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Except otherwise stated, you can only use the material covered from Jan 12 to Jan 26 (i.e. Chapter 1 & Chapter 2 up
to §3).

Exercise 1.
We define the binary relation < on N? by (x;, ;) < (x5,¥,) © (x; < x, or (x; =x, and y; < y,)).
Is it an order? If so, is it total?

Exercise 2.

Prove that given n € N\ {0} there exist finitely many «a/, ..., a,, € N pairwise distinct such that
n=2%42% 4 ... 4 2%

Exercise 3.

Solve 4x(x + 1) = y(y + 1) for (x, y) € N2.

Your answer can only rely on the properties of N proved in Chapter 1.
Particularly, your proof should not involve negative integers, rationals, calculus...
Hint: compare 2x and y.

Exercise 4.
Prove that for every n > 3, there exist x,, ..., x, € N\ {0} pairwise distinct such that
1 1 1
l=—+—++—
X1 X2 Xn

In this exercise, you may assume that you already know Q or R so that Lis well-defined.

X

e 1 =11
Hmt.l—2+2.
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Sample solution to Exercise 1.

We are going to prove that < is a total order on N2. Tt is actually called the lexicographic order.
It is the one used in dictionaries: you compare the first letter, if it is the same, then you look at the next one...

o Reflexivity. Let (x,y) € N2. Then x = x and y < y. Thus (x, y) < (x, y).

o Antisymmetry. Let (x;, 1), (x5, ¥5) € N2 satisfying (x;, y1) < (x5, ¥,) and (x5, y5) < (x1, ¥)-
Assume by contradiction that x; < x,, then (x,, y,) £ (x;, ;). Which is a contradiction.
Assume by contradiction that x, < x;, then (x, y;) £ (x;, y,). Which is a contradiction.
Thus x| = x,.

Since (x;, y;) < (x,, ¥,), we know that y; < y,. Since (x5, y,) < (x;,¥,), we know that y, < y,.
Thus y; = y,.
We proved that (x|, y;) = (x,, »5).

o Transitivity. Let (xq, y1), (x5, ¥2), (X3, ¥3) € N? satisfying (x, ;) < (x5, ¥,) and (x5, y,) < (X3, ¥3).
- Case 1: x; = x, and x, = x3.
Then x; = x3. Furthemore y; <y, and y, < y3,50 y; < y3.
Hence (x;,y;) < (x3,¥3).
- Case 2: x; = x, and x; < x3.
Then x| < x3. Hence (x, y;) < (x3,¥3).
— Case 3: x; < x, and x, = x3.
Then x| < x3. Hence (x, y;) < (x3,¥3).
— Case 4: x; < x, and x; < x3.
Then x| < x3. Hence (x, y;) < (x3,¥3).

e <isa total order. Let (x|, y;), (X, y,) € N?. According to the lectures, exactly one of the follows occurs.

— Case 1: x| < x5. Then (xq, y1) < (x5, ¥5).

— Case 2: x5 < xq. Then (x5, y,) < (x1, ¥).

— Case 3: x| = x,. Since < is a total order on N then
* either y; < y, and then (x, y;) < (x5, ¥,)
* or y, < y; and then (x,, y,) < (x1,¥;)-

Sample solution to Exercise 2.
That’s the existence of the positional numeral system with base 2 (binary numeral system).

Method 1:
We are going to prove by strong induction that for every n > 1, there exist finitely many «a;, ...,

= e N
pairwise distinct such that n = 2% +2% 4 ... 2%,

m

e Basecaseatn=1.1=2°.

o Induction step. Assume that the statement holds for 1,2, ..., n where n > 1.
By Euclidean division, n + 1 = 2g + r where ¢ € Nand r € {0, 1}.
Note that g # 0 since otherwise l <n+1=r < 1.
Hencel <g<2g+r=n+1.
Thus, by the induction hypothesis, ¢ = 2*1 + 2% + ... + 2% where a; > a, > -+ > «,, are natural
numbers.
Therefore n + 1 = 2 + r = 20+ 4 2%+l 4 4 2%+l 4 100,
Note thata; +1 > a, + 1 > --- > @, + 1 > 0. Hence the exponents are pairwise distinct (it is possible
for 2 to not appear if r = 0).
Which ends the induction step.
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Method 2:

We are going to prove by strong induction that for every n > 1, there exist finitely many «;, ...

pairwise distinct such that n = 2%1 +2% 4 ... + 2%,
e Basecaseatn=1.1=2°.
o Induction step. Assume that the statement holds for 1,2, ..., n where n > 1.

(i) Firstcase: n+ 1iseven. Then n+ 1 = 2k for some k € N.
Note that k # 0 since otherwise 1 <n+1 =2k =0.
Since k # 0, we getthat k <2k =n+1,i.e. k <n.

Thus, by the induction hypothesis, k = 2% 429 4 ... 4 2% where the «/, ..., a,, € N are pairwise

distinct.
Son+41=2xQ% +2% 4 ... 2%) =20+ pom+l L | pontl

Assume by contradiction that there exist i # j such that ; + 1 = a; + 1. Then, by the cancellation

rule, a; = a;. Which is a contradiction since the a; are pairwise distinct.
Therefore the a; + 1,a, + 1, ..., a,, + 1 are pairwise distinct as requested.

