University of Toronto – MAT246H1-S – LEC0201/9201 Concepts in Abstract Mathematics

Problem Set n°1

Jean-Baptiste Campesato

Due on February 5th, 2021

Except otherwise stated, you can only use the material covered from Jan 12 to Jan 26 (i.e. Chapter 1 & Chapter 2 up to §3).

Exercise 1.

We define the binary relation \prec on \mathbb{N}^2 by $(x_1, y_1) \prec (x_2, y_2) \Leftrightarrow (x_1 \prec x_2 \text{ or } (x_1 = x_2 \text{ and } y_1 \leq y_2))$. Is it an order? If so, is it total?

Exercise 2.

Prove that given $n \in \mathbb{N} \setminus \{0\}$ there exist finitely many $\alpha_1, \ldots, \alpha_m \in \mathbb{N}$ pairwise distinct such that

$$n = 2^{\alpha_1} + 2^{\alpha_2} + \dots + 2^{\alpha_m}$$

Exercise 3. Solve 4x(x + 1) = y(y + 1) for $(x, y) \in \mathbb{N}^2$.

Your answer can only rely on the properties of \mathbb{N} proved in Chapter 1. Particularly, your proof should not involve negative integers, rationals, calculus... **Hint:** compare 2x and y.

Exercise 4.

Prove that for every $n \ge 3$, there exist $x_1, \ldots, x_n \in \mathbb{N} \setminus \{0\}$ pairwise distinct such that

$$1 = \frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}$$

In this exercise, you may assume that you already know \mathbb{Q} or \mathbb{R} so that $\frac{1}{x_i}$ is well-defined. *Hint:* $1 = \frac{1}{2} + \frac{1}{2}$.

Sample solution to Exercise 1.

We are going to prove that \prec is a total order on \mathbb{N}^2 . It is actually called the *lexicographic order*. It is the one used in dictionaries: you compare the first letter, if it is the same, then you look at the next one...

- *Reflexivity.* Let $(x, y) \in \mathbb{N}^2$. Then x = x and $y \le y$. Thus $(x, y) \prec (x, y)$.
- Antisymmetry. Let $(x_1, y_1), (x_2, y_2) \in \mathbb{N}^2$ satisfying $(x_1, y_1) \prec (x_2, y_2)$ and $(x_2, y_2) \prec (x_1, y_1)$. Assume by contradiction that $x_1 < x_2$, then $(x_2, y_2) \not\prec (x_1, y_1)$. Which is a contradiction. Assume by contradiction that $x_2 < x_1$, then $(x_1, y_1) \not\prec (x_2, y_2)$. Which is a contradiction. Thus $x_1 = x_2$. Since $(x_1, y_1) \prec (x_2, y_2)$, we know that $y_1 \le y_2$. Since $(x_2, y_2) \prec (x_1, y_1)$, we know that $y_2 \le y_1$. Thus $y_1 = y_2$. We proved that $(x_1, y_1) = (x_2, y_2)$.
- *Transitivity.* Let $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in \mathbb{N}^2$ satisfying $(x_1, y_1) \prec (x_2, y_2)$ and $(x_2, y_2) \prec (x_3, y_3)$.
 - Case 1: $x_1 = x_2$ and $x_2 = x_3$. Then $x_1 = x_3$. Furthemore $y_1 \le y_2$ and $y_2 \le y_3$, so $y_1 \le y_3$. Hence $(x_1, y_1) \prec (x_3, y_3)$.
 - Case 2: $x_1 = x_2$ and $x_2 < x_3$. Then $x_1 < x_3$. Hence $(x_1, y_1) \prec (x_3, y_3)$.
 - Case 3: $x_1 < x_2$ and $x_2 = x_3$. Then $x_1 < x_3$. Hence $(x_1, y_1) \prec (x_3, y_3)$.
 - Case 4: $x_1 < x_2$ and $x_2 < x_3$. Then $x_1 < x_3$. Hence $(x_1, y_1) < (x_3, y_3)$.
- \prec *is a total order*. Let $(x_1, y_1), (x_2, y_2) \in \mathbb{N}^2$. According to the lectures, exactly one of the follows occurs.
 - *Case 1:* $x_1 < x_2$. Then $(x_1, y_1) \prec (x_2, y_2)$.
 - *Case 2:* $x_2 < x_1$. Then $(x_2, y_2) \prec (x_1, y_1)$.
 - − *Case 3:* $x_1 = x_2$. Since ≤ is a total order on \mathbb{N} then
 - * either $y_1 \le y_2$ and then $(x_1, y_1) \prec (x_2, y_2)$
 - * or $y_2 \le y_1$ and then $(x_2, y_2) \prec (x_1, y_1)$.

