University of Toronto – MAT246H1-S – LEC0201/9201 Concepts in Abstract Mathematics

Problem Set n°3

Jean-Baptiste Campesato

Due on March 12th, 2021

You can only use the material covered in class up to lecture 12 (i.e. Chapters 1, 2, 3 and 4 up to section 5 included). Write your solutions concisely but without skipping important steps. Make sure that your submission is readable on Crowdmark.

Exercise 1.

Let *p* be a prime number. Prove that

$$\forall s \in \mathbb{N} \setminus \{0\}, \forall n \in \mathbb{N} \setminus \{0\}, \forall x_1, \dots, x_n \in \mathbb{Z}, \left(\sum_{k=1}^n x_k\right)^{p^s} \equiv \sum_{k=1}^n x_k^{p^s} \pmod{p}$$

Exercise 2.

The following questions are independent.

- 1. For which $n \in \mathbb{N}$, is $5^n 3^n$ a prime number?
- 2. For which $n \in \mathbb{N}$, is $2^{2^n} + 5$ a prime number?

Exercise 3.

Solve for $x, y \in \mathbb{N} \setminus \{0\}, \sum_{k=1}^{x} (k!) = y^2$.

Exercise 4. Let *p* be a prime number and $n \in \mathbb{N}$ satisfying $1 \le n \le p - 1$. Prove that $(p - n)!(n - 1)! \equiv (-1)^n \pmod{p}$.

Sample solution to Exercise 1.

Method 1:

Let's prove the statement by induction on $s \ge 1$.

• Base case at s = 1: Let $n \in \mathbb{N} \setminus \{0\}$ and $x_1, \dots, x_n \in \mathbb{Z}$. By Fermat's theorem we have:

•
$$\left(\sum_{k=1}^{n} x_k\right)^p \equiv \sum_{k=1}^{n} x_k \pmod{p}$$
, and,

• For
$$k = 1, ..., n$$
, $x_k^p \equiv x_k \pmod{p}$.

Thus
$$\left(\sum_{k=1}^{n} x_k\right)^p \equiv \sum_{k=1}^{n} x_k \pmod{p} \equiv \sum_{k=1}^{n} x_k^p \pmod{p}$$

• *Induction step:* assume that the statement of the question holds for some $s \ge 1$. Let $n \in \mathbb{N} \setminus \{0\}$ and $x_1, \dots, x_n \in \mathbb{Z}$. Then

$$\left(\sum_{k=1}^{n} x_{k}\right)^{p^{s+1}} = \left(\left(\sum_{k=1}^{n} x_{k}\right)^{p^{s}}\right)^{p}$$
$$\equiv \left(\sum_{k=1}^{n} x_{k}^{p^{s}}\right)^{p} \pmod{p} \quad \text{by induction hypothesis}$$
$$\equiv \sum_{k=1}^{n} \left(x_{k}^{p^{s}}\right)^{p} \pmod{p} \quad \text{by the case } s = 1$$
$$\equiv \sum_{k=1}^{n} x_{k}^{p^{s+1}} \pmod{p}$$

Method 2:

Lemma. Let's first prove by induction on *s* that $\forall s \in \mathbb{N} \setminus \{0\}, \forall x \in \mathbb{Z}, x^{p^s} \equiv x \pmod{p}$.

- *Base case at* s = 1: Let $x \in \mathbb{Z}$ then $x^p \equiv x \pmod{p}$ by Fermat's theorem.
- *Induction step:* assume that the statement of the question holds for some s ≥ 1.
 Let x ∈ Z then

$$x^{p^{s+1}} = (x^{p^s})^p$$

$$\equiv x^p \pmod{p} \text{ by the inductive hypothesis}$$

$$\equiv x \pmod{p} \text{ by Fermat's theorem}$$

Which proves the lemma.

Let's prove the statement of the question: Let $s \in \mathbb{N} \setminus \{0\}, x_1, \dots, x_n \in \mathbb{Z}$ then

$$\left(\sum_{k=1}^{n} x_k\right)^{p^s} = \sum_{k=1}^{n} x_k \text{ by the lemma}$$
$$= \sum_{k=1}^{n} x_k^{p^s} \text{ by the lemma}$$

Sample solution to Exercise 2.

- 1. If n = 0 then $5^0 3^0 = 0$ is not prime. If n = 1 then $5^1 - 3^1 = 2$ is prime. If n > 1 then $5^n - 3^n \equiv 1^n - 1^n \pmod{2} \equiv 0 \pmod{2}$. Thus $5^n - 3^n$ is even but $5^n - 3^n > 2$, therefore it is not prime. **Conclusion:** $5^n - 3^n$ is prime for n = 1 only.
- 2. If n = 0 then $2^{2^0} + 5 = 2^1 + 5 = 7$ is prime. If $n \ge 1$ then $2^{2^n} + 5 \equiv (-1)^{2^n} + 2 \pmod{3} \equiv 1 + 2 \pmod{3} \equiv 0 \pmod{3}$ (since 2^n is even as $n \ge 1$). Therefore $3|2^{2^n} + 5$ but $2^{2^n} + 5 > 3$. Thus $2^{2^n} + 5$ is not prime. **Conclusion:** $2^{2^n} + 5$ is prime for n = 0 only.

Sample solution to Exercise 3.

We first compute $y^2 \pmod{5}$ in terms of $y \pmod{5}$:

<i>y</i> (mod 5)	0	1	2	3	4
$y^2 \pmod{5}$	0	1	4	4	1

We treat several cases.

1. Let x = 1 then $\sum_{k=1}^{\infty} (k!) = 1$. The unique $y \in \mathbb{N} \setminus \{0\}$ such that $y^2 = 1$ is y = 1.

2. Let
$$x = 2$$
 then $\sum_{k=1}^{x} (k!) = 1! + 2! \equiv 3 \pmod{5}$.

So there exists no $y \in \mathbb{Z}$ such that $\sum_{k=1}^{2} (k!) = y^2$ by the above table.

- 3. Let x = 3 then $\sum_{k=1}^{x} (k!) = 1! + 2! + 3! = 9$. The unique $y \in \mathbb{N} \setminus \{0\}$ such that $y^2 = 9$ is y = 3.
- 4. Let $x \ge 4$.

Note that for $k \ge 5$, we have 5|k!.

Thus
$$\sum_{k=1}^{\infty} (k!) \equiv 1! + 2! + 3! + 4! \pmod{5} \equiv 33 \pmod{5} \equiv 3 \pmod{5}$$
.

So there exists no $y \in \mathbb{Z}$ such that $\sum_{k=1}^{x} (k!) = y^2$ when $x \ge 4$, by the above table.

So the solutions are (x, y) = (1, 1) and (x, y) = (3, 3).

Sample solution to Exercise 4.

Let *p* be a prime number and $n \in \mathbb{N}$ satisfying $1 \le n \le p - 1$. Note that

$$(p-1)! = (p-n)!(p-(n-1))(p-(n-2))\cdots(p-1)$$

$$\equiv (p-n)!(-(n-1))(-(n-2))\cdots(-1) \pmod{p}$$

$$\equiv (p-n)!(-1)^{n-1}(n-1)(n-2)\cdots 1 \pmod{p}$$

$$\equiv (p-n)!(-1)^{n-1}(n-1)! \pmod{p}$$

Since, by Wilson's theorem, $(p-1)! \equiv -1 \pmod{p}$, we get that $(p-n)!(-1)^{n-1}(n-1)! \equiv -1 \pmod{p}$ and thus, multiplying both side by $(-1)^{n-1}$, that $(p-n)!(n-1)! \equiv (-1)^n \pmod{p}$.