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Except otherwise stated, you can only use the material covered from Jan 12 to Jan 26 (i.e. Chapter 1 & Chapter 2 up
to §3).

Exercise 1.
We define the binary relation ≺ on ℕ2 by (𝑥1, 𝑦1) ≺ (𝑥2, 𝑦2) ⇔ (𝑥1 < 𝑥2 or (𝑥1 = 𝑥2 and 𝑦1 ≤ 𝑦2)).
Is it an order? If so, is it total?

Exercise 2.
Prove that given 𝑛 ∈ ℕ ⧵ {0} there exist finitely many 𝛼1, … , 𝛼𝑚 ∈ ℕ pairwise distinct such that

𝑛 = 2𝛼1 + 2𝛼2 + ⋯ + 2𝛼𝑚

Exercise 3.
Solve 4𝑥(𝑥 + 1) = 𝑦(𝑦 + 1) for (𝑥, 𝑦) ∈ ℕ2.

Your answer can only rely on the properties of ℕ proved in Chapter 1.
Particularly, your proof should not involve negative integers, rationals, calculus…
Hint: compare 2𝑥 and 𝑦.

Exercise 4.
Prove that for every 𝑛 ≥ 3, there exist 𝑥1, … , 𝑥𝑛 ∈ ℕ ⧵ {0} pairwise distinct such that

1 = 1
𝑥1

+ 1
𝑥2

+ ⋯ + 1
𝑥𝑛

In this exercise, you may assume that you already know ℚ or ℝ so that 1
𝑥𝑖

is well-defined.
Hint: 1 = 1

2 + 1
2 .
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Sample solution to Exercise 1.
We are going to prove that ≺ is a total order on ℕ2. It is actually called the lexicographic order.
It is the one used in dictionaries: you compare the first letter, if it is the same, then you look at the next one…

• Reflexivity. Let (𝑥, 𝑦) ∈ ℕ2. Then 𝑥 = 𝑥 and 𝑦 ≤ 𝑦. Thus (𝑥, 𝑦) ≺ (𝑥, 𝑦).

• Antisymmetry. Let (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ ℕ2 satisfying (𝑥1, 𝑦1) ≺ (𝑥2, 𝑦2) and (𝑥2, 𝑦2) ≺ (𝑥1, 𝑦1).
Assume by contradiction that 𝑥1 < 𝑥2, then (𝑥2, 𝑦2) ⊀ (𝑥1, 𝑦1). Which is a contradiction.
Assume by contradiction that 𝑥2 < 𝑥1, then (𝑥1, 𝑦1) ⊀ (𝑥2, 𝑦2). Which is a contradiction.
Thus 𝑥1 = 𝑥2.
Since (𝑥1, 𝑦1) ≺ (𝑥2, 𝑦2), we know that 𝑦1 ≤ 𝑦2. Since (𝑥2, 𝑦2) ≺ (𝑥1, 𝑦1), we know that 𝑦2 ≤ 𝑦1.
Thus 𝑦1 = 𝑦2.
We proved that (𝑥1, 𝑦1) = (𝑥2, 𝑦2).

• Transitivity. Let (𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3) ∈ ℕ2 satisfying (𝑥1, 𝑦1) ≺ (𝑥2, 𝑦2) and (𝑥2, 𝑦2) ≺ (𝑥3, 𝑦3).
– Case 1: 𝑥1 = 𝑥2 and 𝑥2 = 𝑥3.

Then 𝑥1 = 𝑥3. Furthemore 𝑦1 ≤ 𝑦2 and 𝑦2 ≤ 𝑦3, so 𝑦1 ≤ 𝑦3.
Hence (𝑥1, 𝑦1) ≺ (𝑥3, 𝑦3).

– Case 2: 𝑥1 = 𝑥2 and 𝑥2 < 𝑥3.
Then 𝑥1 < 𝑥3. Hence (𝑥1, 𝑦1) ≺ (𝑥3, 𝑦3).

– Case 3: 𝑥1 < 𝑥2 and 𝑥2 = 𝑥3.
Then 𝑥1 < 𝑥3. Hence (𝑥1, 𝑦1) ≺ (𝑥3, 𝑦3).

