Problem Set $n^{\circ} 2$

Jean-Baptiste Campesato

Due on February $26^{\text {th }}, 2021$

Except otherwise stated, you can only use the material covered in Chapters 1, $2 \mathcal{E} 3$. You can also use the results proved in the exercise sheets $1,2,3 \mathcal{E} 4$.

Write your solutions concisely but without skipping important steps. Make sure that your submission is readable on Crowdmark.

Exercise 1.

Find all $n \in \mathbb{Z}$ such that $n-4 \mid 3 n-17$.

Exercise 2.

Find the integer solutions of $x^{2}+6 x=y^{2}+12$.

Exercise 3.

1. Prove that

$$
\forall a, x_{1}, x_{2} \in \mathbb{Z} \backslash\{0\},\left(\operatorname{gcd}\left(a, x_{1}\right)=\operatorname{gcd}\left(a, x_{2}\right)=1\right) \Longrightarrow \operatorname{gcd}\left(a, x_{1} x_{2}\right)=1
$$

2. Let $n \geq 2$ be an integer. Prove that

$$
\forall a, x_{1}, \ldots, x_{n} \in \mathbb{Z} \backslash\{0\},\left(\operatorname{gcd}\left(a, x_{1}\right)=\operatorname{gcd}\left(a, x_{2}\right)=\cdots=\operatorname{gcd}\left(a, x_{n}\right)=1\right) \Longrightarrow \operatorname{gcd}\left(a, x_{1} x_{2} \cdots x_{n}\right)=1
$$

Exercise 4.

Prove that the equation $x^{3}-x^{2}+x+1=0$ has no rational solution.
For this question, you can assume that $\mathbb{Q}=\left\{\frac{p}{q}: p \in \mathbb{Z}, q \in \mathbb{N} \backslash\{0\}, \operatorname{gcd}(p, q)=1\right\}$ with the usual operations.

Sample solution to Exercise 1.

Let $n \in \mathbb{Z}$ such that $n-4 \mid 3 n-17$.
Since $n-4 \mid n-4$ and $n-4 \mid 3 n-17$ then $n-4 \mid(3 n-17)-3(n-4)=-5$.
Hence the only possible solutions are $n-4=-5,-1,1,5$, i.e. $n=-1,3,5,9$.
Conversely, we need to check which are solutions:

- $n=-1$: then $n-4=-5$ and $3 n-17=-20$. So it is a solution since $-5 \mid-20$
- $n=3$: then $n-4=-1$. So it is a solution since -1 divides any integer.
- $n=5$: then $n-4=1$. So it is a solution since 1 divides any integer.
- $n=9$: then $n-4=5$ and $3 n-17=10$. So it is a solution since $5 \mid 10$.

Sample solution to Exercise 2.

Let $x, y \in \mathbb{Z}$, then

$$
x^{2}+6 x=y^{2}+12 \Leftrightarrow(x+3)^{2}=y^{2}+21 \Leftrightarrow(x+3)^{2}-y^{2}=21 \Leftrightarrow(x+y+3)(x-y+3)=21
$$

Since the divisors of 21 are $\pm 1, \pm 3, \pm 7$ and ± 21, we get the following cases:

1. $\left\{\begin{array}{l}x+y+3=21 \\ x-y+3=1\end{array} \Leftrightarrow(x, y)=(8,10)\right.$
2. $\left\{\begin{array}{l}x+y+3=-21 \\ x-y+3=-1\end{array} \Leftrightarrow(x, y)=(-14,-10)\right.$
3. $\left\{\begin{array}{l}x+y+3=7 \\ x-y+3=3\end{array} \Leftrightarrow(x, y)=(2,2)\right.$
4. $\left\{\begin{array}{l}x+y+3=-7 \\ x-y+3=-3\end{array} \Leftrightarrow(x, y)=(-8,-2)\right.$
5. $\left\{\begin{array}{l}x+y+3=3 \\ x-y+3=7\end{array} \Leftrightarrow(x, y)=(2,-2)\right.$
6. $\left\{\begin{array}{l}x+y+3=-3 \\ x-y+3=-7\end{array} \Leftrightarrow(x, y)=(-8,2)\right.$
7. $\left\{\begin{array}{l}x+y+3=1 \\ x-y+3=21\end{array} \Leftrightarrow(x, y)=(8,-10)\right.$
8. $\left\{\begin{array}{l}x+y+3=-1 \\ x-y+3=-21\end{array} \Leftrightarrow(x, y)=(-14,10)\right.$

Hence the integer solutions are $(8, \pm 10),(-14, \pm 10),(2, \pm 2),(-8, \pm 2)$.

Sample solution to Exercise 3.

1. Method 1 (with Bézout's theorem):

Let $a, x_{1}, x_{2} \in \mathbb{Z} \backslash\{0\}$ be such that $\operatorname{gcd}\left(a, x_{1}\right)=\operatorname{gcd}\left(a, x_{2}\right)=1$.
By Bézout's identity, there exist $u, v, u^{\prime}, v^{\prime} \in \mathbb{Z}$ such that $a u+x_{1} v=1$ and $a u^{\prime}+x_{2} v^{\prime}=1$.
Then $1=\left(a u+x_{1} v\right)\left(a u^{\prime}+x_{2} v^{\prime}\right)=a\left(a u u^{\prime}+u x_{2} v^{\prime}+x_{1} v u^{\prime}\right)+x_{1} x_{2}\left(v v^{\prime}\right)$.
Therefore $\operatorname{gcd}\left(a, x_{1} x_{2}\right)=1$.

