MAT246H1-S – LEC0201/9201 Concepts in Abstract Mathematics

April 8th, 2021

Naive set theory

Cantor's definition (1895)

A set is "a gathering together into a whole of distinguishable objects (which are called the elements of the set)"¹.

Sets are governed by two principles:

- **1** The *comprehension principle*: any predicate defines a set (i.e. we can define the set of all elements satisfying a given property).
- 2 The extension principle: two sets are equal if and only if they contain the same elements.

Russell's paradox (Zermelo 1899, Russell 1901)

By the comprehension principle, the set $S = \{x : x \notin x\}$ is well-defined.

- If $S \in S$ then $S \notin S$.
- If $S \notin S$ then $S \in S$.

¹ "Unter einer 'Menge' verstehen wir jede Zusammenfassung M von bestimmten wohlunterscheidbaren Objekten M unserer Anschauung oder unseres Denkens (welche die 'Elemente' von M genannt werden) zu einem Ganzen"

Zermelo (1908): a more careful axiomatic set theory.
 Besides the comprehension principle is weakened to the *separation principle*: given a set, we can define its subset of elements satisfying a given predicate

 $\{x \in E : P(x)\}$

This theory has been subsequently refined by Fraenkel, Solem, von Neumann, and others, giving rise to Zermelo–Fraenkel (ZF) set theory.
 ZF is a *first order theory* with equality and membership: we extend propositional calculus by

ZF is a *first order theory* with equality and membership: we extend propositional calculus by introducing quantified variables and the symbol \in .

In such a theory, we don't define what is a set: they are the atomic objects over which we use quantifiers.

• ZF is not the only axiomatic set theory. For instance, there is von Neumann–Bernays–Gödel theory of classes (in this theory a set is a class contained in another class).

A formulation of ZF

- Axiom of extensionality: $\forall x \forall y (\forall z (z \in x \Leftrightarrow z \in y) \Leftrightarrow x = y)$
- Axiom of pairing: $\forall x \forall y \exists z \forall w (w \in z \Leftrightarrow (w = x \lor w = y))$
- Axiom of union: $\forall x \exists y \forall u (u \in y \Leftrightarrow \exists w \in x (u \in w))$
- Axiom of power set: $\forall x \exists y \forall z [(\forall u (u \in z \implies u \in x)) \Leftrightarrow z \in y]$
- Axiom of empty set: $\exists x \forall y \neg (y \in x)$
- Axiom of infinity: $\exists x (\emptyset \in x \land \forall y \in x (y \cup \{y\} \in x))$
- Axiom schema of replacement: $(\forall x \in a \exists ! y P(x, y)) \implies (\exists b \forall y (y \in b \Leftrightarrow \exists x \in a P(x, y)))$
- Axiom of foundation: $\forall x (x \neq \emptyset \Rightarrow \exists y \in x (x \cap y = \emptyset))$

Un morceau de choix – 1

We may extend ZF with the following axiom to obtain ZFC: **Axiom of choice:** $\forall x((\emptyset \notin x \land \forall u, v \in x(u = v \lor u \cap v = \emptyset)) \implies \exists y \forall u \in x \exists w(u \cap y) = \{w\})$

Equivalent statement

For $(X_i)_{i \in I}$ a family of sets indexed by a set *I*, we have

$$(\forall i \in I, X_i \neq \emptyset) \implies \prod_{i \in I} X_i \neq \emptyset$$

i.e. there exists $(x_i)_{i \in I}$ where $x_i \in X_i$.

"The axiom of choice is obviously true, the well-ordering principle obviously false, and who can tell about Zorn's lemma?"

- Jerry L. Bona

Un morceau de choix – 2

Tarski proved that the following statement is equivalent to the axiom of choice:

Trichotomy principle for cardinality

Given two sets *A* and *B*, exactly one of the following occurs:

- |A| < |B|
- |A| = |B|
- |A| > |B|

When Tarski submitted to the *Comptes Rendus de l'Académie des Sciences* his proof that the trichotomy principle is equivalent to the axiom of choice, both Fréchet and Lebesgue refused it: Fréchet because *"an implication between two well known propositions is not a new result"*, and Lebesgue because *"an implication between two false propositions is of no interest"*.

Cantor's original proof of Cantor–Schröder–Bernstein theorem relied on the trichotomy principle.

We used the axiom of choices several times in Chapter 7:

When we proved that if there exists a surjective function g : F → E then there exists an injective function f : E → F. Indeed, we picked (y_x)_{x∈E} ∈ ∏_{x∈E} g⁻¹(x).

Actually the axiom of choice is equivalent to the fact that a function is surjective if and only if it admits a right inverse, i.e. $g: F \to E$ is surjective if and only if there exists $f: E \to F$ such that $g \circ f = id_E$.

- "A countable union of countable sets is countable" is equivalent to the axiom of countable choice.
 We used the axiom of countable choice to pick simultaneously injective functions *f_i* : *E_i* → N.
- We used the axiom of countable choice to prove that a set is infinite if and only if it contains a subset with cardinality ℵ₀ (we used that a countable union of countable sets is countable).
 Without it, there exist models of ZF with infinite sets which doesn't contain subset with cardinaloty ℵ₀ (recall that the trichotomy principle doesn't hold: such an infinite set is not comparable with ℕ).