Sample solution to Exercise 2.

That's the existence of the positional numeral system with base 2 (binary numeral system).

Method 1:

We are going to prove by strong induction that for every $n \ge 1$, there exist finitely many $\alpha_1, \ldots, \alpha_m \in \mathbb{N}$ pairwise distinct such that $n = 2^{\alpha_1} + 2^{\alpha_2} + \cdots + 2^{\alpha_m}$.

• Base case at n = 1. $1 = 2^0$.

Induction step. Assume that the statement holds for 1, 2, ..., *n* where *n* ≥ 1. By Euclidean division, *n* + 1 = 2*q* + *r* where *q* ∈ N and *r* ∈ {0, 1}. Note that *q* ≠ 0 since otherwise 1 < *n* + 1 = *r* ≤ 1. Hence 1 ≤ *q* < 2*q* + *r* = *n* + 1. Thus, by the induction hypothesis, *q* = 2^α₁ + 2^α₂ + ... + 2^α_m where α₁ > α₂ > ... > α_m are natural numbers. Therefore *n* + 1 = 2*q* + *r* = 2^{α₁+1} + 2^{α₂+1} + ... + 2^{α_m+1} + *r*2⁰. Note that α₁ + 1 > α₂ + 1 > ... > α_m + 1 > 0. Hence the exponents are pairwise distinct (it is possible for 2⁰ to not appear if *r* = 0). Which ends the induction step.

Method 2:

We are going to prove by strong induction that for every $n \ge 1$, there exist finitely many $\alpha_1, \ldots, \alpha_m \in \mathbb{N}$ pairwise distinct such that $n = 2^{\alpha_1} + 2^{\alpha_2} + \cdots + 2^{\alpha_m}$.

- Base case at n = 1. $1 = 2^0$.
- *Induction step.* Assume that the statement holds for 1, 2, ..., n where $n \ge 1$.
 - (i) First case: n + 1 is even. Then n + 1 = 2k for some k ∈ N. Note that k ≠ 0 since otherwise 1 ≤ n + 1 = 2k = 0. Since k ≠ 0, we get that k < 2k = n + 1, i.e. k ≤ n. Thus, by the induction hypothesis, k = 2^{α1} + 2^{α2} + … + 2^{αm} where the α₁, …, α_m ∈ N are pairwise distinct. So n + 1 = 2 × (2^{α1} + 2^{α2} + … + 2^{αm}) = 2^{α1+1} + 2^{α2+1} + … + 2^{αm+1}. Assume by contradiction that there exist i ≠ j such that α_i + 1 = α_j + 1. Then, by the cancellation rule, α_i = α_j. Which is a contradiction since the α_i are pairwise distinct.
 (ii) Contradiction that there are pairwise distinct.
 - (ii) Second case: n + 1 is odd. Then n + 1 = 2k + 1 for some k ∈ N. Note that k ≠ 0 since otherwise n + 1 = 2 × 0 + 1 = 1 ⇒ n = 0. Hence, as above, k < 2k = n. Thus, by the induction hypothesis, k = 2^{α1} + 2^{α2} + … + 2^{αm} where the α₁, …, α_m ∈ N are pairwise distinct. Hence n + 1 = 1 + 2k = 2⁰ + 2 × (2^{α1} + 2^{α2} + … + 2^{αm}) = 2⁰ + 2^{α1+1} + 2^{α2+1} + … + 2^{αm+1}. As above, the α_i + 1 are pairwise distinct. Moreover α_i + 1 > 0. Therefore the 0, α₁ + 1, α₂ + 1, …, α_m + 1 are pairwise distinct, as requested.

Which ends the induction step.

Sample solution to Exercise 3.

Let $(x, y) \in \mathbb{N}^2$ be such that 4x(x + 1) = y(y + 1).

1. *First case: assume that* $y \le 2x$. Then

$$y(y+1) \le 2x(2x+1) \le 2x(2x+2) = 4x(x+1) = y(y+1)$$

Hence $2x(2x + 1) \le 2x(2x + 2)$ and $2x(2x + 2) = y(y + 1) \le 2x(2x + 1)$. Thus 2x(2x + 1) = 2x(2x + 2), from which we get that x(2x + 1) = x(2x + 2).

