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Exercise 1.
Prove that ∀𝑥 ∈ ℝ ⧵ ℚ, ∀𝑎, 𝑏, 𝑐, 𝑑 ∈ ℚ, 𝑎𝑑 − 𝑏𝑐 ≠ 0 ⟹ 𝑎𝑥+𝑏

𝑐𝑥+𝑑 ∉ ℚ.

Remark: note that 𝑐𝑥 + 𝑑 ≠ 0 under the given assumptions.
Either 𝑐 = 0 but then 𝑐𝑥 + 𝑑 = 𝑑 ≠ 0 since 𝑎𝑑 − 𝑏𝑐 ≠ 0. Or 𝑐 ≠ 0 but then 𝑐𝑥 ∈ ℝ ⧵ ℚ and −𝑑 ∈ ℚ thus 𝑐𝑥 + 𝑑 ≠ 0.

Exercise 2.
Let 𝐸 be a finite set. Express

|{(𝐴, 𝐵) ∈ 𝒫(𝐸) × 𝒫(𝐸) ∶ 𝐴 ∪ 𝐵 = 𝐸}|
in terms of |𝐸|.

Hint: you may start studying the case where the cardinality of 𝐴 is fixed.

Exercise 3.
The following questions are independent.

1. Does it exist a set 𝐸 such that |𝒫(𝐸)| = ℵ0?

2. Prove that |[0, 1]| = |(0, 1)|.

Exercise 4.
We set

𝑆 = {𝑥 ∈ ℝ ∶ ∃𝑛 ∈ ℕ, ∃𝑎0, 𝑎1, … , 𝑎𝑛 ∈ ℤ, 𝑎𝑛 ≠ 0 and 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = 0}

What is |𝑆|?

Remark: you can use basic facts concerning polynomials and their roots.



2 Problem Set 5

Sample solution to Exercise 1.
Let 𝑥 ∈ ℝ ⧵ ℚ. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℚ be such that 𝑎𝑑 − 𝑏𝑐 ≠ 0.
Assume by contradiction that 𝑞 ≔ 𝑎𝑥+𝑏

𝑐𝑥+𝑑 ∈ ℚ, then

𝑎𝑥 + 𝑏
𝑐𝑥 + 𝑑 = 𝑞 ⇔ 𝑥(𝑎 − 𝑞𝑐) = 𝑞𝑑 − 𝑏

• First case: if 𝑎 ≠ 𝑞𝑐 then 𝑥 = 𝑞𝑑−𝑏
𝑎−𝑞𝑐 ∈ ℚ, so there is a contradiction.

• Second case: if 𝑎 = 𝑞𝑐 then 𝑞𝑑 − 𝑏 = 𝑥(𝑎 − 𝑞𝑐) = 0, i.e. 𝑏 = 𝑞𝑑.
Therefore 𝑎𝑑 − 𝑏𝑐 = 𝑞𝑐𝑑 − 𝑞𝑑𝑐 = 0, so there is a contradiction.

Sample solution to Exercise 2.
Set 𝑛 ≔ |𝐸|.
Let 𝑖 = 0, … , 𝑛. Set Ω𝑖 ≔ {(𝐴, 𝐵) ∈ 𝒫(𝐸) × 𝒫(𝐸) ∶ 𝐴 ∪ 𝐵 = 𝐸 and |𝐴| = 𝑖}.
There are (

𝑛
𝑖) subsets 𝐴 ∈ 𝒫(𝐸) such that |𝐴| = 𝑖 (See Q10E09).

For a given 𝐴 as above, in order to have 𝐴 ∪ 𝐵 = 𝐸, 𝐵 must be of the form 𝐵 = 𝐴𝑐 ⊔ 𝐶 where 𝐶 ⊂ 𝐴.
There are 2𝑖 = |𝒫(𝐴)| choices for such a subset 𝐶 , and hence for 𝐵 (See Q10E10).
Therefore |Ω𝑖| = (

𝑛
𝑖)2𝑖.

Finally

|{(𝐴, 𝐵) ∈ 𝒫(𝐸) × 𝒫(𝐸) ∶ 𝐴 ∪ 𝐵 = 𝐸}| =
|

𝑛

⨆
𝑖=0

Ω𝑖|
=

𝑛

∑
𝑖=0

|Ω𝑖|

=
𝑛

∑
𝑖=0

(
𝑛
𝑖)2𝑖 =

𝑛

∑
𝑖=0

(
𝑛
𝑖)2𝑖1𝑛−𝑖 = (2 + 1)𝑛 = 3𝑛 = 3|𝐸|

Sample solution to Exercise 3.
1. Let 𝐸 be a set, then:

• Either 𝐸 is finite and then 𝒫(𝐸) is finite too by Q10E10, so that |𝒫(𝐸)| < ℵ0.
• Or 𝐸 is infinite and then ℵ0 ≤ |𝐸| < |𝑃 (𝐸)| by Cantor’s theorem.

In both cases |𝒫(𝐸)| ≠ ℵ0, so there is no set 𝐸 such that |𝒫(𝐸)| = ℵ0.