– Case 4: 𝑥1 < 𝑥2 and 𝑥2 < 𝑥3.
Then 𝑥1 < 𝑥3. Hence (𝑥1, 𝑦1) ≺ (𝑥3, 𝑦3).

• ≺ is a total order. Let (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ ℕ2. According to the lectures, exactly one of the follows occurs.
– Case 1: 𝑥1 < 𝑥2. Then (𝑥1, 𝑦1) ≺ (𝑥2, 𝑦2).
– Case 2: 𝑥2 < 𝑥1. Then (𝑥2, 𝑦2) ≺ (𝑥1, 𝑦1).
– Case 3: 𝑥1 = 𝑥2. Since ≤ is a total order on ℕ then

∗ either 𝑦1 ≤ 𝑦2 and then (𝑥1, 𝑦1) ≺ (𝑥2, 𝑦2)
∗ or 𝑦2 ≤ 𝑦1 and then (𝑥2, 𝑦2) ≺ (𝑥1, 𝑦1).

Sample solution to Exercise 2.
That’s the existence of the positional numeral system with base 2 (binary numeral system).

Method 1:
We are going to prove by strong induction that for every 𝑛 ≥ 1, there exist finitely many 𝛼1, … , 𝛼𝑚 ∈ ℕ
pairwise distinct such that 𝑛 = 2𝛼1 + 2𝛼2 + ⋯ + 2𝛼𝑚 .

• Base case at 𝑛 = 1. 1 = 20.

• Induction step. Assume that the statement holds for 1, 2, … , 𝑛 where 𝑛 ≥ 1.
By Euclidean division, 𝑛 + 1 = 2𝑞 + 𝑟 where 𝑞 ∈ ℕ and 𝑟 ∈ {0, 1}.
Note that 𝑞 ≠ 0 since otherwise 1 < 𝑛 + 1 = 𝑟 ≤ 1.
Hence 1 ≤ 𝑞 < 2𝑞 + 𝑟 = 𝑛 + 1.
Thus, by the induction hypothesis, 𝑞 = 2𝛼1 + 2𝛼2 + ⋯ + 2𝛼𝑚 where 𝛼1 > 𝛼2 > ⋯ > 𝛼𝑚 are natural
numbers.
Therefore 𝑛 + 1 = 2𝑞 + 𝑟 = 2𝛼1+1 + 2𝛼2+1 + ⋯ + 2𝛼𝑚+1 + 𝑟20.
Note that 𝛼1 + 1 > 𝛼2 + 1 > ⋯ > 𝛼𝑚 + 1 > 0. Hence the exponents are pairwise distinct (it is possible
for 20 to not appear if 𝑟 = 0).
Which ends the induction step.



MAT246H1-S – LEC0201/9201 – J.-B. Campesato 3

Method 2:
We are going to prove by strong induction that for every 𝑛 ≥ 1, there exist finitely many 𝛼1, … , 𝛼𝑚 ∈ ℕ
pairwise distinct such that 𝑛 = 2𝛼1 + 2𝛼2 + ⋯ + 2𝛼𝑚 .

• Base case at 𝑛 = 1. 1 = 20.

• Induction step. Assume that the statement holds for 1, 2, … , 𝑛 where 𝑛 ≥ 1.

(i) First case: 𝑛 + 1 is even. Then 𝑛 + 1 = 2𝑘 for some 𝑘 ∈ ℕ.
Note that 𝑘 ≠ 0 since otherwise 1 ≤ 𝑛 + 1 = 2𝑘 = 0.
Since 𝑘 ≠ 0, we get that 𝑘 < 2𝑘 = 𝑛 + 1, i.e. 𝑘 ≤ 𝑛.
Thus, by the induction hypothesis, 𝑘 = 2𝛼1 + 2𝛼2 + ⋯ + 2𝛼𝑚 where the 𝛼1, … , 𝛼𝑚 ∈ ℕ are pairwise
distinct.
So 𝑛 + 1 = 2 × (2𝛼1 + 2𝛼2 + ⋯ + 2𝛼𝑚) = 2𝛼1+1 + 2𝛼2+1 + ⋯ + 2𝛼𝑚+1.
Assume by contradiction that there exist 𝑖 ≠ 𝑗 such that 𝛼𝑖 + 1 = 𝛼𝑗 + 1. Then, by the cancellation
rule, 𝛼𝑖 = 𝛼𝑗 . Which is a contradiction since the 𝛼𝑖 are pairwise distinct.
Therefore the 𝛼1 + 1, 𝛼2 + 1, … , 𝛼𝑚 + 1 are pairwise distinct as requested.

