University of Toronto - MAT246H1-S - LEC0201/9201
 Concepts in Abstract Mathematics

Problem Set $\mathrm{n}^{\circ} 1$

Jean-Baptiste Campesato

Due on February $5^{\text {th }}, 2021$

Except otherwise stated, you can only use the material covered from Jan 12 to Jan 26 (i.e. Chapter 1 E Chapter 2 up to §3).

Exercise 1.

We define the binary relation $<$ on \mathbb{N}^{2} by $\left(x_{1}, y_{1}\right)<\left(x_{2}, y_{2}\right) \Leftrightarrow\left(x_{1}<x_{2}\right.$ or $\left(x_{1}=x_{2}\right.$ and $\left.\left.y_{1} \leq y_{2}\right)\right)$. Is it an order? If so, is it total?

Exercise 2.

Prove that given $n \in \mathbb{N} \backslash\{0\}$ there exist finitely many $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{N}$ pairwise distinct such that

$$
n=2^{\alpha_{1}}+2^{\alpha_{2}}+\cdots+2^{\alpha_{m}}
$$

Exercise 3.

Solve $4 x(x+1)=y(y+1)$ for $(x, y) \in \mathbb{N}^{2}$.
Your answer can only rely on the properties of \mathbb{N} proved in Chapter 1.
Particularly, your proof should not involve negative integers, rationals, calculus...
Hint: compare $2 x$ and y.

Exercise 4.

Prove that for every $n \geq 3$, there exist $x_{1}, \ldots, x_{n} \in \mathbb{N} \backslash\{0\}$ pairwise distinct such that

$$
1=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}
$$

In this exercise, you may assume that you already know \mathbb{Q} or \mathbb{R} so that $\frac{1}{x_{i}}$ is well-defined.
Hint: $1=\frac{1}{2}+\frac{1}{2}$.

Sample solution to Exercise 1.

We are going to prove that $<$ is a total order on \mathbb{N}^{2}. It is actually called the lexicographic order.
It is the one used in dictionaries: you compare the first letter, if it is the same, then you look at the next one...

- Reflexivity. Let $(x, y) \in \mathbb{N}^{2}$. Then $x=x$ and $y \leq y$. Thus $(x, y)<(x, y)$.
- Antisymmetry. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{N}^{2}$ satisfying $\left(x_{1}, y_{1}\right)<\left(x_{2}, y_{2}\right)$ and $\left(x_{2}, y_{2}\right)<\left(x_{1}, y_{1}\right)$.

Assume by contradiction that $x_{1}<x_{2}$, then $\left(x_{2}, y_{2}\right) \nless\left(x_{1}, y_{1}\right)$. Which is a contradiction.
Assume by contradiction that $x_{2}<x_{1}$, then $\left(x_{1}, y_{1}\right) \nless\left(x_{2}, y_{2}\right)$. Which is a contradiction.
Thus $x_{1}=x_{2}$.
Since $\left(x_{1}, y_{1}\right)<\left(x_{2}, y_{2}\right)$, we know that $y_{1} \leq y_{2}$. Since $\left(x_{2}, y_{2}\right)<\left(x_{1}, y_{1}\right)$, we know that $y_{2} \leq y_{1}$.
Thus $y_{1}=y_{2}$.
We proved that $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$.

- Transitivity. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in \mathbb{N}^{2}$ satisfying $\left(x_{1}, y_{1}\right)<\left(x_{2}, y_{2}\right)$ and $\left(x_{2}, y_{2}\right)<\left(x_{3}, y_{3}\right)$.
- Case 1: $x_{1}=x_{2}$ and $x_{2}=x_{3}$.

Then $x_{1}=x_{3}$. Furthemore $y_{1} \leq y_{2}$ and $y_{2} \leq y_{3}$, so $y_{1} \leq y_{3}$.
Hence $\left(x_{1}, y_{1}\right)<\left(x_{3}, y_{3}\right)$.

- Case 2: $x_{1}=x_{2}$ and $x_{2}<x_{3}$.

Then $x_{1}<x_{3}$. Hence $\left(x_{1}, y_{1}\right)<\left(x_{3}, y_{3}\right)$.

- Case 3: $x_{1}<x_{2}$ and $x_{2}=x_{3}$.

Then $x_{1}<x_{3}$. Hence $\left(x_{1}, y_{1}\right)<\left(x_{3}, y_{3}\right)$.

- Case 4: $x_{1}<x_{2}$ and $x_{2}<x_{3}$.

Then $x_{1}<x_{3}$. Hence $\left(x_{1}, y_{1}\right)<\left(x_{3}, y_{3}\right)$.