- Either x = 0 and then $y \le 0$ so y = 0.
- Or $x \neq 0$ and then, by cancellation, we get 2x + 1 = 2x + 2. We derive from the previous equality that 1 = 2, which is impossible.

Thus the only possible solution in this case is (x, y) = (0, 0).

2. Second case: assume that 2x < y, i.e. $2x + 1 \le y$. Then

$$y(y+1) \ge (2x+1)(2x+2) \ge 2x(2x+2) = y(y+1)$$

Hence, as above, (2x + 1)(2x + 2) = 2x(2x + 2). Note that $2x + 2 \neq 0$ since $2x + 2 \geq 2 > 0$. So, by cancellation, 2x = 2x + 1 and hence 0 = 1, which is impossible. Therefore there is no solution $(x, y) \in \mathbb{N}^2$ satisfying 2x < y.

We proved that the only possible solution is (x, y) = (0, 0). We have to check that conversely it is a solution, which is the case since then 4x(x + 1) = 0 = y(y + 1). So the only solution is (x, y) = (0, 0).

Sample solution to Exercise 4.

Method 1 (using my hint):

We are going to prove the statement by induction on *n*.

- *Base case at n* = 3. Note that $1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$
- *Induction step.* Assume that the statement holds for some $n \ge 3$. By the induction hypothesis, there exist $x_1 < \dots < x_n$ in $\mathbb{N} \setminus \{0\}$ such that $1 = \frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}$. Note that $x_1 \ne 1$ since otherwise $\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} = 1 + \frac{1}{x_2} + \dots + \frac{1}{x_n} > 1$. Thus $x_1 > 1$. Hence $1 = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}\right) = \frac{1}{2} + \frac{1}{2x_1} + \frac{1}{2x_2} + \dots + \frac{1}{2x_n}$. Besides, since $1 < x_1 < x_2 < \dots < x_n$, we get that $2 < 2x_1 < 2x_2 < \dots < 2x_n$. So the n + 1 denominators are pairwise distinct.

Method 2:

We are going to prove the following stronger statement by induction on *n*: for $n \ge 3$, there exist $1 < x_1 < x_2 < \cdots < x_n$ such that $1 = \frac{1}{x_1} + \frac{1}{x_2} + \cdots + \frac{1}{x_n}$ and x_n is even.

- *Base case at n* = 3. Note that $1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$
- *Induction step.* Assume that the statement holds for some $n \ge 3$.

By the induction hypothesis, there exist $1 < x_1 < ... < x_n$ in \mathbb{N} such that $1 = \frac{1}{x_1} + \frac{1}{x_2} + \cdots + \frac{1}{x_n}$ and x_n is even.

Hence $x_n = 2k$ for some $k \in \mathbb{N} \setminus \{0\}$. Note that $\frac{1}{x_n} = \frac{1}{2k} = \frac{1}{3k} + \frac{1}{6k}$. Hence

$$1 = \frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_{n-1}} + \frac{1}{3k} + \frac{1}{6k}$$

Besides 6k is even and $1 < x_1 < x_2 < \cdots < x_n = 2k < 3k < 6k$. So the n + 1 denominators are pairwise distinct.

Method 3:

We are going to prove the statement by induction on *n*.

- *Base case at n* = 3. Note that $1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$
- *Induction step.* Assume that the statement holds for some $n \ge 3$. By the induction hypothesis, there exist $x_1 < ... < x_n$ in $\mathbb{N} \setminus \{0\}$ such that $1 = \frac{1}{x_1} + \frac{1}{x_2} + \cdots + \frac{1}{x_n}$. Note that $x_1 \ne 1$ since otherwise $\frac{1}{x_1} + \frac{1}{x_2} + \cdots + \frac{1}{x_n} = 1 + \frac{1}{x_2} + \cdots + \frac{1}{x_n} > 1$. Thus $x_1 > 1$. Note that for $x \ne 0$, $\frac{1}{x(x+1)} + \frac{1}{x+1} = \frac{x+1}{x(x+1)} = \frac{1}{x}$.

Therefore

$$1 = \frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_{n-1}} + \frac{1}{x_n} = \frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_{n-1}} + \frac{1}{x_n + 1} + \frac{1}{x_n (x_n + 1)}$$

Since $1 < x_n$ and $0 < x_n + 1$, we get $x_n + 1 < x_n(x_n + 1)$. Therefore $1 < x_1 < x_2 < \cdots < x_{n-1} < x_n < x_n + 1 < x_n(x_n + 1)$. So the n + 1 denominators are pairwise distinct.