(ii) Second case: 𝑛 + 1 is odd. Then 𝑛 + 1 = 2𝑘 + 1 for some 𝑘 ∈ ℕ.
Note that 𝑘 ≠ 0 since otherwise 𝑛 + 1 = 2 × 0 + 1 = 1 ⟹ 𝑛 = 0. Hence, as above, 𝑘 < 2𝑘 = 𝑛.
Thus, by the induction hypothesis, 𝑘 = 2𝛼1 + 2𝛼2 + ⋯ + 2𝛼𝑚 where the 𝛼1, … , 𝛼𝑚 ∈ ℕ are pairwise
distinct.
Hence 𝑛 + 1 = 1 + 2𝑘 = 20 + 2 × (2𝛼1 + 2𝛼2 + ⋯ + 2𝛼𝑚) = 20 + 2𝛼1+1 + 2𝛼2+1 + ⋯ + 2𝛼𝑚+1.
As above, the 𝛼𝑖 + 1 are pairwise distinct. Moreover 𝛼𝑖 + 1 > 0. Therefore the 0, 𝛼1 + 1, 𝛼2 +
1, … , 𝛼𝑚 + 1 are pairwise distinct, as requested.

Which ends the induction step.

Sample solution to Exercise 3.
Let (𝑥, 𝑦) ∈ ℕ2 be such that 4𝑥(𝑥 + 1) = 𝑦(𝑦 + 1).

1. First case: assume that 𝑦 ≤ 2𝑥. Then

𝑦(𝑦 + 1) ≤ 2𝑥(2𝑥 + 1) ≤ 2𝑥(2𝑥 + 2) = 4𝑥(𝑥 + 1) = 𝑦(𝑦 + 1)

Hence 2𝑥(2𝑥 + 1) ≤ 2𝑥(2𝑥 + 2) and 2𝑥(2𝑥 + 2) = 𝑦(𝑦 + 1) ≤ 2𝑥(2𝑥 + 1).
Thus 2𝑥(2𝑥 + 1) = 2𝑥(2𝑥 + 2), from which we get that 𝑥(2𝑥 + 1) = 𝑥(2𝑥 + 2).

• Either 𝑥 = 0 and then 𝑦 ≤ 0 so 𝑦 = 0.
• Or 𝑥 ≠ 0 and then, by cancellation, we get 2𝑥 + 1 = 2𝑥 + 2.

We derive from the previous equality that 1 = 2, which is impossible.
Thus the only possible solution in this case is (𝑥, 𝑦) = (0, 0).

2. Second case: assume that 2𝑥 < 𝑦, i.e. 2𝑥 + 1 ≤ 𝑦. Then

𝑦(𝑦 + 1) ≥ (2𝑥 + 1)(2𝑥 + 2) ≥ 2𝑥(2𝑥 + 2) = 𝑦(𝑦 + 1)

Hence, as above, (2𝑥 + 1)(2𝑥 + 2) = 2𝑥(2𝑥 + 2).
Note that 2𝑥 + 2 ≠ 0 since 2𝑥 + 2 ≥ 2 > 0.
So, by cancellation, 2𝑥 = 2𝑥 + 1 and hence 0 = 1, which is impossible.
Therefore there is no solution (𝑥, 𝑦) ∈ ℕ2 satisfying 2𝑥 < 𝑦.

We proved that the only possible solution is (𝑥, 𝑦) = (0, 0).
We have to check that conversely it is a solution, which is the case since then 4𝑥(𝑥 + 1) = 0 = 𝑦(𝑦 + 1).
So the only solution is (𝑥, 𝑦) = (0, 0).



4 Problem Set 1

Sample solution to Exercise 4.
Method 1 (using my hint):
We are going to prove the statement by induction on 𝑛.

