Problem Set n ${ }^{\circ} 3$

Jean-Baptiste Campesato

Due on March $12^{\text {th }}, 2021$

You can only use the material covered in class up to lecture 12 (i.e. Chapters 1, 2, 3 and 4 up to section 5 included). Write your solutions concisely but without skipping important steps.
Make sure that your submission is readable on Crowdmark.

Exercise 1.

Let p be a prime number. Prove that

$$
\forall s \in \mathbb{N} \backslash\{0\}, \forall n \in \mathbb{N} \backslash\{0\}, \forall x_{1}, \ldots, x_{n} \in \mathbb{Z},\left(\sum_{k=1}^{n} x_{k}\right)^{p^{s}} \equiv \sum_{k=1}^{n} x_{k}^{p^{s}}(\bmod p)
$$

Exercise 2.

The following questions are independent.

1. For which $n \in \mathbb{N}$, is $5^{n}-3^{n}$ a prime number?
2. For which $n \in \mathbb{N}$, is $2^{2^{n}}+5$ a prime number?

Exercise 3.

Solve for $x, y \in \mathbb{N} \backslash\{0\}, \sum_{k=1}^{x}(k!)=y^{2}$.

Exercise 4.

Let p be a prime number and $n \in \mathbb{N}$ satisfying $1 \leq n \leq p-1$.
Prove that $(p-n)!(n-1)!\equiv(-1)^{n}(\bmod p)$.

Sample solution to Exercise 1.

Method 1:

Let's prove the statement by induction on $s \geq 1$.

- Base case at $s=1$:

Let $n \in \mathbb{N} \backslash\{0\}$ and $x_{1}, \ldots, x_{n} \in \mathbb{Z}$.
By Fermat's theorem we have:

- $\left(\sum_{k=1}^{n} x_{k}\right)^{p} \equiv \sum_{k=1}^{n} x_{k}(\bmod p)$, and,
- For $k=1, \ldots, n, x_{k}^{p} \equiv x_{k}(\bmod p)$.

$$
\operatorname{Thus}\left(\sum_{k=1}^{n} x_{k}\right)^{p} \equiv \sum_{k=1}^{n} x_{k}(\bmod p) \equiv \sum_{k=1}^{n} x_{k}^{p}(\bmod p)
$$

- Induction step: assume that the statement of the question holds for some $s \geq 1$.

Let $n \in \mathbb{N} \backslash\{0\}$ and $x_{1}, \ldots, x_{n} \in \mathbb{Z}$.
Then

$$
\begin{aligned}
\left(\sum_{k=1}^{n} x_{k}\right)^{p^{s+1}} & =\left(\left(\sum_{k=1}^{n} x_{k}\right)^{p^{s}}\right)^{p} \\
& \equiv\left(\sum_{k=1}^{n} x_{k}^{p^{s}}\right)^{p}(\bmod p) \quad \text { by induction hypothesis } \\
& \equiv \sum_{k=1}^{n}\left(x_{k}^{p^{s}}\right)^{p}(\bmod p) \quad \text { by the case } s=1 \\
& \equiv \sum_{k=1}^{n} x_{k}^{p^{s+1}}(\bmod p)
\end{aligned}
$$

Method 2:

Lemma. Let's first prove by induction on s that $\forall s \in \mathbb{N} \backslash\{0\}, \forall x \in \mathbb{Z}, x^{p^{s}} \equiv x(\bmod p)$.

- Base case at $s=1$: Let $x \in \mathbb{Z}$ then $x^{p} \equiv x(\bmod p)$ by Fermat's theorem.
- Induction step: assume that the statement of the question holds for some $s \geq 1$.

