab)^n = a^n b^n$.

3. Let $a, m \in \mathbb{N}$. Set $A = \{n \in \mathbb{N} : a^{m+n} = a^m a^n\}$. Then

- $A \subset \mathbb{N}$
- $0 \in A$: indeed, $a^{m+0} = a^m = a^m \times 1 = a^m \times a^0$
- $s(A) \subset A$: let $k \in s(A)$ then k = s(n) for some $n \in A$. Next

 $a^{m+k} = a^{m+s(n)} \text{ since } k = s(n)$ = $a^{s(m+n)}$ by definition of the addition = $a^{m+n} \times a$ by definition of a^{\bullet} = $a^m a^n a$ since $n \in A$ = $a^m a^{s(n)}$ by definition of a^{\bullet} = $a^m a^k$ since k = s(n) Hence $k \in A$.

Therefore, by the induction principle, $A = \mathbb{N}$. So for all $n \in \mathbb{N}$, $a^{m+n} = a^m a^n$.

- 4. Let $n \in \mathbb{N} \setminus \{0\}$. Then there exists $m \in \mathbb{N}$ such that n = s(m). Thus $0^n = 0^{s(m)} = 0^m \times 0 = 0$.
- 5. Set $A = \{n \in \mathbb{N} : 1^n = 1\}$. Then
 - $A \subset \mathbb{N}$
 - $0 \in A$: $1^0 = 1$ by definition of 1^{\bullet} .
 - $s(A) \subset A$: let $m \in s(A)$ then m = s(n) for some $n \in A$. Next

 $1^{m} = 1^{s(n)} \text{ since } m = s(n)$ = 1ⁿ × 1 by definition of 1• = 1 × 1 since n ∈ A = 1

Hence $m \in A$.

Therefore, by the induction principle, $A = \mathbb{N}$. So for all $n \in \mathbb{N}$, $1^n = 1$.

Sample solutions to Exercise 3.

- 1. This binary relation is not an order since it is not reflexive. Indeed, $1\mathcal{R}1$ is false since $1 \neq -1$.
- 2. This binary relation is not an order since it is not antisymmetric. Indeed, $0\mathcal{R}(2\pi)$ and $(2\pi)\mathcal{R}0$ are true but $0 \neq 2\pi$.
- 3. The inclusion is an order on $\mathcal{P}(S)$. Indeed
 - $\forall A \in \mathcal{P}(S), A \subset A$ (reflexivity).
 - $\forall A, B \in \mathcal{P}(S), (A \subset B \text{ and } B \subset A) \implies A = B \text{ (antisymmetry)}.$
 - $\forall A, B, C \in \mathcal{P}(S), (A \subset B \text{ and } B \subset C) \implies A \subset C \text{ (transitivity)}.$

If $S = \emptyset$ then $\mathcal{P}(S) = \{\emptyset\}$: the order is obviously total.

If $S = \{*\}$ has only one element then $\mathcal{P}(S) = \{\emptyset, \{*\}\}$: the order is obviously total.

If *S* contains at least two elements *a*, *b* then the order is not total.

Indeed, set $A = S \setminus \{a\}$ and $B = S \setminus \{b\}$.

Then $A \not\subset B$ since $b \in A$ but $b \notin B$, and, $B \not\subset A$ since $a \in B$ but $a \notin A$.

Thus, if *S* contains at least two elements, then \subset is not a total order on $\mathcal{P}(S)$.

Sample solutions to Exercise 4.

1.

- Reflexivity. Let $x \in \mathbb{N}$. Then $x = 1 \times x^1$. Hence $x \mathcal{R} x$.
 - Antisymmetry. Let $x, y \in \mathbb{N}$ be such that $x \mathcal{R} y$ and $y \mathcal{R} x$. Then $x \leq y$ and $y \leq x$. Thus x = y.
 - Transitivity. Let $x, y, z \in \mathbb{N}$ be such that $x\mathcal{R}y$ and $y\mathcal{R}z$. Then $y = px^q$ and $z = ry^s$ for some $p, q, r, s \in \mathbb{N} \setminus \{0\}$. Hence $z = ry^s = rp^s x^{qs}$ with $rp^s, qs \in \mathbb{N} \setminus \{0\}$. Thus $x\mathcal{R}z$.
- 2. This order is not total since 0R1 and 1R0 are both false.