2. Method 1.
Note that (0, 1) ⊂ [0, 1], therefore |(0, 1)| ≤ |[0, 1]|.
Define 𝑓 ∶ [0, 1] → (0, 1) by 𝑓(𝑥) = 𝑥+1

3 .
Note that 𝑓 is well-defined since if 0 ≤ 𝑥 ≤ 1 then 0 < 1

3 ≤ 𝑥+1
3 ≤ 2

3 < 1.
Besides 𝑓 is injective since if 𝑥, 𝑦 ∈ [0, 1] satisfy 𝑓(𝑥) = 𝑓(𝑦), then 𝑥+1

3 = 𝑦+1
3 which implies 𝑥 = 𝑦.

Therefore |[0, 1]| ≤ |(0, 1)|.
By Cantor–Schröder–Bernstein theorem, we conclude that |[0, 1]| = |(0, 1)|.

Method 2.
We know that (0, 1) ⊂ [0, 1] ⊂ ℝ and that |(0, 1)| = |ℝ| (see Q11E08).
Therefore |[0, 1]| = |(0, 1)| (see Q11E01).
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Sample solution to Exercise 4.
Comment: a complex number that is the root of a non-zero polynomial with integers (or rational, it is equivalent)
coefficients is said to be an algebraic number. Complex numbers which are not roots of such polynomials are called
transcendental numbers.
The field of algebraic real numbers is quite often denoted by

ℝalg ≔ {𝑥 ∈ ℝ ∶ ∃𝑛 ∈ ℕ, ∃𝑎0, 𝑎1, … , 𝑎𝑛 ∈ ℤ, 𝑎𝑛 ≠ 0 and 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = 0}

The goal of this exercise was to prove that |ℝalg| = ℵ0, i.e. there are infinitely countably many algebraic real numbers,
so that almost all real numbers are transcendental (but it is usually quite difficult to prove that a number is tran-
scendental: we still don’t know whether 𝜋 + 𝑒 or 𝜋𝑒 are transcendental or not). This was first proved by Cantor in is
famous article Ueber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen published 1874.

Claim. ∀𝑛 ∈ ℕ ⧵ {0}, |ℤ𝑛| = ℵ0.
Proof by induction on 𝑛 ≥ 1.
Base case at 𝑛 = 1: |ℤ1| = |ℤ| = ℵ0 (from the lecture notes).
Induction step. Assume that |ℤ𝑛| = ℵ0 for some 𝑛 ≥ 1.
Since |ℤ𝑛| = |ℕ| and |ℤ| = |ℕ|, we have |ℤ𝑛+1| = |ℤ𝑛 × ℤ| = |ℕ × ℕ| = ℵ0.

Method 1.
For 𝑛 ∈ ℕ and 𝑎0, 𝑎1, … , 𝑎𝑛 ∈ ℤ with 𝑎𝑛 ≠ 0, the set

{𝑥 ∈ ℝ ∶ 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = 0}

is finite since a polynomial of degree 𝑛 has at most 𝑛 roots.
For 𝑛 ∈ ℕ, we set

𝐴𝑛 = ⋃
(𝑎0,𝑎1,…,𝑎𝑛)∈ℤ𝑛×(ℤ⧵{0})

{𝑥 ∈ ℝ ∶ 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = 0}

Since |ℤ𝑛| = |ℕ| and |ℤ ⧵ {0}| = |ℕ|, we have that |ℤ𝑛 × (ℤ ⧵ {0})| = |ℕ × ℕ| = ℵ0.
Therefore 𝐴𝑛 is countable as a countable union of finite sets.
Hence 𝑆 = ⋃𝑛∈ℕ 𝐴𝑛 is countable as a countable union of countable sets.
Note that ℤ ⊂ 𝑆, since 𝑚 ∈ ℤ is a root of 𝑥 − 𝑚 = 0.
Therefore 𝑆 is countably infinite, i.e. |𝑆| = ℵ0.

Method 2.
For 𝑛 ∈ ℕ, we denote by 𝑃𝑛 the set of polynomials of degree 𝑛 with integer coefficients.
Note that |𝑃𝑛| = |ℤ𝑛 × ℤ ⧵ {0}| since a polynomial 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 of degree 𝑛 is characterized
by its coefficients (𝑎0, 𝑎1, … , 𝑎𝑛) ∈ ℤ𝑛 × (ℤ ⧵ {0}).
Since |ℤ𝑛| = |ℕ| and |ℤ ⧵ {0}| = |ℕ|, we have that |𝑃𝑛| = |ℤ𝑛 × (ℤ ⧵ {0})| = |ℕ × ℕ| = ℵ0.
Hence the set 𝑃 = ⋃

𝑛∈ℕ
𝑃𝑛 of non-zero polynomials with integer coefficients is countable as a countable union

of countable sets.
Given 𝑓 ∈ 𝑃 , 𝑓 −1({0}) = {𝑥 ∈ ℝ ∶ 𝑓(𝑥) = 0} is finite since a polynomial of degree 𝑛 has at most 𝑛 roots.
Therefore 𝑆 = ⋃

𝑓∈𝑃
𝑓 −1(0) is countable as a countable union of finite sets.

Note that ℤ ⊂ 𝑆, since 𝑚 ∈ ℤ is a root of 𝑥 − 𝑚 = 0.
Therefore 𝑆 is countably infinite, i.e. |𝑆| = ℵ0.