Let $x \in \mathbb{Z}$ then

$$
\begin{aligned}
x^{p^{s+1}} & =\left(x^{p^{s}}\right)^{p} \\
& \equiv x^{p}(\bmod p) \text { by the inductive hypothesis } \\
& \equiv x(\bmod p) \text { by Fermat's theorem }
\end{aligned}
$$

Which proves the lemma.
Let's prove the statement of the question:
Let $s \in \mathbb{N} \backslash\{0\}, x_{1}, \ldots, x_{n} \in \mathbb{Z}$ then

$$
\begin{aligned}
\left(\sum_{k=1}^{n} x_{k}\right)^{p^{s}} & =\sum_{k=1}^{n} x_{k} \quad \text { by the lemma } \\
& =\sum_{k=1}^{n} x_{k}^{p^{s}} \quad \text { by the lemma }
\end{aligned}
$$

Sample solution to Exercise 2.

1. If $n=0$ then $5^{0}-3^{0}=0$ is not prime.

If $n=1$ then $5^{1}-3^{1}=2$ is prime.
If $n>1$ then $5^{n}-3^{n} \equiv 1^{n}-1^{n}(\bmod 2) \equiv 0(\bmod 2)$. Thus $5^{n}-3^{n}$ is even but $5^{n}-3^{n}>2$, therefore it is not prime.
Conclusion: $5^{n}-3^{n}$ is prime for $n=1$ only.
2. If $n=0$ then $2^{2^{0}}+5=2^{1}+5=7$ is prime.

If $n \geq 1$ then $2^{2^{n}}+5 \equiv(-1)^{2^{n}}+2(\bmod 3) \equiv 1+2(\bmod 3) \equiv 0(\bmod 3)\left(\right.$ since 2^{n} is even as $\left.n \geq 1\right)$.
Therefore $3 \mid 2^{2^{n}}+5$ but $2^{2^{n}}+5>3$. Thus $2^{2^{n}}+5$ is not prime.
Conclusion: $2^{2^{n}}+5$ is prime for $n=0$ only.

Sample solution to Exercise 3.

We first compute $y^{2}(\bmod 5)$ in terms of $y(\bmod 5)$:

$y(\bmod 5)$	0	1	2	3	4
$y^{2}(\bmod 5)$	0	1	4	4	1

We treat several cases.

1. Let $x=1$ then $\sum_{k=1}^{x}(k!)=1$.

The unique $y \in \mathbb{N} \backslash\{0\}$ such that $y^{2}=1$ is $y=1$.
2. Let $x=2$ then $\sum_{k=1}^{x}(k!)=1!+2!\equiv 3(\bmod 5)$.

So there exists no $y \in \mathbb{Z}$ such that $\sum_{k=1}^{2}(k!)=y^{2}$ by the above table.
3. Let $x=3$ then $\sum_{k=1}^{x}(k!)=1!+2!+3!=9$.

The unique $y \in \mathbb{N} \backslash\{0\}$ such that $y^{2}=9$ is $y=3$.
4. Let $x \geq 4$.

Note that for $k \geq 5$, we have $5 \mid k!$.
Thus $\sum_{k=1}^{x}(k!) \equiv 1!+2!+3!+4!(\bmod 5) \equiv 33(\bmod 5) \equiv 3(\bmod 5)$.
So there exists no $y \in \mathbb{Z}$ such that $\sum_{k=1}^{x}(k!)=y^{2}$ when $x \geq 4$, by the above table.
So the solutions are $(x, y)=(1,1)$ and $(x, y)=(3,3)$.

Sample solution to Exercise 4.

Let p be a prime number and $n \in \mathbb{N}$ satisfying $1 \leq n \leq p-1$.
Note that

$$
\begin{aligned}
(p-1)! & =(p-n)!(p-(n-1))(p-(n-2)) \cdots(p-1) \\
& \equiv(p-n)!(-(n-1))(-(n-2)) \cdots(-1)(\bmod p) \\
& \equiv(p-n)!(-1)^{n-1}(n-1)(n-2) \cdots 1(\bmod p) \\
& \equiv(p-n)!(-1)^{n-1}(n-1)!(\bmod p)
\end{aligned}
$$

Since, by Wilson's theorem, $(p-1)!\equiv-1(\bmod p)$, we get that $(p-n)!(-1)^{n-1}(n-1)!\equiv-1(\bmod p)$ and thus, multiplying both side by $(-1)^{n-1}$, that $(p-n)!(n-1)!\equiv(-1)^{n}(\bmod p)$.