- < is a total order. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{N}^{2}$. According to the lectures, exactly one of the follows occurs.
- Case 1: $x_{1}<x_{2}$. Then $\left(x_{1}, y_{1}\right)<\left(x_{2}, y_{2}\right)$.
- Case 2: $x_{2}<x_{1}$. Then $\left(x_{2}, y_{2}\right)<\left(x_{1}, y_{1}\right)$.
- Case 3: $x_{1}=x_{2}$. Since \leq is a total order on \mathbb{N} then * either $y_{1} \leq y_{2}$ and then $\left(x_{1}, y_{1}\right)<\left(x_{2}, y_{2}\right)$ * or $y_{2} \leq y_{1}$ and then $\left(x_{2}, y_{2}\right)<\left(x_{1}, y_{1}\right)$.

Sample solution to Exercise 2.

That's the existence of the positional numeral system with base 2 (binary numeral system).

Method 1:

We are going to prove by strong induction that for every $n \geq 1$, there exist finitely many $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{N}$ pairwise distinct such that $n=2^{\alpha_{1}}+2^{\alpha_{2}}+\cdots+2^{\alpha_{m}}$.

- Base case at $n=1.1=2^{0}$.
- Induction step. Assume that the statement holds for $1,2, \ldots, n$ where $n \geq 1$.

By Euclidean division, $n+1=2 q+r$ where $q \in \mathbb{N}$ and $r \in\{0,1\}$.
Note that $q \neq 0$ since otherwise $1<n+1=r \leq 1$.
Hence $1 \leq q<2 q+r=n+1$.
Thus, by the induction hypothesis, $q=2^{\alpha_{1}}+2^{\alpha_{2}}+\cdots+2^{\alpha_{m}}$ where $\alpha_{1}>\alpha_{2}>\cdots>\alpha_{m}$ are natural numbers.
Therefore $n+1=2 q+r=2^{\alpha_{1}+1}+2^{\alpha_{2}+1}+\cdots+2^{\alpha_{m}+1}+r 2^{0}$.
Note that $\alpha_{1}+1>\alpha_{2}+1>\cdots>\alpha_{m}+1>0$. Hence the exponents are pairwise distinct (it is possible for 2^{0} to not appear if $r=0$).
Which ends the induction step.

Method 2:

We are going to prove by strong induction that for every $n \geq 1$, there exist finitely many $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{N}$ pairwise distinct such that $n=2^{\alpha_{1}}+2^{\alpha_{2}}+\cdots+2^{\alpha_{m}}$.

- Base case at $n=1.1=2^{0}$.
- Induction step. Assume that the statement holds for $1,2, \ldots, n$ where $n \geq 1$.
(i) First case: $n+1$ is even. Then $n+1=2 k$ for some $k \in \mathbb{N}$.

Note that $k \neq 0$ since otherwise $1 \leq n+1=2 k=0$.
Since $k \neq 0$, we get that $k<2 k=n+1$, i.e. $k \leq n$.
Thus, by the induction hypothesis, $k=2^{\alpha_{1}}+2^{\alpha_{2}}+\cdots+2^{\alpha_{m}}$ where the $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{N}$ are pairwise distinct.
So $n+1=2 \times\left(2^{\alpha_{1}}+2^{\alpha_{2}}+\cdots+2^{\alpha_{m}}\right)=2^{\alpha_{1}+1}+2^{\alpha_{2}+1}+\cdots+2^{\alpha_{m}+1}$.
Assume by contradiction that there exist $i \neq j$ such that $\alpha_{i}+1=\alpha_{j}+1$. Then, by the cancellation rule, $\alpha_{i}=\alpha_{j}$. Which is a contradiction since the α_{i} are pairwise distinct.
Therefore the $\alpha_{1}+1, \alpha_{2}+1, \ldots, \alpha_{m}+1$ are pairwise distinct as requested.
(ii) Second case: $n+1$ is odd. Then $n+1=2 k+1$ for some $k \in \mathbb{N}$.

Note that $k \neq 0$ since otherwise $n+1=2 \times 0+1=1 \Longrightarrow n=0$. Hence, as above, $k<2 k=n$.
Thus, by the induction hypothesis, $k=2^{\alpha_{1}}+2^{\alpha_{2}}+\cdots+2^{\alpha_{m}}$ where the $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{N}$ are pairwise distinct.
Hence $n+1=1+2 k=2^{0}+2 \times\left(2^{\alpha_{1}}+2^{\alpha_{2}}+\cdots+2^{\alpha_{m}}\right)=2^{0}+2^{\alpha_{1}+1}+2^{\alpha_{2}+1}+\cdots+2^{\alpha_{m}+1}$.
As above, the $\alpha_{i}+1$ are pairwise distinct. Moreover $\alpha_{i}+1>0$. Therefore the $0, \alpha_{1}+1, \alpha_{2}+$ $1, \ldots, \alpha_{m}+1$ are pairwise distinct, as requested.

Which ends the induction step.

Sample solution to Exercise 3.

Let $(x, y) \in \mathbb{N}^{2}$ be such that $4 x(x+1)=y(y+1)$.