Sample solutions to Exercise 5.

- 1. *Reflexivity.* Let $(x, y) \in \mathbb{N}^2$, then $x \le x$ and $y \le y$ hence $(x, y) \prec (x, y)$.
 - Antisymmetry. Assume that $(x_1, y_1) \prec (x_2, y_2)$ and that $(x_2, y_2) \prec (x_1, y_1)$. Then $x_1 \leq x_2$, $y_1 \leq y_2$, $x_2 \leq x_1$ and $y_2 \leq y_1$. Since \leq is an order on \mathbb{N} , we get that $x_1 = x_2$ and $y_1 = y_2$. Thus $(x_1, y_1) = (x_2, y_2)$.
 - *Transitivity.* Assume that $(x_1, y_1) \prec (x_2, y_2)$ and that $(x_2, y_2) \prec (x_3, y_3)$. Then $x_1 \le x_2$, $y_1 \le y_2$, $x_2 \le x_3$ and $y_2 \le y_3$. Since \le is an order on \mathbb{N} , we get that $x_1 \le x_3$ and $y_1 \le y_3$. Thus $(x_1, y_1) \prec (x_3, y_3)$.

2. Note that $(1,0) \prec (0,1)$ and $(0,1) \prec (1,0)$ are both false. Hence \prec is not a total order on \mathbb{N}^2 .

Sample solutions to Exercise 6.

Method 1: using the definition.

- 1. Let $a, b, c, d \in \mathbb{N}$. Assume that $a \leq b$ and $c \leq d$. Then there exist $k, l \in \mathbb{N}$ such that b = a + k and d = c + l. Hence b + d = a + k + c + l = (a + c) + (k + l) with $k + l \in \mathbb{N}$. Thus $a + c \leq b + d$.
- 2. Let $a, b, c, d \in \mathbb{N}$. Assume that $a \leq b$ and $c \leq d$. Then there exist $k, l \in \mathbb{N}$ such that b = a + k and d = c + l. Hence bd = (a + k)(c + l) = ac + (al + kc + kl) with $al + kc + kl \in \mathbb{N}$. Thus ac < bd.

Method 2: using the properties proved in class.

- 1. Let $a, b, c, d \in \mathbb{N}$ be such that $a \leq b$ and $c \leq d$. Then $a \le b \implies a + c \le b + c$ and $c \le d \implies b + c \le b + d$. Finally $\begin{cases} a+c \le b+c \\ b+c \le b+d \end{cases} \implies a+c \le b+d.$
- 2. Let $a, b, c, d \in \mathbb{N}$ be such that $a \leq b$ and $c \leq d$. Then $a \leq b \implies ac \leq bc$ and $c \leq d \implies bc \leq bd$. Finally $\begin{cases} ac \le bc \\ bc \le bd \end{cases}$ $\implies ac \leq bd.$

Sample solutions to Exercise 7.

- The statement is false for c = 0, indeed, $2 \times 0 \le 1 \times 0$ but $2 \le 1$ is false.
- The statement is true for $c \neq 0$. We are going to prove the contrapositive, $\forall a, b \in \mathbb{N}, b < a \implies bc < ac$. Let $a, b \in \mathbb{N}$ be such that b < a. Then $b \leq a$ and hence $bc \leq ac$. Assume by contradiction that bc = ac then b = a since $c \neq 0$. Hence bc < ac as expected.

Sample solutions to Exercise 8.

Assume by contradiction that the set $E = \{n \in \mathbb{N} : 0 < n < 1\}$ is not empty.

Then, by the well-ordering principle, *E* admits a least element, i.e. there exists $l \in E$ such that $\forall n \in \mathbb{N}, l \leq n$. Since $l \in E$, we get that l < 1. Note that $0 \notin E$, so $l \neq 0$. Hence $l < 1 \implies l^2 < l$. We know that if $0 = l^2 = l \times l$ then l = 0. Hence l^2 is positive. Finally $0 < l^2 < l < 1$. So $l^2 \in E$ which contradicts the fact that *l* is the least element of *E*.