Method 2 (with Euclid's lemma):

Let $a, x_{1}, x_{2} \in \mathbb{Z} \backslash\{0\}$ be such that $\operatorname{gcd}\left(a, x_{1}\right)=\operatorname{gcd}\left(a, x_{2}\right)=1$.
Assume by contradiction that $d=\operatorname{gcd}\left(a, x_{1} x_{2}\right)>1$, then there exists a prime number p such that $p \mid d$.
Since $p \mid d$ and $d \mid a$, we have that $p \mid a$.
Since $p \mid d$ and $d \mid x_{1} x_{2}$, we have that $p \mid x_{1} x_{2}$.
By Euclid's lemma, either $p \mid x_{1}$ or $p \mid x_{2}$. WLOG, we may assume that $p \mid x_{1}$.
Then $p \mid x_{1}$ and $p \mid a$, therefore $p \mid \operatorname{gcd}\left(a, x_{1}\right)=1$. Which is a contradiction.

Method 3 (with prime factorization):

Let $a, x_{1}, x_{2} \in \mathbb{Z} \backslash\{0\}$ be such that $\operatorname{gcd}\left(a, x_{1}\right)=\operatorname{gcd}\left(a, x_{2}\right)=1$.
Write the prime decompositions $a=\prod_{p} p^{\alpha_{p}}, x_{1}=\prod_{p} p^{\beta_{1 p}}$ and $x_{2}=\prod_{p} p^{\beta_{2 p}}$.
Since $\operatorname{gcd}\left(a, x_{i}\right)=1$, we know that, for p prime, we have $\min \left(\alpha_{p}, \beta_{i p}\right)=0$.
Therefore, for p prime, we have $\min \left(\alpha_{p}, \beta_{1 p}+\beta_{2 p}\right) \leq \min \left(\alpha_{p}, \beta_{1 p}\right)+\min \left(\alpha_{p}, \beta_{2 p}\right)=0$.
Note that $x_{1} x_{2}=\prod_{p} p^{\beta_{1 p}+\beta_{2 p}}$.
Thus $\operatorname{gcd}\left(a, x_{1} x_{2}\right)=\prod_{p} p^{\min \left(\alpha_{p}, \beta_{1 p}+\beta_{2 p}\right)}=1$.
2. Let's prove by induction on $n \geq 2$ that

$$
\forall a, x_{1}, \ldots, x_{n} \in \mathbb{Z} \backslash\{0\},\left(\operatorname{gcd}\left(a, x_{1}\right)=\operatorname{gcd}\left(a, x_{2}\right)=\cdots=\operatorname{gcd}\left(a, x_{n}\right)=1\right) \Longrightarrow \operatorname{gcd}\left(a, x_{1} x_{2} \cdots x_{n}\right)=1
$$

- Base case at $n=2$: it is exactly the previous question.
- Induction step. Assume that the statement holds for some $n \geq 2$.

Let $a, x_{1}, \ldots, x_{n}, x_{n+1} \in \mathbb{Z} \backslash\{0\}$ such that $\operatorname{gcd}\left(a, x_{1}\right)=\operatorname{gcd}\left(a, x_{2}\right)=\cdots=\operatorname{gcd}\left(a, x_{n+1}\right)=1$.
By the induction hypothesis, $\operatorname{gcd}\left(a, x_{1} x_{2} \cdots x_{n}\right)=1$.
Since

$$
\operatorname{gcd}\left(a, x_{1} x_{2} \cdots x_{n}\right)=\operatorname{gcd}\left(a, x_{n+1}\right)=1
$$

by the previous question, we get that

$$
\operatorname{gcd}\left(a, x_{1} x_{2} \ldots x_{n+1}\right)=1
$$

Which proves the induction step.

Sample solution to Exercise 4.

Assume by contradiction that there exists $x \in \mathbb{Q}$ such that $x^{3}-x^{2}+x+1=0$.
Then $x=\frac{p}{q}$ where $p \in \mathbb{Z}, q \in \mathbb{N} \backslash\{0\}$ and $\operatorname{gcd}(p, q)=1$.
Therefore $x^{3}-x^{2}+x+1=0$ implies $(p / q)^{3}-(p / q)^{2}+p / q+1=0$ from which we derive that $p^{3}-p^{2} q+p q^{2}+q^{3}=0$.
Hence $p \mid q^{3}=-p^{3}+p^{2} q-p q^{2}$.
Since $\operatorname{gcd}(p, q)=1$, by Gauss' lemma, $p \mid q^{2}$ and similarly $p \mid q$.
Hence $\operatorname{gcd}(p, q)=|p|$. So either $p=-1$ or $p=1$.
Similarly $q \mid p^{3}=p^{2} q-p q^{2}-q^{3}$ so $q=1$.
Thence the only possible rational solutions are -1 and 1 .
But they don't satisfy the equation.