• Base case at 𝑛 = 3. Note that 1 = 1
2 + 1

3 + 1
6

• Induction step. Assume that the statement holds for some 𝑛 ≥ 3.
By the induction hypothesis, there exist 𝑥1 < … < 𝑥𝑛 in ℕ ⧵ {0} such that 1 = 1

𝑥1
+ 1

𝑥2
+ ⋯ + 1

𝑥𝑛
.

Note that 𝑥1 ≠ 1 since otherwise 1
𝑥1

+ 1
𝑥2

+ ⋯ + 1
𝑥𝑛

= 1 + 1
𝑥2

+ ⋯ + 1
𝑥𝑛

> 1. Thus 𝑥1 > 1.

Hence 1 = 1
2 + 1

2 = 1
2 + 1

2 (
1
𝑥1

+ 1
𝑥2

+ ⋯ + 1
𝑥𝑛 ) = 1

2 + 1
2𝑥1

+ 1
2𝑥2

+ ⋯ + 1
2𝑥𝑛

.
Besides, since 1 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛, we get that 2 < 2𝑥1 < 2𝑥2 < ⋯ < 2𝑥𝑛.
So the 𝑛 + 1 denominators are pairwise distinct.

Method 2:
We are going to prove the following stronger statement by induction on 𝑛: for 𝑛 ≥ 3, there exist 1 < 𝑥1 <
𝑥2 < ⋯ < 𝑥𝑛 such that 1 = 1

𝑥1
+ 1

𝑥2
+ ⋯ + 1

𝑥𝑛
and 𝑥𝑛 is even.

• Base case at 𝑛 = 3. Note that 1 = 1
2 + 1

3 + 1
6

• Induction step. Assume that the statement holds for some 𝑛 ≥ 3.
By the induction hypothesis, there exist 1 < 𝑥1 < … < 𝑥𝑛 in ℕ such that 1 = 1

𝑥1
+ 1

𝑥2
+ ⋯ + 1

𝑥𝑛
and 𝑥𝑛

is even.
Hence 𝑥𝑛 = 2𝑘 for some 𝑘 ∈ ℕ ⧵ {0}.
Note that 1

𝑥𝑛
= 1

2𝑘 = 1
3𝑘 + 1

6𝑘 .
Hence

1 = 1
𝑥1

+ 1
𝑥2

+ ⋯ + 1
𝑥𝑛−1

+ 1
3𝑘 + 1

6𝑘
Besides 6𝑘 is even and 1 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 = 2𝑘 < 3𝑘 < 6𝑘.
So the 𝑛 + 1 denominators are pairwise distinct.

Method 3:
We are going to prove the statement by induction on 𝑛.

• Base case at 𝑛 = 3. Note that 1 = 1
2 + 1

3 + 1
6

• Induction step. Assume that the statement holds for some 𝑛 ≥ 3.
By the induction hypothesis, there exist 𝑥1 < … < 𝑥𝑛 in ℕ ⧵ {0} such that 1 = 1

𝑥1
+ 1

𝑥2
+ ⋯ + 1

𝑥𝑛
.

Note that 𝑥1 ≠ 1 since otherwise 1
𝑥1

+ 1
𝑥2

+ ⋯ + 1
𝑥𝑛

= 1 + 1
𝑥2

+ ⋯ + 1
𝑥𝑛

> 1. Thus 𝑥1 > 1.

Note that for 𝑥 ≠ 0, 1
𝑥(𝑥 + 1) + 1

𝑥 + 1 = 𝑥 + 1
𝑥(𝑥 + 1) = 1

𝑥 .
Therefore

1 = 1
𝑥1

+ 1
𝑥2

+ ⋯ + 1
𝑥𝑛−1

+ 1
𝑥𝑛

= 1
𝑥1

+ 1
𝑥2

+ ⋯ + 1
𝑥𝑛−1

+ 1
𝑥𝑛 + 1 + 1

𝑥𝑛(𝑥𝑛 + 1)
Since 1 < 𝑥𝑛 and 0 < 𝑥𝑛 + 1, we get 𝑥𝑛 + 1 < 𝑥𝑛(𝑥𝑛 + 1).
Therefore 1 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 < 𝑥𝑛 + 1 < 𝑥𝑛(𝑥𝑛 + 1).
So the 𝑛 + 1 denominators are pairwise distinct.