1. First case: assume that $y \leq 2 x$. Then

$$
y(y+1) \leq 2 x(2 x+1) \leq 2 x(2 x+2)=4 x(x+1)=y(y+1)
$$

Hence $2 x(2 x+1) \leq 2 x(2 x+2)$ and $2 x(2 x+2)=y(y+1) \leq 2 x(2 x+1)$.
Thus $2 x(2 x+1)=2 x(2 x+2)$, from which we get that $x(2 x+1)=x(2 x+2)$.

- Either $x=0$ and then $y \leq 0$ so $y=0$.
- Or $x \neq 0$ and then, by cancellation, we get $2 x+1=2 x+2$.

We derive from the previous equality that $1=2$, which is impossible.
Thus the only possible solution in this case is $(x, y)=(0,0)$.
2. Second case: assume that $2 x<y$, i.e. $2 x+1 \leq y$. Then

$$
y(y+1) \geq(2 x+1)(2 x+2) \geq 2 x(2 x+2)=y(y+1)
$$

Hence, as above, $(2 x+1)(2 x+2)=2 x(2 x+2)$.
Note that $2 x+2 \neq 0$ since $2 x+2 \geq 2>0$.
So, by cancellation, $2 x=2 x+1$ and hence $0=1$, which is impossible.
Therefore there is no solution $(x, y) \in \mathbb{N}^{2}$ satisfying $2 x<y$.
We proved that the only possible solution is $(x, y)=(0,0)$.
We have to check that conversely it is a solution, which is the case since then $4 x(x+1)=0=y(y+1)$.
So the only solution is $(x, y)=(0,0)$.

Sample solution to Exercise 4.

Method 1 (using my hint):

We are going to prove the statement by induction on n.

- Base case at $n=3$. Note that $1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$
- Induction step. Assume that the statement holds for some $n \geq 3$.

By the induction hypothesis, there exist $x_{1}<\ldots<x_{n}$ in $\mathbb{N} \backslash\{0\}$ such that $1=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}$.
Note that $x_{1} \neq 1$ since otherwise $\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}=1+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}>1$. Thus $x_{1}>1$.
Hence $1=\frac{1}{2}+\frac{1}{2}=\frac{1}{2}+\frac{1}{2}\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}\right)=\frac{1}{2}+\frac{1}{2 x_{1}}+\frac{1}{2 x_{2}}+\cdots+\frac{1}{2 x_{n}}$.
Besides, since $1<x_{1}<x_{2}<\cdots<x_{n}$, we get that $2<2 x_{1}<2 x_{2}<\cdots<2 x_{n}$.
So the $n+1$ denominators are pairwise distinct.

Method 2:

We are going to prove the following stronger statement by induction on n : for $n \geq 3$, there exist $1<x_{1}<$ $x_{2}<\cdots<x_{n}$ such that $1=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}$ and x_{n} is even.

- Base case at $n=3$. Note that $1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$
- Induction step. Assume that the statement holds for some $n \geq 3$.

By the induction hypothesis, there exist $1<x_{1}<\ldots<x_{n}$ in \mathbb{N} such that $1=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}$ and x_{n} is even.
Hence $x_{n}=2 k$ for some $k \in \mathbb{N} \backslash\{0\}$.
Note that $\frac{1}{x_{n}}=\frac{1}{2 k}=\frac{1}{3 k}+\frac{1}{6 k}$.
Hence

$$
1=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n-1}}+\frac{1}{3 k}+\frac{1}{6 k}
$$

Besides $6 k$ is even and $1<x_{1}<x_{2}<\cdots<x_{n}=2 k<3 k<6 k$.
So the $n+1$ denominators are pairwise distinct.

Method 3:

We are going to prove the statement by induction on n.

- Base case at $n=3$. Note that $1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$
- Induction step. Assume that the statement holds for some $n \geq 3$.

By the induction hypothesis, there exist $x_{1}<\ldots<x_{n}$ in $\mathbb{N} \backslash\{0\}$ such that $1=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}$.
Note that $x_{1} \neq 1$ since otherwise $\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}=1+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}>1$. Thus $x_{1}>1$.
Note that for $x \neq 0, \frac{1}{x(x+1)}+\frac{1}{x+1}=\frac{x+1}{x(x+1)}=\frac{1}{x}$.
Therefore

$$
1=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n-1}}+\frac{1}{x_{n}}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n-1}}+\frac{1}{x_{n}+1}+\frac{1}{x_{n}\left(x_{n}+1\right)}
$$

Since $1<x_{n}$ and $0<x_{n}+1$, we get $x_{n}+1<x_{n}\left(x_{n}+1\right)$.
Therefore $1<x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}<x_{n}+1<x_{n}\left(x_{n}+1\right)$.
So the $n+1$ denominators are pairwise distinct.