(ii) Second case: n+ 1is odd. Then n+ 1 = 2k + 1 for some k € N.

Note that k # 0 since otherwisen+ 1 =2%x0+1=1 = n =0. Hence, as above, k < 2k = n.
Thus, by the induction hypothesis, k = 2% 429 4 ... 4 2% where the «;, ..., a,, € N are pairwise

distinct.
Hence n+1 =142k =2"+2x (2% +2% + - +2%) =20 4 20+l oo+l L4 pawtl

As above, the a; + 1 are pairwise distinct. Moreover «; + 1 > 0. Therefore the 0,a; + 1,a, +

1,...,a, + 1 are pairwise distinct, as requested.

Which ends the induction step.

Sample solution to Exercise 3.
Let (x, y) € N? be such that 4x(x + 1) = y(y + 1).

1. First case: assume that y < 2x. Then
yy+1)<2xQ2x+1)<2x2x+2)=4x(x+ 1) =y(y+1)
Hence 2x(2x + 1) < 2x(2x +2) and 2x(2x +2) = y(y + 1) < 2x(2x + 1).

Thus 2x(2x + 1) = 2x(2x + 2), from which we get that x(2x + 1) = x(2x + 2).

e Either x =0and then y <0soy=0.
e Or x # 0 and then, by cancellation, we get 2x + 1 = 2x + 2.
We derive from the previous equality that 1 = 2, which is impossible.

Thus the only possible solution in this case is (x, y) = (0, 0).
2. Second case: assume that 2x < y,i.e. 2x + 1 < y. Then
yy+D>Cx+DR2x+2)>2x2x+2)=y(y+1)

Hence, as above, (2x + 1)(2x +2) = 2x(2x + 2).

Note that 2x +2 # 0 since2x +2 > 2 > 0.

So, by cancellation, 2x = 2x + 1 and hence 0 = 1, which is impossible.
Therefore there is no solution (x, y) € N? satisfying 2x < y.

We proved that the only possible solution is (x, y) = (0, 0).

We have to check that conversely it is a solution, which is the case since then 4x(x + 1) = 0 = y(y + 1).

So the only solution is (x, y) = (0, 0).
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Sample solution to Exercise 4.
Method 1 (using my hint):
We are going to prove the statement by induction on n.

e Base case at n = 3. Note that 1 = 1 + l+ 1
2 36
o Induction step. Assume that the statement holds for some n > 3.
By the induction hypothesis, there exist x; < ... < x,in N\ {0} such that 1 = 1 + 1 + e+ 1
X X2 Xn
Note that x; # 1 since otherwise L + L + -+ 1 1+ 1 + -+ 1 > 1. Thus x; > 1.
X X2 Xn X2 Xn
Hence1—1+l—l+l i+i+...+L —1+L+L+...+ 1
22 2 2\x; x X, 20 2x; 2x, 2x,

Besides, since 1 < x; < x, < -+ < x,, we get that 2 < 2x; < 2x, < -+ < 2x,,.
So the n + 1 denominators are pairwise distinct.

Method 2:
We are going to prove the following stronger statement by induction on n: for n > 3, there exist 1 < x; <
Xy < -+ < x,suchthat1= xi + xi + -+ xi and x,, is even.

1 2

n

1 1 1
B tn=3.Notethat1 = = + = + =
e Base case at n ote tha Szt

o Induction step. Assume that the statement holds for some n > 3.
By the induction hypothesis, there exist 1 < x; < ... < x, in Nsuch that 1 = L + L + - 4+ L and x,,
X1 Xy X
is even. "

Hence x,, = 2k for some k € N\ {0}.
1 1 1 1
Note that — = — = — + —.
o T2k T3k 6k
Hence
1—i+i+...+L+L+L
xl x2 xn_l 3k 6k

Besides 6k isevenand 1 < x| < x, < -+ < x,, = 2k < 3k < 6k.
So the n + 1 denominators are pairwise distinct.

Method 3:
We are going to prove the statement by induction on .

1,1 1
B tn=3. Notethatl = - + - + —
e Base case at n ote tha 2+3+6

o Induction step. Assume that the statement holds for some n > 3.
By the induction hypothesis, there exist x; < ... < x,in N\ {0} such that 1 = 1 + 1 + -+ 1
X1 Xy X
1 1 1

Note that x; # 1 since otherwise L + L ++—=1+—+--4+—>1 Thusx; > 1.
xl XZ xn x2 X
Note that for x # 0, ! + ! - _*t ! = l
x(x+1) x+1 x(x+1) x

n

n

Therefore

1 1 1 1 1 1 1 1 1
l=—+—+-+ +—=—+—+-+ + +
X X, X X x,+1  x,(x,+1)

n—1 n X1 X2 Xn-1
Sincel < x,and 0 < x,+ 1, wegetx,+1 < x,(x,+1).
Therefore 1 < x; <xy <+ <x, 1 <x,<x,+1<x,(x,+1).

So the n + 1 denominators are pairwise distinct.



